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Large deviations for estimators of unknown probabilities, with

applications in risk theory

Claudio Macci∗

Abstract

We present large deviation results for estimators of unknown probabilities which satisfy a
suitable exponential decay condition. These results provide some extensions of the large devia-
tion estimates in Macci and Petrella (2006). Furthermore we propose a classical approach which
is different from the one presented in Ganesh et al. (1998) and we cannot say that the Bayesian
approach is more conservative as in that paper.

Key words: Large deviations, Varadhan’s Lemma, level crossing probability, compound Poisson
process, Brownian motion.

1 Introduction

In this paper we prove asymptotic results for estimators of unknown probabilities and, motivated by
potential applications in risk theory, we present several examples where these probabilities concern
the occurrence of level crossing events.

The unknown probabilities are (ρn(q|θ)), where q = (q1, . . . , qd) ∈ (0,∞)d for some d ≥ 1 and the
unknown parameter θ belongs to some parameter space Θ. One may wish to asses the unknown
probabilities based on experience. Several estimation methods separate the point estimation of
the unknown parameter θ and the estimation of the unknown probabilities but, as pointed out in
Ganesh et al. (1998) for the gambler’s ruin probability, these methods can lead to a very misleading
inference. In this paper we propose two alternative approaches which provide a wide full statistical
analysis for the unknown probabilities, capturing all the uncertainties on the unknown parameter θ:
the Bayesian approach proposed in Ganesh et al. (1998) (see also Ganesh and O’Connell, 1999 and
2000) based on estimates of the predictive probabilities

∫
Θ ρn(q|θ)πn(dθ), where πn is the posterior

distribution given the n-sample; the classical approach based on estimates of the expected values
Eθ[ρn(q|Θ̂n)], where Θ̂n is an empirical estimator based on the n-sample. The latter is different
from the frequentist approach presented in Ganesh et al. (1998) and here we cannot say that the
Bayesian approach is more conservative as in that paper. Typically (Θ̂n) will be the sequence of
the maximum likelihood estimators (MLEs from now on).

In this paper we refer to theory of large deviations which gives an asymptotic computation of
small probabilities on exponential scale; see e.g. Dembo and Zeitouni (1993) as a reference on this
topic. We provide some extensions of the results in Macci and Petrella (2006): the large deviation
principles for posterior distributions are proved without considering finite mixtures of conjugate
prior distributions; we consider a further statistical model based on underlying Inverse Gaussian
distributed samples concerning independent replications of Brownian motions; we consider level
crossing probabilities concerning some bivariate risk models, i.e. the model in Avram et al. (2008)
and a version of it based on the Brownian motion.
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We also remark that we present a unique result (we mean Proposition 3.2 for the classical
approach and Proposition 3.3 for the Bayesian approach) which works well for all the level crossing
probabilities presented in this paper. This unique result is formulated in terms of sequences of
probabilities ((ρn(q|θ)) : θ ∈ Θ) which satisfy the exponential decay condition in Definition 3.1
below; this condition allows to obtain large deviation estimates with standard applications of the
Varadhan’s Lemma.

We conclude with the outline of the paper. Section 2 is devoted to recall some preliminaries.
In section 3 we present large deviation results for estimators of unknown probabilities with ex-
ponential decay; moreover we discuss the comparison between classical and Bayesian approaches.
The applications in risk theory are presented in section 4 (standard risk models) and in section 5
(bivariate risk models).

2 Preliminaries

We start with some preliminaries on large deviations and we refer to Dembo and Zeitouni (1993). A
rate function is a lower semi-continuous function I : Ω → [0,∞], where Ω is a Hausdorff topological
space with Borel σ-algebra BΩ. A sequence of probability measures (νn) on (Ω, BΩ) satisfies the
large deviation principle (LDP from now on) with rate function I if

lim sup
n→∞

1
n

log νn(F ) ≤ − inf
ω∈F

I(ω) for all closed sets F ⊂ Ω

and
lim inf
n→∞

1
n

log νn(G) ≥ − inf
ω∈G

I(ω) for all open sets G ⊂ Ω.

A rate function I is good if all the level sets {{ω ∈ Ω : I(ω) ≤ η} : η ≥ 0} are compact. A sequence
of Ω valued random variables (Zn) satisfies the LDP if (νn) does with νn = P (Zn ∈ ·).

We refer to the definition for random variables when we consider the classical approach, where
(Zn) is a sequence of estimators. We refer to the definition for probability measures when we
consider the Bayesian approach, where (νn) is the sequence of posterior distributions; in this case
we have a family of random probability measures which satisfies the LDP almost surely. In some
sense we should say that we have a conditional LDP, indeed this LDP holds assuming that a
sequence of sufficient statistics converges to some limit value (which determines the true value of
the parameter).

Throughout this paper we consider the following well known large deviation results in the
literature, and we refer again to Dembo and Zeitouni (1993): the principle of the largest term
(Lemma 1.2.15), the contraction principle (Theorem 4.2.1), the Varadhan’s Lemma (Theorem 4.3.1)
and the Sanov’s Theorem (Theorem 6.2.10).

All the rate functions in this paper can be expressed in terms of the relative entropy between
two probability measures (also called Kullback-Leibler divergence). Given two probability measures
ν1 and ν2 on the same measurable space (Ω,BΩ), the relative entropy of ν1 with respect to ν2 is

H(ν1|ν2) =

{ ∫
Ω log

(
dν1
dν2

(ω)
)
ν1(dω) if ν1 ¿ ν2

∞ otherwise,

where ν1 ¿ ν2 means that ν1 is absolutely continuous with respect to ν2, and dν1
dν2

is the corre-
sponding density.

We recall the following formulas. If N [µ, σ2] is the Normal distribution with mean µ and
variance σ2, we have H(N [µ1, σ

2]|N [µ2, σ
2]) = (µ1−µ2)2

2σ2 ; if G[α, β] is the Gamma distribution with
continuous density gα,β(y) = βα

Γ(α)y
α−1e−βy1(0,∞)(y) for α, β > 0, we have H(G[α, β1]|G[α, β2]) =

2
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α
(

β2

β1
−1− log

(
β2

β1

))
; if P [λ] is the Poisson distribution with discrete density gλ(y) = λy

y! e
−λy1N∪{0}

for λ > 0, we have H(P [λ1]|P [λ2]) = λ1 log
(

λ1
λ2

)
− λ1 + λ2. Note that, if we consider the law of

the constant 0 as P [0] and the equality 0 log 0 = 0, the latter formula also holds with λ1 = 0.
In view of the applications in risk theory it is useful to recall some known results: firstly the

LDPs for MLEs (Lemmas 2.1-2.2-2.3), secondly the LDPs for posterior distributions (Lemmas 2.4-
2.5-2.6). We cite some old references for the results for MLEs: see e.g. Bahadur and Ranga Rao
(1960) and Bahadur and Zabell (1979). A more recent reference for the results for both MLEs
and posterior distributions is Macci (2010, section 4) which deals with exponential families: the
mean parameter γ coincides with the parameter θ for Normal and Poisson samples, whereas for
Gamma samples we have to consider a change of variable (via the contraction principle) to transfer
the LDP to the family of posterior distributions on θ = α

βγ . We always use the standard notation
Zn = 1

n

∑n
k=1 Zk.

Lemma 2.1 (Normal samples) Let (Zn) be a sequence of i.i.d. N [θ, 1/r] distributed random
variables, where θ ∈ R is unknown. Then the sequence of MLEs (Θ̂n) coincides with (Zn) and
satisfies the LDP with good rate function Iθ defined by Iθ(θ̂) = H(N [θ̂, 1/r]|N [θ, 1/r]).

Lemma 2.2 (Gamma samples) Let (Zn) be a sequence of i.i.d. G[α, βθ] distributed random
variables, where θ > 0 is unknown. Then the sequence of MLEs (Θ̂n) coincides with (α/(βZn))
and satisfies the LDP with good rate function Iθ defined by Iθ(θ̂) = H(G[α, θ̂]|G[α, θ]) if θ̂ > 0, and
Iθ(θ̂) = ∞ otherwise.

Lemma 2.3 (Poisson samples) Let (Zn) be a sequence of i.i.d. P [θ] distributed random vari-
ables, where θ > 0 is unknown. Then the sequence of MLEs (Θ̂n) coincides with (Zn) and satisfies
the LDP with good rate function Iθ defined by Iθ(θ̂) = H(P [θ̂]|P [θ]) if θ̂ ≥ 0, and Iθ(θ̂) = ∞
otherwise.

In view of Lemmas 2.4-2.5-2.6 presented below we need some further preliminaries. We denote
the posterior distribution given (Z1, . . . , Zn) = (z1, . . . , zn) by πn, namely we set πn = π0(·|Z1 =
z1, . . . , Zn = zn) where π0 is the prior distribution. Moreover we denote the support of the prior
distribution π0 by S(π0); obviously S(π0) is a closed subset of the parameter space Θ.

In each lemma we shall assume the following condition (C) on θ̂n, where θ̂n is the sampled value
of Θ̂n as in Lemmas 2.1-2.2-2.3 above:

(C): θ̂n → θ̂ as n →∞ for some θ̂ ∈ S(π0).

Then θ̂ can be actually interpreted as the true value of the parameter.

Lemma 2.4 (Normal samples) Consider the same situation of Lemma 2.1 and assume that (C)
holds. Then (πn) satisfies the LDP with good rate function I(·|θ̂) defined by I(θ|θ̂) = H(N [θ̂, 1/r]|N [θ, 1/r])
if θ ∈ S(π0), and I(θ|θ̂) = ∞ otherwise.

Lemma 2.5 (Gamma samples) Consider the same situation of Lemma 2.2 and assume that (C)
holds. Then (πn) satisfies the LDP with good rate function I(·|θ̂) defined by I(θ|θ̂) = H(G[α, θ̂]|G[α, θ])
if θ ∈ S(π0), and I(θ|θ̂) = ∞ otherwise.

Lemma 2.6 (Poisson samples) Consider the same situation of Lemma 2.3 and assume that (C)
holds. Then (πn) satisfies the LDP with good rate function I(·|θ̂) defined by I(θ|θ̂) = H(P [θ̂]|P [θ])
if θ ∈ S(π0), and I(θ|θ̂) = ∞ otherwise.
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3 Sequences of probabilities with exponential decay

We start with the definition of sequence of probabilities ((ρn(q|θ)) : θ ∈ Θ) with an exponential
decay (as n →∞).

Definition 3.1 The sequences of probabilities ((ρn(q|θ)) : θ ∈ Θ) have exponential decay if, for
some d ≥ 1, there exist continuous functions w1, . . . , wd : Θ → [0,∞) and numbers c1, . . . , cd ∈ (0, 1]
and M ∈ [0,∞) such that

cie
−(nqi+M)wi(θ) ≤ ρn(q|θ) ≤

d∑
j=1

e−nqjwj(θ) (1)

for all i ∈ {1, . . . , d}, θ ∈ Θ, q = (q1, . . . , qd) ∈ (0,∞)d and n ≥ 1.

Now we prove the large deviation estimates for any sequence of probabilities with an exponential
decay. We start with the classical approach.

Proposition 3.2 (Classical approach) Let ((ρn(q|θ)) : θ ∈ Θ) be sequences of probabilities with
exponential decay. Moreover let wθ

i (qi) be defined by

wθ
i (qi) := inf

θ̂∈Θ
{qiwi(θ̂) + Iθ(θ̂)}.

Let (Θ̂n) be a sequence of random variables which satisfies the LDP with good rate function Iθ,
which uniquely vanishes at θ (the true value of the parameter). Then we have

lim
n→∞

1
n

logEθ[ρn(q|Θ̂n)] = −min{wθ
i (qi) : i ∈ {1, . . . , d}}.

Proof. We have to check the upper bound

lim sup
n→∞

1
n

logEθ[ρn(q|Θ̂n)] ≤ −min{wθ
i (qi) : i ∈ {1, . . . , d}}

and the lower bound

lim inf
n→∞

1
n

logEθ[ρn(q|Θ̂n)] ≥ −min{wθ
i (qi) : i ∈ {1, . . . , d}}.

Proof of the upper bound. For each fixed i ∈ {1, . . . , d} we have

lim sup
n→∞

1
n

logEθ[e−nqiwi(Θ̂n)] = sup
θ̂∈Θ

{−qiwi(θ̂)− Iθ(θ̂)} = −wθ
i (qi) (2)

by the Varadhan’s Lemma; thus we obtain

lim sup
n→∞

1
n

logEθ[ρn(q|Θ̂n)] ≤ lim sup
n→∞

1
n

log
( d∑

j=1

Eθ[e−nqjwj(Θ̂n)]
)

=

= max
{

lim sup
n→∞

1
n

logEθ[e−nqiwi(Θ̂n)] : i ∈ {1, . . . , d}
}

= −min{wθ
i (qi) : i ∈ {1, . . . , d}}

by the second inequality in (1), the principle of the largest term and (2).
Proof of the lower bound. Let i ∈ {1, . . . , d} and ε > 0 be arbitrarily fixed. Then we have

lim inf
n→∞

1
n

logEθ[ρn(q|Θ̂n)] ≥ lim inf
n→∞

1
n

logEθ[cie
−(nqi+M)wi(Θ̂n)] =

4
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= lim inf
n→∞

1
n

logEθ[e−n(qi+M/n)wi(Θ̂n)] ≥ lim inf
n→∞

1
n

logEθ[e−n(qi+ε)wi(Θ̂n)] = −wθ
i (qi + ε)

by the first inequality in (1) and the Varadhan’s Lemma. We notice that −wθ
i (·) is continuous on

[0,∞); indeed it is easy to check that it is convex on the open set (0,∞) (and therefore continuous
on (0,∞); see e.g. Theorem 3.2 in Rudin, 1986), and limqi↓0−wθ

i (qi) = −wθ
i (0) = 0 since 0 ≥

−wθ
i (qi) ≥ −qiwi(θ) (by taking into account the equality Iθ(θ) = 0). Then we have

lim inf
n→∞

1
n

logEθ[ρn(q|Θ̂n)] ≥ −wθ
i (qi)

letting ε go to zero, and we obtain the lower bound taking max{−wθ
i (qi) : i ∈ {1, . . . , d}} at the

right hand side. ¤

We can also prove a Bayesian version of Proposition 3.2. We have the same proof (we have
to replace the classical approach items with the analogous items of the Bayesian approach) and
therefore we omit it. We shall denote again the sampled value of Θ̂n by θ̂n.

Proposition 3.3 (Bayesian approach) Let ((ρn(q|θ)) : θ ∈ Θ) be sequences of probabilities with
exponential decay. Consider a prior distribution π0 on θ and let πn be the posterior distribution
given n sampled values. Assume that there exists a sequence of sufficient statistics (Θ̂n) such that,
if θ̂n → θ̂ as n → ∞ for some θ̂ ∈ Θ, the sequence (πn) satisfies the LDP with good rate function
I(·|θ̂), which uniquely vanishes at θ̂ (the true value of the parameter). Moreover let wi(qi|θ̂) be
defined by

wi(qi|θ̂) := inf
θ∈Θ

{qiwi(θ) + I(θ|θ̂)}. (3)

Then we have

lim
n→∞

1
n

log
∫

Θ
ρn(q|θ)πn(dθ) = −min{wi(qi|θ̂) : i ∈ {1, . . . , d}}.

Comparison between classical and Bayesian approaches. In the next sections the sequences
of probabilities with exponential decay are suitable level crossing probabilities. Thus, motivated by
potential applications in risk theory, now we investigate whether the Bayesian approach is more or
less conservative than the classical approach. More precisely, by taking into account Propositions
3.2 and 3.3, we can say the Bayesian approach is more (less) conservative than the classical approach
if min{wi(qi|θ̂) : i ∈ {1, . . . , d}} is smaller (larger) than min{wθ̂

i (qi) : i ∈ {1, . . . , d}} for each θ̂ ∈ Θ.
In all the examples in this paper we can check the equality

Iθ(θ̂) = I(θ|θ̂) for all θ, θ̂ ∈ Θ (4)

if S(π0) = Θ; this is what typically happens, even if there exists a counterexample (see Proposition
6.1 in Macci and Petrella, 2009). Then, if we restrict the attention on the case S(π0) = Θ, (4)
yields

wθ̂
i (qi) = inf

θ∈Θ
{qiwi(θ) + I

θ̂
(θ)} = inf

θ∈Θ
{qiwi(θ) + I(θ̂|θ)},

and we cannot say if it is larger or smaller than wi(qi|θ̂) in (3). Thus, in general, we cannot compare

min{wi(qi|θ̂) : i ∈ {1, . . . , d}} and min{wθ̂
i (qi) : i ∈ {1, . . . , d}},

but they coincide if I(θ|θ̂) = I(θ̂|θ) for all θ, θ̂ ∈ Θ. For instance this happens for the statistical
models based on the Brownian motion with unknown drift (and known variance parameter), where
the rate functions are expressed in terms of the relative entropy between two Normal distributions
with the same variance (indeed we have H(N [µ1, σ

2]|N [µ2, σ
2]) = H(N [µ2, σ

2]|N [µ1, σ
2])).
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A different comparison between the classical approach and the Bayesian approach has been also
considered in Ganesh et al. (1998). The difference concerns the classical approach which is based
on the limit

lim
n→∞

1
n

log ρn(q|θ̂) = −min{qiwi(θ̂) : i ∈ {1, . . . , d}};
thus, in that case, the Bayesian approach is more conservative than the classical one since the
inequality min{wi(qi|θ̂) : i ∈ {1, . . . , d}} ≤ min{qiwi(θ̂) : i ∈ {1, . . . , d}} holds. In our opinion
the classical approach presented in this paper captures all the uncertainty about the unknown
parameter (as happens for the Bayesian approach), and therefore seems to be more appropriate
than the one in Ganesh et al. (1998).

4 Applications in risk theory (standard models)

In this section we consider two different sequences ((ρn(q|θ)) : θ ∈ Θ) which concern level crossing
probabilities for compound Poisson processes and Brownian motions. More precisely we deal with
the statistical models in Macci and Petrella (2006) (where only Bayesian approach is discussed) and,
for each one, we study the two following sequences of level crossing probabilities: firstly the level
goes to infinity (we set Q = nq for some fixed q > 0 and n →∞), secondly we consider a suitable
scaling called slow Markov walk limit (we refer to the presentation in Asmussen and Nielsen, 1995;
see also Bucklew, 1990). For each statistical model we check the hypotheses of Propositions 3.2
and 3.3: firstly we check the exponential decay condition; secondly we provide a LDP as required
in their statements.

Preliminaries on compound Poisson process. A compound Poisson process (S(t)) is de-
fined by S(t) =

∑N(t)
k=1 Bk, where: (N(t)) is a Poisson process with intensity λ, i.e. N(t) =∑

n≥1 1T1+···+Tn≤t, and (Tk) are i.i.d. exponentially distributed with mean 1/λ; (Bk) are i.i.d. and
positive random variables with common law `, and independent of (Tk). This model is often used
in insurance where Q is the initial capital, p the premium rate, (N(t)) is the claim number process,
(Bk) are the claims and (S(t)) is the aggregate claims process. The infinite horizon level crossing
probability Ψ(p)

(λ,`)(Q) = P ({∃t ≥ 0 : S(t) ≥ Q + pt}) represents the ruin probability.

We have upper and lower bounds for Ψ(p)
(λ,`)(Q) if ` is concentrated on a bounded set. Here we

consider the set [0,M ] where M is the maximum claim size and we have the following refinement
of the Lundberg’s inequality, where w1(λ, `) is defined below in eq. (5):

e(Q+M)w1(λ,`) ≤ Ψ(p)
(λ,`)(Q) ≤ eQw1(λ,`).

It is also known that, if ` = G[1, β] (i.e. ` is the exponential distribution with mean 1/β), we

have Ψ(p)
(λ,G[1,β])(Q) =

(
1− max{βp−λ,0}

βp

)
e
−max{βp−λ,0}

p
Q (see e.g. equation (5.3.8) in Rolski et al.,

1999).
The slow Markov walk limit scaling consists of the sequence of parameters (λn, `n) := (nλ, `[n]),

where `[n] is the law of the random variables {Bk/n : k ≥ 1}. In particular, if ` = G[1, β], we have
`[n] = G[1, nβ].

Preliminaries on Brownian motion. We recall that (S(t)) is a Brownian motion with drift
µ and variance parameter 1/r if, for each fixed h ≥ 1 and 0 < t1 < . . . < th, the random
variables S(t1), S(t2)− S(t1), . . . , S(th)− S(th−1) are independent and normally distributed, with
means µt1, µ(t2 − t1), . . . , µ(th − th−1) and variances t1/r, (t2 − t1)/r, . . . , (th − th−1)/r. If we
consider the infinite horizon level crossing probability Ψ(µ,r)(Q) = inf{t ≥ 0 : S(t) ≥ Q}, we

6
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have Ψ(µ,r)(Q) = e−max{−2µr,0}Q (see e.g. Corollary 1.6 in Asmussen, 2000); note that there is a
minor error in the expression presented in Macci and Petrella (2006).

The slow Markov walk limit scaling consists of the sequence of parameters (µn, rn) := (µ, nr),
i.e. the variance parameter simply goes to zero.

4.1 Compound Poisson process with bounded jumps

Here we have θ = (λ, `) and Θ = (0,∞) × M1[0,M ], where M1[0,M ] is the space of probability
measures on [0,M ] for some M ∈ (0,∞) equipped with the metric of weak convergence. Moreover
we think to have ρn(q|λ, `) = Ψ(p)

(λ,`)(nq) or ρn(q|λ, `) = Ψ(p)
(nλ,`[n])(q). Note that we could consider

two simplified statistical models in which only λ or ` is unknown, and the other parameter is known.
In these cases the results can be obtained with minor changes of the results presented below and
therefore we omit the details.

It is easy to check (for details see equation (4.3) and its consequence in Macci and Petrella,
2006) that, for both the choices of ρn(q|λ, `), (1) holds with d = 1, c1 = 1, and

w1(λ, `) = sup{γ ≥ 0 : λ(G`(γ)− 1)− pγ ≤ 0}, (5)

where G`(γ) =
∫ M
0 eγx`(dx) is the moment generating function of concerning `; in particular see

Lemma 4.2 in Macci and Petrella (2006) for the continuity of w1(λ, `).
We consider the n-sample (Z1, . . . , Zn) = ((T1, B1), . . . , (Tn, Bn)).

The LDP in the statement of Proposition 3.2. Let (Θ̂n) be the estimators defined by Θ̂n = (T−1
n , `n),

where: Tn = 1
n

∑n
k=1 Tk is the empirical mean of T1, . . . , Tn; `n = 1

n

∑n
k=1 δBk

is the empirical law
of B1, . . . , Bn, where δx is the concentrated unit measure concentrated at x. Then the sequence
(Θ̂n) satisfies the LDP with good rate function I(λ,`) defined by

I(λ,`)(λ̂, ̂̀) =
{

H(G[1, λ̂]|G[1, λ]) + H(̂̀|`) if (λ̂, ̂̀) ∈ Θ
∞ otherwise

by the LDP of (T−1
n ) provided by Lemma 2.2 (with α = β = 1 and (T1, . . . , Tn) in place of

(Z1, . . . , Zn)), by the LDP of (`n) provided by the Sanov’s Theorem and by Corollary 2.9 in Lynch
and Sethuraman (1987) which provides the LDP for sequences of multivariate random variables
with independent components.
The LDP in the statement of Proposition 3.3. We consider the prior distribution π0 = ν0 ⊗ Dη0

on (λ, `) where ν0 is the prior distribution on λ and Dη0 is the Dirichlet Process prior on ` with
hyperparameter the finite measure η0 on [0, M ] (see e.g. Ferguson, 1973). Then the posterior
distribution on (λ, `) given the n-sample is πn = νn ⊗Dηn := ν0(·|T1 . . . , Tn) ⊗Dη0(·|B1, . . . , Bn),
where Dη0(·|B1 . . . , Bn) = Dη0+

∑n
i=1 δBi

by Theorem 1 in Ferguson (1973). Then, if θ̂n → (λ̂, ̂̀)
as n → ∞ for some (λ̂, ̂̀) ∈ S(ν0) × S(Dη0), the sequence of posterior distributions (πn) on (λ, `)
satisfies the LDP with good rate function I(·|λ̂, ̂̀) defined by

I(λ, `|λ̂, ̂̀) =
{

H(G[1, λ̂]|G[1, λ]) + H(̂̀|`) if (λ, `) ∈ S(ν0)× S(Dµ)
∞ otherwise

by the LDP of (νn) provided by Lemma 2.5, by the LDP of (Dηn) provided by Theorem 1 in Ganesh
and O’Connell (2000) and by Corollary 2.9 in Lynch and Sethuraman (1987) which provides the
LDP for sequences of product measures.

Another statistical model where λ is unknown and ` is known. Here θ = λ and Θ =
(0,∞). We consider a different n-sample based on the claim numbers in consecutive unit time
intervals, i.e. (Z1, . . . , Zn) = (N(1), . . . , N(n)−N(n− 1)).
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The LDP in the statement of Proposition 3.2. Let (Θ̂n) be the estimators defined by Θ̂n = Zn =
N(n)

n . Then, by Lemma 2.3, the sequence (Θ̂n) satisfies the LDP with good rate function Iλ defined
by Iλ(λ̂) = H(P [λ̂]|P [λ]) if λ̂ ≥ 0, and Iλ(λ̂) = ∞ otherwise.
The LDP in the statement of Proposition 3.3. If θ̂n → λ̂ as n →∞ for some λ̂ ∈ S(π0), by Lemma
2.6 the sequence of posterior distributions (πn) on λ satisfies the LDP with good rate function
I(·|λ̂) defined by I(λ|λ̂) = H(P [λ̂]|P [λ]) if λ ∈ S(π0), and I(λ|λ̂) = ∞ otherwise.

4.2 Compound Poisson process with exponential jumps

One could consider ` = G[1, β] and therefore the inference problem with θ = (λ, β) and Θ =
(0,∞)× (0,∞). In such a case we should think to have ρn(q|λ, β) = Ψ(p)

(λ,G[1,β])(nq) or ρn(q|λ, β) =

Ψ(p)
(nλ,G[1,nβ])(q). Unfortunately in this case we cannot prove the limits in Propositions 3.2-3.3

because we cannot check the lower bound in (1) (an explanation can be found in subsection 4.3 in
Macci and Petrella, 2006).

We do not have this problem assuming to have β = kλ for some known k > 0 (as in subsection
4.3 in Macci and Petrella, 2006). Then here we have θ = λ and Θ = (0,∞). Moreover we think to
have ρn(q|λ) = Ψ(p)

(λ,G[1,kλ])(nq) or ρn(q|λ) = Ψ(p)
(nλ,G[1,knλ])(q).

It is easy to check (for details see equation (4.5) and the first part of subsection 4.3 in Macci
and Petrella, 2006) that, for both the choices of ρn(q|λ), (1) holds with d = 1, c1 = min{(kp)−1, 1},
M = 0 and w1(λ) = kλ max{1− (kp)−1, 0}.

We consider the n-sample (Z1, . . . , Zn) = (kB1 + T1, . . . , kBn + Tn).
The LDP in the statement of Proposition 3.2. Let (Θ̂n) be the estimators defined by Θ̂n = 2Z

−1
n =

2(kBn + Tn)−1, where Tn = 1
n

∑n
k=1 Tk is the empirical mean of T1, . . . , Tn and Bn = 1

n

∑n
k=1 Bk

is the empirical mean of B1, . . . , Bn. Then, by Lemma 2.2 (with α = 2 and β = 1), the sequence
(Θ̂n) satisfies the LDP with good rate function Iλ defined by Iλ(λ̂) = H(G[2, λ̂]|G[2, λ]) if λ̂ > 0,
and Iλ(λ̂) = ∞ otherwise.
The LDP in the statement of Proposition 3.3. If θ̂n → λ̂ as n →∞ for some λ̂ ∈ S(π0), by Lemma
2.5 the sequence of posterior distributions (πn) on λ satisfies the LDP with good rate function
I(·|λ̂) defined by I(λ|λ̂) = H(G[2, λ̂]|G[2, λ]) if λ ∈ S(π0), and I(λ|λ̂) = ∞ otherwise.

4.3 Brownian motion

In this subsection we consider two cases: µ is unknown and r is known; µ is known and r is unknown.
We present a statistical model for the first case, and two statistical models for the second one.

A statistical model where µ is unknown and r is known. Here we have θ = µ and Θ = R
(thus r is known). Moreover we think to have one of the two following cases: ρn(q|µ) = Ψ(µ,r)(nq)
or ρn(q|µ) = Ψ(µ,nr)(q).

It is easy to check that, for both the choices of ρn(q|µ), (1) holds with d = 1, c1 = 1, M = 0
and w1(µ) = max{−2µr, 0}.

We consider the n-sample (Z1, . . . , Zn) = (S(1), . . . , S(n)− S(n− 1)).
The LDP in the statement of Proposition 3.2. Let (Θ̂n) be the estimators defined by Θ̂n = Zn =
S(n)

n . Then, by Lemma 2.1, the sequence (Θ̂n) satisfies the LDP with good rate function Iµ defined
by Iµ(µ̂) = H(N [µ̂, 1/r]|N [µ, 1/r]).
The LDP in the statement of Proposition 3.3. If θ̂n → µ̂ as n →∞ for some µ̂ ∈ S(π0), by Lemma
2.4 the sequence of posterior distributions (πn) on µ satisfies the LDP with good rate function
I(·|µ̂) defined by I(µ|µ̂) = H(N [µ̂, 1/r]|N [µ, 1/r]) if µ ∈ S(π0), and I(µ|µ̂) = ∞ otherwise.
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A statistical model where µ is known and r is unknown. Here we have θ = r and Θ =
(0,∞); thus µ is known and, in order to avoid the trivial situation in which the level crossing occurs
with probability 1, we should consider µ < 0. Moreover we think to have one of the two following
cases: ρn(q|r) = Ψ(µ,r)(nq) or ρn(q|r) = Ψ(µ,nr)(q).

It is easy to check that, for both the choices of ρn(q|r), (1) holds with d = 1, c1 = 1, M = 0
and w1(r) = max{−2µr, 0}.

We consider the n-sample (Z1, . . . , Zn) = ((S(1)− µ)2, . . . , (S(n)− S(n− 1)− µ)2).
The LDP in the statement of Proposition 3.2. Let (Θ̂n) be the estimators defined by Θ̂n = Z

−1
n .

Then, by Lemma 2.2 (with α = β = 1/2), the sequence (Θ̂n) satisfies the LDP with good rate
function Ir defined by Ir(r̂) = H(G[1/2, r̂]|G[1/2, r]) if r̂ > 0, and Ir(r̂) = ∞ otherwise.
The LDP in the statement of Proposition 3.3. If θ̂n → r̂ as n →∞ for some r̂ ∈ S(π0), by Lemma
2.5 the sequence of posterior distributions (πn) on r satisfies the LDP with good rate function I(·|r̂)
defined by I(r|r̂) = H(G[1/2, r̂]|G[1/2, r]) if r ∈ S(π0), and I(r|r̂) = ∞ otherwise.

Another statistical model where µ is known and r is unknown. Here we have θ = r and
Θ = (0,∞) as before, and µ < 0 is known. We consider a different n-sample based on the i.i.d. first
passage times V1, . . . , Vn to a barrier a < 0 concerning n independent replications of the Brownian
motion; since µ < 0, the negativeness of a ensures that each passage time occurs within a finite
time with probability 1. Then the random variables V1, . . . , Vn are IG[a/µ, a2r] distributed, where
IG[a/µ, a2r] is a suitable Inverse Gaussian distribution (see equation (1.2) and the beginning of
section 3.2 in Seshadri, 1998); in other words these random variables have continuous density

f(v) =
|a|√r√
2πv3/2

exp
(
− rµ2

2
(v − a/µ)2

v

)
1(0,∞)(v).

Furthermore it is known that the i.i.d. random variables
{

(Vi−a/µ)2

Vi
: i ∈ {1, . . . , n}

}
are G[1/2, µ2r/2]

distributed (indeed each random variable Q = a2r (Vi−a/µ)2

(a/µ)2Vi
is χ2

1 = G[1/2, 1/2] distributed by
Proposition 1.3 in Seshadri, 1998).

We consider the n-sample (Z1, . . . , Zn) =
(

(V1−a/µ)2

V1
, . . . , (Vn−a/µ)2

Vn

)
.

The LDP in the statement of Proposition 3.2. Let (Θ̂n) be the estimators defined by Θ̂n =
1/(µ2Zn). Then, by Lemma 2.2 (with α = 1/2 and β = µ2/2), the sequence (Θ̂n) satisfies the
LDP with good rate function Ir defined by Ir(r̂) = H(G[1/2, r̂]|G[1/2, r]) if r̂ > 0, and Ir(r̂) = ∞
otherwise.
The LDP in the statement of Proposition 3.3. If θ̂n → r̂ as n →∞ for some r̂ ∈ S(π0), by Lemma
2.5 the sequence of posterior distributions (πn) on r satisfies the LDP with good rate function I(·|r̂)
defined by I(r|r̂) = H(G[1/2, r̂]|G[1/2, r]) if r ∈ S(π0), I(r|r̂) = ∞ otherwise.

5 Applications in risk theory (bivariate models)

In this section we consider sequences of probabilities ((ρn(q|θ)) : θ ∈ Θ) having interest in risk
theory and, as we shall see, the exponential decay condition holds with d = 2. More precisely we
deal with the level crossing probabilities of a (possibly piecewise) linear barrier

b(t; Q1, p1, Q2, p2) = min{Q1 + p1t,Q2 + p2t} (6)

for Q1, p1, Q2, p2 > 0. These probabilities appear in the bivariate risk model in Avram et al. (2008)
and can be reduced to one-dimensional level crossing probabilities (some details are recalled below
in subsection 5.3); in Avram et al. (2008) only the compound Poisson process is considered and
here we also present a version of the model based on the Brownian motion. We have to consider
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again some items presented in the previous section; we have the same preliminaries, the same
sequences of estimators (Θ̂n) and the same sequences of posterior distributions (πn). Here we only
check the exponential decay condition with d = 2 for the sequences ((ρn(q|θ)) : θ ∈ Θ) concerning
each statistical model.

5.1 Compound Poisson process

Let (S(t)) be the compound Poisson process in the previous section and let Ψ(λ,`)(Q1, Q2) be the
level crossing probabilities defined by

Ψ(λ,`)(Q1, Q2) = P ({∃t ≥ 0 : S(t) ≥ b(t;Q1, p1, Q2, p2)});

then, if we consider the level crossing probabilities Ψ(p)
(λ,`)(Q) in the previous section, we have

Ψ(pi)
(λ,`)(Qi) ≤ Ψ(λ,`)(Q1, Q2) ≤ Ψ(p1)

(λ,`)(Q1) + Ψ(p2)
(λ,`)(Q2) for i ∈ {1, 2}. (7)

Case with bounded jumps. We consider ρn(q1, q2|λ, `) = Ψ(λ,`)(nq1, nq2) or ρn(q1, q2|λ, `) =
Ψ(nλ,`[n])(q1, q2). Arguing as in subsection 4.1 and by (7), one can check the exponential decay
condition for both the choices of ρn(q1, q2|λ, `) with d = 2, ci = 1 for i ∈ {1, 2}, and

wi(λ, `) = sup{γ ≥ 0 : λ(G`(γ)− 1)− piγ ≤ 0} for i ∈ {1, 2}.

Case with exponential jumps. We consider ρn(q1, q2|λ) = Ψ(λ,G[1,kλ])(nq1, nq2) or ρn(q1, q2|λ) =
Ψ(nλ,G[1,knλ])(q1, q2). Arguing as in subsection 4.2 and by (7), one can check the exponential decay
condition for both the choices of ρn(q1, q2|λ) with d = 2, ci = min{(kpi)−1, 1} for i ∈ {1, 2}, M = 0
and wi(λ) = kλ max{1− (kpi)−1, 0} for i ∈ {1, 2}.

5.2 Brownian motion

Let (S(t)) be the Brownian motion in the previous section and we use the notation

Ψ(p)
(µ,r)(Q) = P ({∃t ≥ 0 : S(t) ≥ Q + pt});

then we consider the level crossing probabilities

Ψ(µ,r)(Q1, Q2) = P ({∃t ≥ 0 : S(t) ≥ b(t;Q1, p1, Q2, p2)})
and we have

Ψ(pi)
(µ,r)(Qi) ≤ Ψ(µ,r)(Q1, Q2) ≤ Ψ(p1)

(µ,r)(Q1) + Ψ(p2)
(µ,r)(Q2) for i ∈ {1, 2}. (8)

The statistical model where µ is unknown and r is known. We consider ρn(q1, q2|µ) =
Ψ(µ,r)(nq1, nq2) or ρn(q1, q2|µ) = Ψ(µ,nr)(q1, q2). Arguing as in subsection 4.3 and by (8), one can
check the exponential decay condition for both the choices of ρn(q1, q2|µ) with d = 2, ci = 1 for
i ∈ {1, 2}, M = 0 and wi(µ) = max{−2(µ− pi)r, 0} for i ∈ {1, 2}.

The two statistical models where µ is known and r is unknown. We think to have
ρn(q1, q2|r) = Ψ(µ,r)(nq1, nq2) or ρn(q1, q2|r) = Ψ(µ,nr)(q1, q2). Arguing as in subsection 4.3 and by
(8), one can check the exponential decay condition for both the choices of ρn(q1, q2|r) with d = 2,
ci = 1 for i ∈ {1, 2}, M = 0 and wi(r) = max{−2(µ− pi)r, 0} for i ∈ {1, 2}.

In order to avoid the trivial case where the level crossing occurs with probability 1, we should
have µ < p1, p2 (which is indeed equivalent to w1(r), w2(r) > 0). Anyway we remark that the
condition µ < 0 is needed if we consider the n-sample Z1, . . . , Zn in terms of the first passage times
V1, . . . , Vn to a barrier a < 0 as in subsection 4.3.

10



AC
C

EP
TE

D
M

AN
U

SC
R

IP
T

ACCEPTED MANUSCRIPT

5.3 Some connections with the geometric considerations in Avram et al. (2008)

In this subsection we illustrate the relationship between the geometric considerations in Avram et
al. (2008) and some inequalities between the exponential decay rates in this paper.

Following the description of the model in Avram et al. (2008), we assume to have two companies
that divide between them both claims and premia in some specified proportions δ1, δ2 ∈ (0, 1) with
δ1 + δ2 = 1; in detail

Ri(t) = ui + vit− δiS(t) for i ∈ {1, 2},
where u1, u2 > 0 are the initial capitals and v1, v2 > 0 are the premium rates. Thus, if we think
to the choices of (S(t)) in this paper, the compound Poisson process is more appropriate than the
Brownian motion. We note that we have R1(t) ≤ 0 or R2(t) ≤ 0 for some t ≥ 0 if and only if we have
S(t) ≥ b(t; Q1, p1, Q2, p2) for some t ≥ 0, where b(t; Q1, p1, Q2, p2) is defined by (6) and Qi = ui/δi

and pi = vi/δi for i ∈ {1, 2}. We also note that, if p1 > p2, the two-dimensional ruin problem
is equivalent to the ruin problem for the second company if Q2 ≤ Q1 (indeed b(t;Q1, p1, Q2, p2)
reduces to the linear barrier Q2 + p2t). In other words, if p1 > p2 and if we consider the general
notation

Ψθ(Q1, Q2) = P ({∃t ≥ 0 : S(t) ≥ b(t;Q1, p1, Q2, p2)})
with θ ∈ Θ (instead of the specific notation of each example), we have Ψθ(Q1, Q2) = Ψ(p2)

θ (Q2) if
Q2 ≤ Q1. This fact has the following geometric interpretation: if p1 > p2, the two-dimensional ruin
problem is equivalent to the ruin problem for the second company if u2 ≤ δ2

δ1
u1, i.e. if the initial

capitals of the two companies is situated below of the line u2 = δ2
δ1

u1 (in the positive quadrant).
In conclusion we illustrate how these geometric considerations in Avram et al. (2008) can be

related with some inequalities between wθ
1(q1) and wθ

2(q2), and between w1(q1|θ̂) and w2(q2|θ̂). For
all the examples presented in this section assume p1 ≥ p2; then, for all θ ∈ Θ, we have w1(θ) ≥ w2(θ)
whence we obtain q2w2(θ) ≤ q1w1(θ) if q2 ≤ q1. In conclusion, if p1 ≥ p2 and q2 ≤ q1, we have:

min{wθ
1(q1), wθ

2(q2)} = wθ
2(q2) (or wθ

2(q2) ≤ wθ
1(q1)) for all θ ∈ Θ;

min{w1(q1|θ̂), w2(q2|θ̂)} = w2(q2|θ̂) (or w2(q2|θ̂) ≤ w1(q1|θ̂)) for all θ̂ ∈ Θ.
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[15] Macci C. and Petrella L., Censored exponential data: large deviations for MLEs and posterior
distributions. Comm. Statist. Theory Methods 38 (2009) 2435–2452.

[16] Rolski T., Schmidli H., Schmidt V. and Teugels J.L., Stochastic Processes for Insurance and
Finance. John Wiley and Sons, Chichester 1999.

[17] Rudin W., Real and Complex Analysis (3rd Edition), McGraw-Hill, New York 1986.

[18] Seshadri V., The Inverse Gaussian Distribution: Statistical Theory and Applications. Lecture
Notes in Statistics 137, Springer, New York 1998.

12


