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D. M. Cifarelli, S. Fortini
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Abstract

The paper provides recursive equations for the predictive distributions of
one-dependent and two-dependent determinantal processes. Fixed order re-
cursive equations can be applied both to efficiently simulate trajectories and
to explore properties of the process.
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1. Introduction

Determinantal processes have been studied by many authors, mainly in
the framework of fermion point processes and fields, and applied in differ-
ent contexts, including physics, random matrix theory, representation theory,
and ergodic theory (see Lyons, 2003, Lyons and Steif, 2003, Shirai and Taka-
hashi, 2003 and the references therein). In words, a determinantal process is
a {0, 1}-valued process, indexed by a finite or countable set, whose cylinder
probabilities are determinants.

A recent delightful paper on one-dependent determinantal processes is
Borodin et al. (2009). Besides many examples from combinatorics to graph
theory, it contains the important result that any one-dependent point process
on the integers is determinantal.

Determinantal processes are interesting because they allow one to model
conditional negative association (see Lyons, 2003, Lyons and Steif, 2003 and
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Shirai and Takahashi, 2003 for the precise definition and proofs). In practice,
a ”one” at a certain site decreases the probability of further ”ones” in the
process, whatever the values of the process at different sites. For this reason,
determinantal processes are used in statistical physics to represent systems of
repulsive particles. Stationary determinantal processes (SDP) have interest-
ing properties, such as mixing, entropy positivity, Bernoulli shift, and Gibbs
properties (see Lyons and Steif, 2003 and Shirai and Takahashi, 2003).

The present paper focuses on finitely dependent SDP’s. In particular,
the problem of computing the predictive distributions of one-dependent and
two-dependent SDP’s is treated.

Finitely dependent SDP’s can be used to model local negative interactions
between random variables that propagate through the stochastic sequence. In
fact, if (Xn)n∈Z is m-dependent, Xn and Xj are independent when n < j−m.
Nevertheless, they are not conditionally independent given Xn+1, . . . , Xj−1.
This feature is in some sense the opposite of the Markov property.

Predictive distributions of SDP’s are cumbersome. In fact, no simple
sufficient statistics can be identified. On the other hand, it is proved in the
present paper that recursive equations of fixed order exist for the predictive
distributions of one-dependent and two-dependent SDP’s.

This paper is organized as follows. In Section 2 we recall the precise
definition of an SDP and discuss its parameters. In Section 3 we provide
recursive equations for the predictive distributions of one-dependent SDP’s
and give a characterization of the process in terms of predictive covariances.
Some of these results are contained in the technical report Cifarelli and For-
tini (2005). The two-dependent case is treated in Section 4. There recursive
equations are given, separately, for complex and real parameters. Equations
of lower degree hold when the parameters are real. The results are applied
to explore properties of the predictive probabilities and to suggest efficient
simulation procedures.

2. Definitions and preliminary results

Let E be a finite or countable set and let K be an E×E matrix of complex
numbers satisfying Kj,m = Km,j for every j,m ∈ E and

∑
j,m∈E Kj,mujum ∈

[0, 1] for every u in the complex Hilbert space l2(E). For every finite E1 ⊆ E
let K|E1 denote the submatrix of K whose rows and columns are indexed
by E1. It is possible to define a probability measure PK on the cylinder
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sigma-algebra of {0, 1}E such that

PK{x ∈ {0, 1}E : xe = 1, e ∈ E1} = det(K|E1) (1)

(E1 ⊆ E, E1 finite) (see Lyons, 2003, Lyons and Steif, 2003 and Shirai and
Takahashi, 2003).

Definition 1. A probability measure PK on on the cylinder sigma-algebra
of {0, 1}E satisfying (1) is called a determinantal probability measure. The
coordinate process (Xn)n∈Z of PK is called a determinantal process.

It follows from (1) that for every finite, disjoint E1, E2 ⊆ E,

PK({x ∈ {0, 1}E : xe1 = 0, e1 ∈ E1, xe2 = 1, e2 ∈ E2}) = det(KE1|E1 ∪ E2),
(2)

where, for every E1 ⊆ E, KE1 denotes the matrix that coincides with K
except on the rows indexed by E1, where it coincides with I −K (see Lyons,
2003 or Shirai and Takahashi, 2003). It follows from (2) that (1−Xe)e∈E has
probability distribution P I−K if (Xe)e∈E has probability distribution PK . In
the following we will refer to this property as ”duality”.

This paper deals with determinantal probability measures on the cylinder
sigma-algebra of {0, 1}Z. Furthermore attention is restricted to matrices K
satisfying Kj,m = k(j−m) for some function k : Z→ C. Under this condition
PK is stationary. In fact K|(E1 + n) = K|E1 for every E1 ⊆ Z and every
n ∈ Z. It is proved in Lyons and Steif (2003) and Shirai and Takahashi
(2003) that k(j) (j ∈ Z) is the j-th Fourier coefficient f̂j of a [0, 1]-valued
Lebesgue-measurable function f on the torus T = R/Z .

In the following we will write P f instead of PK to stress the dependence
on f . Furthermore, we will assume that f is neither a.s. equal to one nor
a.s. equal to zero. This last condition ensures that P f has full support (see
Lyons and Steif, 2003).

Lemma 1. Let f : T → [0, 1] be a Lebesgue-measurable function. If g(s) =
f(s+ t) for some t ∈ T, then P g = P f .

Proof. Let Kf and Kg be the infinite dimensional matrices whose (j,m)-th

entry is f̂m−j and ĝm−j, respectively (j,m ∈ Z). Since ĝj = exp(i2πjt)f̂j for
j ∈ Z, then Kg = (D−1KfD), where D is the infinite dimensional diagonal
matrix whose (j, j)-th entry is exp(i2πjt). For every finite A ⊆ Z, we have
that det(Kg|A) = det(D−1KfD|A) = det(D−1|A) det(Kf |A) det(D|A) =
det(Kf |A).
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According to the above lemma, there is some degree of arbitrariness in
parameterizing an SDP. In particular, one of the kj’s can be taken to be real
positive, without loss of generality.

Let us now introduce cylinder probabilities, predictive distributions and
predictive probabilities. For every sequence (xn)n∈Z, let x(n) = (x1, x2, . . . , xn)
(n ∈ N). Analogously, let 1(n) and 0(n) denote the vectors of n ones and ze-
roes, respectively (n ≥ 1). The probability measures P f

n defined by

P f
n (A) = P f ({x ∈ {0, 1}Z : x(n) ∈ A})

(n = 1, 2, . . . , A ⊆ {0, 1}n) will be called the cylinder probabilities of P f or
of its coordinate process (Xn)n∈Z. Since P f has full support, P f

n (A) > 0 for
every non-empty A ⊆ {0, 1}n and every n ∈ N. The predictive distributions
of P f or of its coordinate process (Xn)n∈Z are defined by P f (Xn ∈ A|X(n−1) =
x(n−1)) (A ⊆ {0, 1}, n ≥ 2, x(n−1) ∈ {0, 1}n−1). Since SDP’s are {0, 1}-valued,
the predictive distributions are completely characterized by the functions

pf
n(x(n−1)) = P f (Xn = 1|X(n−1) = x(n−1)) (3)

(n ≥ 2, x(n−1) ∈ {0, 1}n−1). Furthermore, since P f has full support,

pf
n(x(n−1)) = P f

n ({(x1, . . . , xn−1, 1)})/P f
n−1({(x1, . . . , xn−1)}.

In the following, we will call the pf
n the predictive probabilities of P f or of

its coordinate process (Xn)n∈Z.
Finally, let us recall the definition of m-dependence.

Definition 2. A random sequence (Xn)n∈Z (or its probability distribution)
is said to be m-dependent (m ∈ N) if (Xn)n<j is stochastically independent
of (Xn)n≥j+m for every j ∈ Z.

Since for {0, 1}-valued processes zero correlation implies stochastic inde-
pendence and since, for SDP, cov(Xn, Xn+j) = −|kj|2 (j = 1, 2, . . .), (Xn)n∈Z
is m-dependent if and only if kj = 0 for every j > m (m ∈ N). Hence an SDP
is m-dependent if and only if f(s) can be written as

∑m
j=−m kj exp(i2πjs).

3. One-dependent stationary determinantal processes

Let P f be a one-dependent SDP such that f is neither a.s. equal to zero
nor a.s.equal to one. By the results in the previous section, we can suppose
that

f(s) = k0 + 2k1 cos(2πs) (s ∈ T, k0 ∈ (0, 1), k1 ∈ [0,min(k0, 1− k0)/2]).
(4)
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Lemma 2. Let P f be a stationary determinantal probability measure with f
as in (4). For every x ∈ {0, 1}Z and every n ≥ 2, we have

P f
n ({x(n)}) = kxn

0 (1− k0)
1−xnP f

n−1({x(n−1)})− (−1)xn+xn−1k2
1P

f
n−2({x(n−2)}),

(5)
where P f

0 ({x(0)}) := 1.

Proof. Let x1, x2, . . . be a fixed {0, 1}-valued sequence. Define the infinite
dimensional matrix [Ajl]j,l=1,2... by Ajl = k

xj

0 (1 − k0)
1−xj if l = j, Ajl =

(−1)xj+1k1 if l = j − 1, j + 1, and Ajl = 0 otherwise. Then P f
n ({x(n)}) =

detA|{1, . . . , n}. Equation (5) is obtained by developing detA|{1, . . . , n}
along the last row and column.

Theorem 1. Let P f be a stationary determinantal probability measure with
f as in (4). For every x ∈ {0, 1}Z and every n ≥ 2, we have

pf
n(x(n−1)) = k0 + k2

1(1− pf
n−1(x(n−2)))

−1
(

1− 1/pf
n−1(x(n−2))

)xn−1

, (6)

where pf
1(x(0)) := P f

1 ({1}).

Proof. Equation (6) is obtained from Lemma 2 by computing

pf
n(x(n−1)) = P f

n ({(x1, . . . , xn−1, 1)})/P f
n−1({(x1, . . . , xn−1)})

and observing that

P f
n−1({(x1, . . . , xn−1)})
P f

n−2({(x1, . . . , xn−2)})
= pf

n−1(x(n−2))
xn−1(1− pf

n−1(x(n−2)))
1−xn−1 .

Example 1. Let (Xn)n∈Z be a one-dependent SDP with parameter f as
in (4). We have that p := limn→∞ pf

n(1(n−1)) = exp
∫

T log fdλ (see Lyons
and Steif, 2003). Theorem 1 can be used to evaluate p without computing
the integral. In fact, by (6), p must satisfy the equation p2 − k0p + k2

1 = 0.
Equation (6) together with pf

1 = k0 implies that pf
n(1(n−1)) ≥ k0/2 for every n.

Hence p = k0/2+
√

(k0/2)2 − k2
1. By duality, the limit probability of a ”one”

after an n-long sequence of ”zeroes” is q = (1 +k0)/2−
√

((1− k0)/2)2 − k2
1.

Depending on the values of k0 and k1, p can range between k0/2 (when
k0 ≤ 1/2 and k1 = k0/2) and k0 (when k1 = 0, i.e. in the i.i.d. case) and q
can range between k0 and (1 + k0)/2.
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Equation (6), together with P f
1 ({1}) = k0, characterizes one-dependent

SDP’s. The next result gives a characterization of SDP’s within the class of
one-dependent processes.

Corollary 1. Let (Xn)n∈Z be a {0, 1}-valued, stationary, one-dependent pro-
cess with probability distribution P . A necessary and sufficient condition for
P = P f with f as in (4) is

{
E(X1) = k0

Cov(Xn+1, Xn+2|X1, . . . , Xn) = −k2
1 P − a.s. (n ≥ 0).

(7)

Proof. Let (Pn)n∈N and (pn)n∈N denote the sequences of the cylinder and
predictive probabilities of P respectively. Let us first prove that (7) holds if
P = P f . We have that E(X1) = P f ({1}) = k0. Furthermore, equation (6)
yields

Cov(Xn+1, Xn+2|X1 = x1, . . . , Xn = xn)

= pf
n+1(x1, . . . , xn)pf

n+2(x1, . . . , xn, 1)− k0p
f
n+1(x1, . . . , xn) = −k2

1

for every fixed (x1, x2, . . . , xn) ∈ {0, 1}n.
To prove sufficiency, notice that the distribution of a {0, 1}-valued, sta-
tionary, one-dependent process is completely characterized by the sequence
(Pn({1(n)}))n≥1. It follows from (7) that P f

1 ({1}) = E(X1) = k0 = P f
1 ({1}).

Furthermore, by induction, (7) yields Pn({1(n)}) 6= 0 and Pn+2({1(n+2)}) −
k0Pn+1({1(n+1)}) = −k2

1Pn({1(n)}). By Lemma 2, Pn({1(n)}) = P f
n ({1(n)})

for every n ≥ 1.

Example 2. Equation (7) can be exploited to give a new proof that a one-
dependent SDP (Xn)n∈Z is a two-block factor (see Broman, 2005). We
recall that a process (Xn)n∈Z is an m-block factor if there exist a mea-
surable function h of m variables and an i.i.d. process (Yn)n∈Z such that

(Xn)n∈Z
d
= (h(Yn, Yn+1, . . . , Yn+m−1))n∈Z , where

d
= denotes equality in dis-

tribution. Let (Xn)n∈Z be an SDP with f as in (4). We can suppose
0 < k0 ≤ 1/2 without loss of generality. In fact, in the degenerate case
k0 = 0, the two-block factor condition is obvious; while for k0 > 1/2 it can
be proved by duality. To prove that (Xn)n∈Z is a two-block factor, consider
a sequence (Yn)n∈Z of i.i.d. random variables with uniform distribution on

[0, 1]. We will show that (1A(Yn, Yn−1))n∈Z
d
= (Xn)n∈Z for a suitable choice
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of a Borel set A ⊆ [0, 1]2. Since, for every A, (1A(Yn, Yn+1))n∈Z is a {0, 1}-
valued, stationary, one-dependent process, according to Corollary 1, it is
sufficient to find A such that E(1A(Y1, Y2)) = k0 and

Cov(1A(Yn+1, Yn+2), 1A(Yn+2, Yn+3)|1A(Y1, Y2), . . . , 1A(Yn, Yn+1)) = −k2
1

for every n ≥ 1. The first condition is true if (λ×λ)(A) = k0, where λ is the
Lebesgue measure on [0, 1]. A sufficient condition for the second equality is

E(1A(Yn+1, Yn+2)1A(Yn+2, Yn+3)|Y1, . . . , Yn+1)

= k0E(1A(Yn+1, Yn+2)|Y1, . . . , Yn+1)− k2
1

a.s. or, equivalently,

P ((Yn+1, Yn+2) ∈ A, (Yn+2, Yn+3) ∈ A|Yn+1) = k0P ((Yn+1, Yn+2) ∈ A|Yn+1)−k2
1,

a.s. This last equation holds if A satisfies
∫

Ay
λ(Az)λ(dz) = k0λ(Ay) − k2

1

a.s., where, for every x, Ax = {y ∈ [0, 1] : (x, y) ∈ A}. An example is
A = A1∪A2∪A3 with A1 = [0, k0/2+

√
k2

0/4− k2
1]×[0, 1/2], A2 = [1−k0/2−√

k2
0/4− k2

1, 1]× [0, 1/2], and A3 = [0, 1]× [1/2, 1/2 + k0/2−
√
k2

0/4− k2
1].

The next result can be used to sample sequentially from P f . The advan-
tage of this procedure, if compared with simulations using determinants, is
that the computation complexity is not increasing with n.

Corollary 2. Let (Zn)n∈N be a sequence of independent random variables
defined on a probability space (Ω,F , P ), uniformly distributed on [0, 1]. Fur-
thermore, let Xn = 1[0,Wn](Zn) (n ≥ 1), W1 = k0 and

Wn = k0 +
k2

1

1−Wn−1

(
1− 1

Wn−1

)Xn−1

(n > 1),

with k0 ∈ (0, 1) and k1 ∈ [0,min(k0, 1− k0)/2]. Then, for every n ≥ 1, X(n)

has probability distribution P f
n with f(s) = k0 + 2k1 cos(2πs) (s ∈ T).

Proof. By induction, (6) implies Wn = pf
n(X(n−1)) for every n ≥ 1. Hence for

every n ≥ 1, P (Xn = 1|X1, . . . , Xn−1) = Wn = pf
n(X(n−1)). It follows that

for every (x1, x2, . . .) ∈ {0, 1}∞ and every n ≥ 1, P (X(n) = x(n)) = P (X1 =

x1)
∏n

j=2 P (Xj = xj|X(j−1) = x(j−1)) = kx1
0 (1 − k0)

1−x1
∏n

j=1 p
f
j (x(j−1)) =

P f
n ({x(n)})
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4. Two-dependent stationary determinantal processes

Let P f be an SDP with

f(s) =
2∑

j=−2

kj exp(i2πjs) (s ∈ T), (8)

where k−j = kj. By Lemma 1, we can assume k−1 = k1 ∈ R, without loss of
generality.

Lemma 3. Let P f be a stationary, two-dependent determinantal probability
measure with f as in (8), k0 ∈ (0, 1), k1 ∈ R, and k2 ∈ C. Then, for every
x ∈ {0, 1}Z and every n ≥ 3

P f
n ({x(n)}) =

6∧n∑

j=2

aj(−1)
∑j−1

u=0 xn−uP f
n−j({x(n−j)})

+
∑

j∈{1,3}
cj(−1)

∑j−1
u=0 xn−ub(k0;xn−j+1)P

f
n−j({x(n−j)})

+
∑

j∈{3,5},j≤n

cj(−1)
∑j−1

u=0 xn−ub(k0;xn−j+2)P
f
n−j({x(n−j)})

(9)

where P f
0 ({x(0)}) := 1,

a2 = |k2|2−k2
1 a3 = −2k2

1|k2| cos θ a4 = (|k2|2−k2
1)|k2|2 a5 = 0 a6 = −|k2|6

(10)
b(p;x) = (−p)x(1− p)1−x (p ∈ (0, 1), x ∈ {0, 1}) (11)

cj = (−|k2|2)(j−1)/2 (j = 1, 3, 5). (12)

Proof. Let x1, x2, . . . be a fixed {0, 1}-valued sequence. Define the infinite
dimensional matrix [Ajl]j,l=1,2... by

Ajl =





k
xj

0 (1− k0)
1−xj if l = j

(−1)xj+1k1 if l = j − 1, j + 1

(−1)xj+1k2 if l = j − 2
(−1)xj+1k2 if l = j + 2
0 otherwise,

and set ∆n = detA|{1, . . . , n} for n ≥ 1, ∆0 = 1, and ∆n = 0 for n < 0.
Then P f

n ({x(n)}) = ∆n for n ≥ 0. Denote by [∆n]lj the determinant of the
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matrix that is obtained by deleting row j and column l from A|{1, . . . , n}
(n ≥ 1, j, l = 1, . . . , n). Developing ∆n along the last rows and columns, we
obtain, for every n ≥ 3,

∆n = (1− k0)
(

k0

1−k0

)xn

∆n−1 − k2
1(−1)xn+xn−1∆n−2

− |k2|2(1− k0)
(

k0

1−k0

)xn−1

(−1)xn+xn−2∆n−3 + |k2|4(−1)xn+xn−1+xn−2+xn−3∆n−4

+ k1k2(−1)xn+xn−2 [∆n−1]
n−1
n−2 + k1k2(−1)xn−2+xn−3 [∆n−1]

n−2
n−1

(13)
Furthermore, developing [∆n−1]

n−1
n−2 and [∆n−1]

n−2
n−1 along the last row and

column, we obtain

k1k2(−1)xn+xn−2 [∆n−1]
n−1
n−2 + k1k2(−1)xn−2+xn−3 [∆n−1]

n−2
n−1

= −k2
1(k2 + k2)(−1)xn+xn−1+xn−2∆n−3 − 2k2

1|k2|2(−1)xn+xn−1+xn−2+xn−3∆n−4

+|k2|2(−1)xn+xn−1
(
k1k2(−1)xn−2+xn−4 [∆n−3]

n−3
n−4 + k1k2(−1)xn−2+xn−3 [∆n−3]

n−4
n−3

)

Substituting, we get

∆n = (1− k0)
(

k0

1−k0

)xn

∆n−1 − k2
1(−1)xn+xn−1∆n−2

− |k2|2(1− k0)
(

k0

1−k0

)xn−1

(−1)xn+xn−2∆n−3 + |k2|4(−1)xn+xn−1+xn−2+xn−3∆n−4

− k2
1(k2 + k2)(−1)xn+xn−1+xn−2∆n−3 − 2k2

1|k2|2(−1)xn+xn−1+xn−2+xn−3∆n−4

+ |k2|2(−1)xn+xn−1
(
k1k2(−1)xn−2+xn−4 [∆n−3]

n−3
n−4 + k1k2(−1)xn−2+xn−3 [∆n−3]

n−4
n−3

)

(14)
Let us now compute ∆n − |k2|2(−1)xn+xn−1∆n−2, using equation (14) for ∆n

and equation (13) with n − 2 in the place of n for ∆n−2. Since the terms
containing [∆n−3]

n−3
n−4 and [∆n−3]

n−4
n−3 cancel, we obtain

∆n − |k2|2(−1)xn+xn−1∆n−2

= (1− k0)
(

k0

1−k0

)xn

∆n−1 − k2
1(−1)xn+xn−1∆n−2

−|k2|2(1− k0)
(

k0

1−k0

)xn−1

(−1)xn+xn−2∆n−3 + |k2|4(−1)xn+xn−1+xn−2+xn−3∆n−4

−k2
1(k2 + k2)(−1)xn+xn−1+xn−2∆n−3 − 2k2

1|k2|2(−1)xn+xn−1+xn−2+xn−3∆n−4

−|k2|2(−1)xn+xn−1(1− k0)
(

k0

1−k0

)xn−2

∆n−3 + k2
1|k2|2(−1)xn+xn−1+xn−2+xn−3∆n−4

+|k2|4(−1)xn+xn−1+xn−2+xn−4(1− k0)
(

k0

1−k0

)xn−3

∆n−5

−|k2|6(−1)xn+xn−1+xn−2+xn−3+xn−4+xn−5∆n−6

Equation (9) is obtained by rearranging the terms in the above equation.
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The following theorem gives recursive equations for the predictive prob-
abilities of P f .

Theorem 2. Let P f be a stationary, two-dependent determinantal probability
measure on the cylinder sigma-algebra of {0, 1}Z with f as in (8), k0 ∈
(0, 1), k1 ∈ R, and k2 ∈ C. Then, for every x ∈ {0, 1}Z and every n ≥ 3

pf
n(x(n−1)) = k0 −

6∧n∑

j=2

aj

j−1∏

u=1

(
b(pf

n−u(x(n−u−1));xn−u)
)−1

+ |k|22b(k0;xn−2)
2∏

u=1

(
b(pf

n−u(x(n−u−1));xn−u)
)−1

−
∑

j∈{3,5},j≤n

cjb(k0;xn−j+2)

j−1∏

u=1

(
b(pf

n−u(x(n−u−1));xn−u)
)−1

(15)
where pf

1(x(0)) := P f
1 ({1}), aj (2 ≤ j ≤ 6), b and cj (j = 3, 5) are defined as

in (10), (11), and (12), respectively.

Proof. To prove (15), it is sufficient to compute

pf
n(x(n−1)) = P f

n ({(x1, . . . , xn−1, 1)})/P f
n−1({(x1, . . . , xn−1)}),

using (9), and notice that

P f
n ({(x1, . . . , xn)})

P f
n−j({(x1, . . . , xn−j)})

=

j−1∏

u=0

pf
n−u−1(x(n−u−2))

xn−u−1(1−pf
n−u−1(x(n−u−2))

1−xn−u−1

for every n = 1, 2, . . . and j < n.

The next corollary allows us to construct samples from P f
n starting from

independent random variables. The proof is similar to that of Corollary 2.

Corollary 3. Let k0 ∈ (0, 1), k1 ∈ R and k2 ∈ C be such that, for every s ∈ T,
f(s) :=

∑2
j=−2 kj exp(i2πjs) ∈ [0, 1]. Let aj (2 ≤ j ≤ 6), b and cj (j = 3, 5)

be defined as in (10), (11) and (12), respectively. Furthermore, let (Zn)n∈N
be a sequence of independent random variables defined on a probability space
(Ω,F , P ) and uniformly distributed on [0, 1].
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If Xn = 1[0,Wn](Zn) (n ≥ 1), W1 = k0, W2 = k0 + k2
1(1 − k0)

−1(1 − 1/k0)
X1

and, for n ≥ 3,

Wn = k0 −
6∧n∑

j=2

aj

j−1∏

u=1

(1− 1/Wn−u)Xn−u

(1−Wn−u)

+ |k2|2
(1− 1/k0)

Xn−2

(1− k0)

2∏

u=1

(1− 1/Wn−u)Xn−u

(1−Wn−u)

−
∑

j∈{3,5}j≤n

cj
(1− 1/k0)

Xn−j+2

(1− k0)

j−1∏

u=1

(1− 1/Wn−u)Xn−u

(1−Wn−u)
,

then, for every n ≥ 1, the probability distribution of X(n) coincides with P f
n .

Equations (9) and (15) simplify when k2 is real. Actually, recursive equa-
tions of lower degree hold in this case. It can be proved with techniques
similar to the ones used in the proof of Theorem 2 that

pf
n({x(n−1)}) = k0 − k2

[
1− b(k0;xn−1)

(
b(pf

n−1(x(n−2));xn−1)
)−1
]

−
5∧n∑

j=2

dj

j−1∏

u=1

(
b(pf

n−u(x(n−u−1));xn−u)
)−1

+
∑

j∈{3,4},j≤n

ejb(k0;xn−j+2)

j−1∏

u=1

(
b(pf

n−u(x(n−u−1));xn−u)
)−1

(16)
where pf

1(x(0)) := P f
1 ({1}), b is defined as in (11),

d1 = k2 d2 = −k2
1 d3 = −k2

1k2 d4 = k4
2 d5 = −k5

2,

ej = (−k2)
j−1 (1 ≤ j ≤ 4).

Furthermore, one can construct a two-dependent SDP X(n) with k2 ∈ R
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through Xn = 1[0,Wn](Zn) (n ≥ 1), W1 = k0,

Wn = k0 − k2

[
1− 1− k0

1−Wn−1

(
1− 1/Wn−1

1− 1/k0

)Xn−1
]

−
5∧n∑

j=2

dj

j−1∏

u=1

(1− 1/Wn−u)Xn−u

1−Wn−u

+
∑

j∈{3,4},j≤n

ej
1− k0

(1− 1/k0)Xn−j+2

j−1∏

u=1

(1− 1/Wn−u)Xn−u

1−Wn−u

,

(17)

(n ≥ 2), (Zn)n∈N independent and uniformly distributed on [0, 1].

The above results can be used either to simulate two-dependent SDP’s
sequentially with efficient algorithms or to explore the properties of the pre-
dictive distributions of P f . The next example shows that the predictive
probabilities of a non-degenerate two-dependent SDP converge nowhere a.s.

Example 3. Let (Xn)n∈Z be an SDP with f as in (8), k0 ∈ (0, 1), k1, k2 ∈ R.
We will prove that 0< lim infn→∞ pf

n(X(n−1))< lim supn→∞ p
f
n(X(n−1))<1 a.s.

Let us first show that lim infn→∞ pf
n(X(n−1)) > 0 a.s. Since for ev-

ery x(n−1) ∈ {0, 1}n−1, pf
n(x(n−1)) ≤ pf

n(1(n−1)) (see Lyons, 2003), it holds
lim infn→∞ pf

n(X(n−1)) ≥ lim infn→∞ pf
n(1(n−1)).

On the other hand, (pf
n(1(n−1)))n≥2 is a decreasing sequence converging to

p := exp
∫

T log fdλ (see Lyons, 2003). To show that p > 0 without evaluating
the integral, we can use (16). In fact p must satisfy p5 = (k0−k1)p

4 +(k0k2−
k2

1)p3− k2(k0k2− k2
1)p2− k3

2(k0− k2)p+ k5
2 and p = 0 is not a solution of this

equation. By duality, q := limn→∞ pf
n(0(n−1)) < 1.

Let us now prove that lim infn→∞ pf
n(X(n−1)) < lim supn→∞ p

f
n(X(n−1)) a.s.

Let M = ∩∞n=1 ∪∞k=n {x ∈ {0, 1}Z : xk−1 = 1, . . . , xk−5 = 1} and let
N = ∩∞n=1 ∪∞k=n {x ∈ {0, 1}Z : xk−1 = 1, . . . , xk−4 = 1, xk−5 = 0). Since
P f is a Bernoulli shift (see Theorem 3.1 in Lyons and Steif, 2003), it is
ergodic. Hence P f (M) and P f (N) are either equal to zero or equal to
one. On the other hand, P f has full support (see Theorem 4.2 in Lyons
and Steif, 2003). Hence P f (M) = P f (N) = 1. Let now Q = {x ∈
{0, 1}Z : lim infn→∞ pf

n(x(n−1)) = lim supn→∞ p
f
n(x(n−1))}. Then P f (Q ∩

M ∩ N) = P f (Q). Suppose that there exists x ∈ M ∩ N ∩ Q and let
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p(x) = limn→∞ pf
n(x(n−1)). Then, by (16),

p(x) = k0 − k2 +
k0k2−k2

1

p(x)
− k2

k0k2−k2
1

p(x)2
− k3

2
k0−k2

p(x)3
+

k5
2

p(x)4

= k0 − k2 +
k0k2−k2

1

p(x)
− k2

k0k2−k2
1

p(x)2
− k3

2
k0−k2

p(x)3
− k5

2

p(x)3(1−p(x))
.

Simplifying, we find
k5
2

p(x)4
=

k5
2

p(x)3(p(x)−1)
which leads to a contradiction since

k2 6= 0. We deduce that M ∩N ∩Q = ∅ and, therefore P f (Q) = 0.

We close by noting that the problem is still open whether fixed order
recursive equations hold for m-dependent SDP’s when m > 2.
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