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The paper provides recursive equations for the predictive distributions of one-dependent and two-dependent determinantal processes. Fixed order recursive equations can be applied both to efficiently simulate trajectories and to explore properties of the process.

Introduction

Determinantal processes have been studied by many authors, mainly in the framework of fermion point processes and fields, and applied in different contexts, including physics, random matrix theory, representation theory, and ergodic theory (see [START_REF] Lyons | Determinantal probability measures[END_REF][START_REF] Lyons | Stationary determinantal processes: Phase transitions, Bernoullicity, entropy and domination[END_REF][START_REF] Shirai | Random point fields associated with certain Fredholm determinants II: fermion shifts and their ergodic and Gibbs properties[END_REF] and the references therein). In words, a determinantal process is a {0, 1}-valued process, indexed by a finite or countable set, whose cylinder probabilities are determinants.

A recent delightful paper on one-dependent determinantal processes is [START_REF] Borodin | On adding a list of numbers (and other one-dependent determinantal processes[END_REF]. Besides many examples from combinatorics to graph theory, it contains the important result that any one-dependent point process on the integers is determinantal.

Determinantal processes are interesting because they allow one to model conditional negative association (see [START_REF] Lyons | Determinantal probability measures[END_REF][START_REF] Lyons | Stationary determinantal processes: Phase transitions, Bernoullicity, entropy and domination[END_REF][START_REF] Shirai | Random point fields associated with certain Fredholm determinants II: fermion shifts and their ergodic and Gibbs properties[END_REF] for the precise definition and proofs). In practice, a "one" at a certain site decreases the probability of further "ones" in the process, whatever the values of the process at different sites. For this reason, determinantal processes are used in statistical physics to represent systems of repulsive particles. Stationary determinantal processes (SDP) have interesting properties, such as mixing, entropy positivity, Bernoulli shift, and Gibbs properties (see [START_REF] Lyons | Determinantal probability measures[END_REF][START_REF] Lyons | Stationary determinantal processes: Phase transitions, Bernoullicity, entropy and domination[END_REF][START_REF] Shirai | Random point fields associated with certain Fredholm determinants II: fermion shifts and their ergodic and Gibbs properties[END_REF][START_REF] Shirai | Random point fields associated with certain Fredholm determinants II: fermion shifts and their ergodic and Gibbs properties[END_REF].

The present paper focuses on finitely dependent SDP's. In particular, the problem of computing the predictive distributions of one-dependent and two-dependent SDP's is treated.

Finitely dependent SDP's can be used to model local negative interactions between random variables that propagate through the stochastic sequence. In fact, if (X n ) n∈Z is m-dependent, X n and X j are independent when n < j -m. Nevertheless, they are not conditionally independent given X n+1 , . . . , X j-1 . This feature is in some sense the opposite of the Markov property.

Predictive distributions of SDP's are cumbersome. In fact, no simple sufficient statistics can be identified. On the other hand, it is proved in the present paper that recursive equations of fixed order exist for the predictive distributions of one-dependent and two-dependent SDP's.

This paper is organized as follows. In Section 2 we recall the precise definition of an SDP and discuss its parameters. In Section 3 we provide recursive equations for the predictive distributions of one-dependent SDP's and give a characterization of the process in terms of predictive covariances. Some of these results are contained in the technical report [START_REF] Cifarelli | A short note on one-dependent trigonometric determinantal probability measures[END_REF]. The two-dependent case is treated in Section 4. There recursive equations are given, separately, for complex and real parameters. Equations of lower degree hold when the parameters are real. The results are applied to explore properties of the predictive probabilities and to suggest efficient simulation procedures.

Definitions and preliminary results

Let E be a finite or countable set and let K be an E×E matrix of complex numbers satisfying K j,m = K m,j for every j, m ∈ E and j,m∈E K j,m u j u m ∈ [0, 1] for every u in the complex Hilbert space l 2 (E). For every finite E 1 ⊆ E let K|E 1 denote the submatrix of K whose rows and columns are indexed by E 1 . It is possible to define a probability measure P K on the cylinder sigma-algebra of {0, 1} E such that [START_REF] Lyons | Determinantal probability measures[END_REF][START_REF] Lyons | Stationary determinantal processes: Phase transitions, Bernoullicity, entropy and domination[END_REF][START_REF] Shirai | Random point fields associated with certain Fredholm determinants II: fermion shifts and their ergodic and Gibbs properties[END_REF].

P K {x ∈ {0, 1} E : x e = 1, e ∈ E 1 } = det(K|E 1 ) (1) (E 1 ⊆ E, E 1 finite) (see
Definition 1. A probability measure P K on on the cylinder sigma-algebra of {0, 1} E satisfying (1) is called a determinantal probability measure. The coordinate process (X n ) n∈Z of P K is called a determinantal process.

It follows from (1) that for every finite, disjoint

E 1 , E 2 ⊆ E, P K ({x ∈ {0, 1} E : x e1 = 0, e 1 ∈ E 1 , x e2 = 1, e 2 ∈ E 2 }) = det(K E1 |E 1 ∪ E 2 ),
(2) where, for every E 1 ⊆ E, K E1 denotes the matrix that coincides with K except on the rows indexed by E 1 , where it coincides with I -K (see Lyons, 2003 or Shirai and[START_REF] Shirai | Random point fields associated with certain Fredholm determinants II: fermion shifts and their ergodic and Gibbs properties[END_REF]. It follows from ( 2) that (1 -X e ) e∈E has probability distribution P I-K if (X e ) e∈E has probability distribution P K . In the following we will refer to this property as "duality".

This paper deals with determinantal probability measures on the cylinder sigma-algebra of {0, 1} Z . Furthermore attention is restricted to matrices K satisfying K j,m = k(j -m) for some function k : Z → C. Under this condition P K is stationary. In fact K|(E 1 + n) = K|E 1 for every E 1 ⊆ Z and every n ∈ Z. It is proved in [START_REF] Lyons | Stationary determinantal processes: Phase transitions, Bernoullicity, entropy and domination[END_REF] and [START_REF] Shirai | Random point fields associated with certain Fredholm determinants II: fermion shifts and their ergodic and Gibbs properties[END_REF] that k(j) (j ∈ Z) is the j-th Fourier coefficient fj of a [0, 1]-valued Lebesgue-measurable function f on the torus T = R/Z .

In the following we will write P f instead of P K to stress the dependence on f . Furthermore, we will assume that f is neither a.s. equal to one nor a.s. equal to zero. This last condition ensures that P f has full support (see [START_REF] Lyons | Stationary determinantal processes: Phase transitions, Bernoullicity, entropy and domination[END_REF].

Lemma 1. Let f : T → [0, 1] be a Lebesgue-measurable function. If g(s) = f (s + t) for some t ∈ T, then P g = P f . Proof. Let K f and K g be the infinite dimensional matrices whose (j, m)-th entry is fm-j and ĝm-j , respectively (j, m ∈ Z). Since ĝj = exp(i2πjt) fj for j ∈ Z, then K g = (D -1 K f D), where D is the infinite dimensional diagonal matrix whose (j, j)-th entry is exp(i2πjt). For every finite A ⊆ Z, we have that det(

K g |A) = det(D -1 K f D|A) = det(D -1 |A) det(K f |A) det(D|A) = det(K f |A).
According to the above lemma, there is some degree of arbitrariness in parameterizing an SDP. In particular, one of the k j 's can be taken to be real positive, without loss of generality.

Let us now introduce cylinder probabilities, predictive distributions and predictive probabilities. For every sequence (

x n ) n∈Z , let x (n) = (x 1 , x 2 , . . . , x n ) (n ∈ N).
Analogously, let 1 (n) and 0 (n) denote the vectors of n ones and zeroes, respectively (n ≥ 1). The probability measures P f n defined by

P f n (A) = P f ({x ∈ {0, 1} Z : x (n) ∈ A}) (n = 1, 2, . . . , A ⊆ {0, 1} n
) will be called the cylinder probabilities of P f or of its coordinate process (X n ) n∈Z . Since P f has full support, P f n (A) > 0 for every non-empty A ⊆ {0, 1} n and every n ∈ N. The predictive distributions of P f or of its coordinate process (X n ) n∈Z are defined by

P f (X n ∈ A|X (n-1) = x (n-1) ) (A ⊆ {0, 1}, n ≥ 2, x (n-1) ∈ {0, 1} n-1
). Since SDP's are {0, 1}-valued, the predictive distributions are completely characterized by the functions

p f n (x (n-1) ) = P f (X n = 1|X (n-1) = x (n-1) ) (3) (n ≥ 2, x (n-1) ∈ {0, 1} n-1
). Furthermore, since P f has full support,

p f n (x (n-1) ) = P f n ({(x 1 , . . . , x n-1 , 1)})/P f n-1 ({(x 1 , . . . , x n-1 )}.
In the following, we will call the p f n the predictive probabilities of P f or of its coordinate process (X n ) n∈Z .

Finally, let us recall the definition of m-dependence.

Definition 2. A random sequence (X n ) n∈Z (or its probability distribution) is said to be m-dependent (m ∈ N) if (X n ) n<j is stochastically independent of (X n ) n≥j+m for every j ∈ Z.

Since for {0, 1}-valued processes zero correlation implies stochastic independence and since, for SDP, cov(X n , X n+j ) = -|k j | 2 (j = 1, 2, . . .), (X n ) n∈Z is m-dependent if and only if k j = 0 for every j > m (m ∈ N). Hence an SDP is m-dependent if and only if f (s) can be written as m j=-m k j exp(i2πjs).

One-dependent stationary determinantal processes

Let P f be a one-dependent SDP such that f is neither a.s. equal to zero nor a.s.equal to one. By the results in the previous section, we can suppose that

f (s) = k 0 + 2k 1 cos(2πs) (s ∈ T, k 0 ∈ (0, 1), k 1 ∈ [0, min(k 0 , 1 -k 0 )/2]). ( 4 
)
Lemma 2. Let P f be a stationary determinantal probability measure with f as in (4). For every x ∈ {0, 1} Z and every n ≥ 2, we have 5) is obtained by developing det A|{1, . . . , n} along the last row and column.

P f n ({x (n) }) = k xn 0 (1 -k 0 ) 1-xn P f n-1 ({x (n-1) }) -(-1) xn+xn-1 k 2 1 P f n-2 ({x (n-2) }), ( 5 
) where P f 0 ({x (0) }) := 1. Proof. Let x 1 , x 2 , . . . be a fixed {0, 1}-valued sequence. Define the infinite dimensional matrix [A jl ] j,l=1,2... by A jl = k x j 0 (1 -k 0 ) 1-x j if l = j, A jl = (-1) x j +1 k 1 if l = j -1, j + 1, and A jl = 0 otherwise. Then P f n ({x (n) }) = det A|{1, . . . , n}. Equation (
Theorem 1. Let P f be a stationary determinantal probability measure with f as in (4). For every x ∈ {0, 1} Z and every n ≥ 2, we have

p f n (x (n-1) ) = k 0 + k 2 1 (1 -p f n-1 (x (n-2) )) -1 1 -1/p f n-1 (x (n-2) ) xn-1 , (6) 
where p f 1 (x (0) ) := P f 1 ({1}). Proof. Equation ( 6) is obtained from Lemma 2 by computing

p f n (x (n-1) ) = P f n ({(x 1 , . . . , x n-1 , 1)})/P f n-1 ({(x 1 , . . . , x n-1 )})
and observing that

P f n-1 ({(x 1 , . . . , x n-1 )}) P f n-2 ({(x 1 , . . . , x n-2 )}) = p f n-1 (x (n-2) ) xn-1 (1 -p f n-1 (x (n-2) )) 1-xn-1 .
Example 1. Let (X n ) n∈Z be a one-dependent SDP with parameter f as in (4). We have that p := lim n→∞ p f n (1 (n-1) ) = exp T log f dλ (see [START_REF] Lyons | Stationary determinantal processes: Phase transitions, Bernoullicity, entropy and domination[END_REF]. Theorem 1 can be used to evaluate p without computing the integral. In fact, by (6), p must satisfy the equation p

2 -k 0 p + k 2 1 = 0. Equation (6) together with p f 1 = k 0 implies that p f n (1 (n-1) ) ≥ k 0 /2 for every n. Hence p = k 0 /2 + (k 0 /2) 2 -k 2
1 . By duality, the limit probability of a "one" after an n-long sequence of "zeroes" is q

= (1 + k 0 )/2 -((1 -k 0 )/2) 2 -k 2 1 .
Depending on the values of k 0 and k 1 , p can range between k 0 /2 (when k 0 ≤ 1/2 and k 1 = k 0 /2) and k 0 (when k 1 = 0, i.e. in the i.i.d. case) and q can range between k 0 and (1 + k 0 )/2. Equation ( 6), together with P f 1 ({1}) = k 0 , characterizes one-dependent SDP's. The next result gives a characterization of SDP's within the class of one-dependent processes.

Corollary 1. Let (X n ) n∈Z be a {0, 1}-valued, stationary, one-dependent process with probability distribution P . A necessary and sufficient condition for

P = P f with f as in (4) is E(X 1 ) = k 0 Cov(X n+1 , X n+2 |X 1 , . . . , X n ) = -k 2 1 P -a.s.
(n ≥ 0). ( 7)

Proof. Let (P n ) n∈N and (p n ) n∈N denote the sequences of the cylinder and predictive probabilities of P respectively. Let us first prove that (7) holds if P = P f . We have that E(X 1 ) = P f ({1}) = k 0 . Furthermore, equation ( 6) yields

Cov(X n+1 , X n+2 |X 1 = x 1 , . . . , X n = x n ) = p f n+1 (x 1 , . . . , x n )p f n+2 (x 1 , . . . , x n , 1) -k 0 p f n+1 (x 1 , . . . , x n ) = -k 2 1 for every fixed (x 1 , x 2 , . . . , x n ) ∈ {0, 1} n .
To prove sufficiency, notice that the distribution of a {0, 1}-valued, stationary, one-dependent process is completely characterized by the sequence (P n ({1 (n) })) n≥1 . It follows from (7) that P f 1 ({1}) = E(X 1 ) = k 0 = P f 1 ({1}). Furthermore, by induction, (7) yields P n ({1 (n) }) = 0 and P n+2 ({1 (n+2) }) -

k 0 P n+1 ({1 (n+1) }) = -k 2 1 P n ({1 (n) }). By Lemma 2, P n ({1 (n) }) = P f n ({1 (n) }) for every n ≥ 1.
Example 2. Equation ( 7) can be exploited to give a new proof that a onedependent SDP (X n ) n∈Z is a two-block factor (see [START_REF] Broman | One-dependent trigonometric determinantal processes are two-block-factors[END_REF]. We recall that a process (X n ) n∈Z is an m-block factor if there exist a measurable function h of m variables and an i.i.d. process (Y n ) n∈Z such that (X n ) n∈Z d = (h(Y n , Y n+1 , . . . , Y n+m-1 )) n∈Z , where d = denotes equality in distribution. Let (X n ) n∈Z be an SDP with f as in (4). We can suppose 0 < k 0 ≤ 1/2 without loss of generality. In fact, in the degenerate case k 0 = 0, the two-block factor condition is obvious; while for k 0 > 1/2 it can be proved by duality. To prove that (X n ) n∈Z is a two-block factor, consider a sequence (Y n ) n∈Z of i.i.d. random variables with uniform distribution on [0, 1]. We will show that (1

A (Y n , Y n-1 )) n∈Z d = (X n ) n∈Z for a suitable choice of a Borel set A ⊆ [0, 1] 2 . Since, for every A, (1 A (Y n , Y n+1 )) n∈Z is a {0, 1}- valued, stationary, one-dependent process, according to Corollary 1, it is sufficient to find A such that E(1 A (Y 1 , Y 2 )) = k 0 and Cov(1 A (Y n+1 , Y n+2 ), 1 A (Y n+2 , Y n+3 )|1 A (Y 1 , Y 2 ), . . . , 1 A (Y n , Y n+1 )) = -k 2 1 for every n ≥ 1. The first condition is true if (λ × λ)(A) = k 0 ,
where λ is the Lebesgue measure on [0, 1]. A sufficient condition for the second equality is

E(1 A (Y n+1 , Y n+2 )1 A (Y n+2 , Y n+3 )|Y 1 , . . . , Y n+1 ) = k 0 E(1 A (Y n+1 , Y n+2 )|Y 1 , . . . , Y n+1 ) -k 2 1 a.s. or, equivalently, P ((Y n+1 , Y n+2 ) ∈ A, (Y n+2 , Y n+3 ) ∈ A|Y n+1 ) = k 0 P ((Y n+1 , Y n+2 ) ∈ A|Y n+1 )-k 2 1 , a.s. This last equation holds if A satisfies Ay λ(A z )λ(dz) = k 0 λ(A y ) -k 2 1 a.s.
, where, for every

x, A x = {y ∈ [0, 1] : (x, y) ∈ A}. An example is A = A 1 ∪A 2 ∪A 3 with A 1 = [0, k 0 /2+ k 2 0 /4 -k 2 1 ]×[0, 1/2], A 2 = [1-k 0 /2- k 2 0 /4 -k 2 1 , 1] × [0, 1/2],
and

A 3 = [0, 1] × [1/2, 1/2 + k 0 /2 -k 2 0 /4 -k 2 1
]. The next result can be used to sample sequentially from P f . The advantage of this procedure, if compared with simulations using determinants, is that the computation complexity is not increasing with n.

Corollary 2. Let (Z n ) n∈N be a sequence of independent random variables defined on a probability space (Ω, F, P ), uniformly distributed on [0, 1]. Furthermore, let

X n = 1 [0,Wn] (Z n ) (n ≥ 1), W 1 = k 0 and W n = k 0 + k 2 1 1 -W n-1 1 - 1 W n-1 Xn-1 (n > 1), with k 0 ∈ (0, 1) and k 1 ∈ [0, min(k 0 , 1 -k 0 )/2]. Then, for every n ≥ 1, X (n) has probability distribution P f n with f (s) = k 0 + 2k 1 cos(2πs) (s ∈ T). Proof. By induction, (6) implies W n = p f n (X (n-1) ) for every n ≥ 1. Hence for every n ≥ 1, P (X n = 1|X 1 , . . . , X n-1 ) = W n = p f n (X (n-1) ). It follows that for every (x 1 , x 2 , . . .) ∈ {0, 1} ∞ and every n ≥ 1, P (X (n) = x (n) ) = P (X 1 = x 1 ) n j=2 P (X j = x j |X (j-1) = x (j-1) ) = k x1 0 (1 -k 0 ) 1-x1 n j=1 p f j (x (j-1) ) = P f n ({x (n) })
4. Two-dependent stationary determinantal processes Let P f be an SDP with

f (s) = 2 j=-2 k j exp(i2πjs) (s ∈ T), (8) 
where k -j = k j . By Lemma 1, we can assume k -1 = k 1 ∈ R, without loss of generality.

Lemma 3. Let P f be a stationary, two-dependent determinantal probability measure with f as in (8), k 0 ∈ (0, 1), k 1 ∈ R, and k 2 ∈ C. Then, for every x ∈ {0, 1} Z and every n ≥ 3

P f n ({x (n) }) = 6∧n j=2 a j (-1) j-1 u=0 xn-u P f n-j ({x (n-j) }) + j∈{1,3} c j (-1) j-1 u=0 xn-u b(k 0 ; x n-j+1 )P f n-j ({x (n-j) }) + j∈{3,5},j≤n c j (-1) j-1 u=0 xn-u b(k 0 ; x n-j+2 )P f n-j ({x (n-j) }) (9) 
where P f 0 ({x (0) }) := 1,

a 2 = |k 2 | 2 -k 2 1 a 3 = -2k 2 1 |k 2 | cos θ a 4 = (|k 2 | 2 -k 2 1 )|k 2 | 2 a 5 = 0 a 6 = -|k 2 | 6 (10) b(p; x) = (-p) x (1 -p) 1-x (p ∈ (0, 1), x ∈ {0, 1}) (11) 
c j = (-|k 2 | 2 ) (j-1)/2 (j = 1, 3, 5). (12) 
Proof. Let x 1 , x 2 , . . . be a fixed {0, 1}-valued sequence. Define the infinite dimensional matrix [A jl ] j,l=1,2... by

A jl =            k x j 0 (1 -k 0 ) 1-x j if l = j (-1) x j +1 k 1 if l = j -1, j + 1 (-1) x j +1 k 2 if l = j -2 (-1) x j +1 k 2 if l = j + 2 0 otherwise,
and set ∆ n = det A|{1, . . . , n} for n ≥ 1, ∆ 0 = 1, and ∆ n = 0 for n < 0. Then P f n ({x (n) }) = ∆ n for n ≥ 0. Denote by [∆ n ] l j the determinant of the matrix that is obtained by deleting row j and column l from A|{1, . . . , n} (n ≥ 1, j, l = 1, . . . , n). Developing ∆ n along the last rows and columns, we obtain, for every n ≥ 3,

∆ n = (1 -k 0 ) k0 1-k0 xn ∆ n-1 -k 2 1 (-1) xn+xn-1 ∆ n-2 -|k 2 | 2 (1 -k 0 ) k0 1-k0 xn-1 (-1) xn+xn-2 ∆ n-3 + |k 2 | 4 (-1) xn+xn-1+xn-2+xn-3 ∆ n-4 + k 1 k 2 (-1) xn+xn-2 [∆ n-1 ] n-1 n-2 + k 1 k 2 (-1) xn-2+xn-3 [∆ n-1 ] n-2 n-1 (13) Furthermore, developing [∆ n-1 ] n-1 n-2 and [∆ n-1 ] n-2
n-1 along the last row and column, we obtain

k 1 k 2 (-1) xn+xn-2 [∆ n-1 ] n-1 n-2 + k 1 k 2 (-1) xn-2+xn-3 [∆ n-1 ] n-2 n-1 = -k 2 1 (k 2 + k 2 )(-1) xn+xn-1+xn-2 ∆ n-3 -2k 2 1 |k 2 | 2 (-1) xn+xn-1+xn-2+xn-3 ∆ n-4 +|k 2 | 2 (-1) xn+xn-1 k 1 k 2 (-1) xn-2+xn-4 [∆ n-3 ] n-3 n-4 + k 1 k 2 (-1) xn-2+xn-3 [∆ n-3 ] n-4 n-3
Substituting, we get

∆ n = (1 -k 0 ) k0 1-k0 xn ∆ n-1 -k 2 1 (-1) xn+xn-1 ∆ n-2 -|k 2 | 2 (1 -k 0 ) k0 1-k0 xn-1 (-1) xn+xn-2 ∆ n-3 + |k 2 | 4 (-1) xn+xn-1+xn-2+xn-3 ∆ n-4 -k 2 1 (k 2 + k 2 )(-1) xn+xn-1+xn-2 ∆ n-3 -2k 2 1 |k 2 | 2 (-1) xn+xn-1+xn-2+xn-3 ∆ n-4 + |k 2 | 2 (-1) xn+xn-1 k 1 k 2 (-1) xn-2+xn-4 [∆ n-3 ] n-3 n-4 + k 1 k 2 (-1) xn-2+xn-3 [∆ n-3 ] n-4 n-3
(14) Let us now compute ∆ n -|k 2 | 2 (-1) xn+xn-1 ∆ n-2 , using equation ( 14) for ∆ n and equation ( 13) with n -2 in the place of n for ∆ n-2 . Since the terms containing [∆ n-3 ] n-3 n-4 and [∆ n-3 ] n-4 n-3 cancel, we obtain

∆ n -|k 2 | 2 (-1) xn+xn-1 ∆ n-2 = (1 -k 0 ) k0 1-k0 xn ∆ n-1 -k 2 1 (-1) xn+xn-1 ∆ n-2 -|k 2 | 2 (1 -k 0 ) k0 1-k0 xn-1 (-1) xn+xn-2 ∆ n-3 + |k 2 | 4 (-1) xn+xn-1+xn-2+xn-3 ∆ n-4 -k 2 1 (k 2 + k 2 )(-1) xn+xn-1+xn-2 ∆ n-3 -2k 2 1 |k 2 | 2 (-1) xn+xn-1+xn-2+xn-3 ∆ n-4 -|k 2 | 2 (-1) xn+xn-1 (1 -k 0 ) k0 1-k0 xn-2 ∆ n-3 + k 2 1 |k 2 | 2 (-1) xn+xn-1+xn-2+xn-3 ∆ n-4 +|k 2 | 4 (-1) xn+xn-1+xn-2+xn-4 (1 -k 0 ) k0 1-k0 xn-3 ∆ n-5 -|k 2 | 6 (-1) xn+xn-1+xn-2+xn-3+xn-4+xn-5 ∆ n-6
Equation ( 9) is obtained by rearranging the terms in the above equation.

The following theorem gives recursive equations for the predictive probabilities of P f . Theorem 2. Let P f be a stationary, two-dependent determinantal probability measure on the cylinder sigma-algebra of {0, 1} Z with f as in (8), k 0 ∈ (0, 1), k 1 ∈ R, and k 2 ∈ C. Then, for every x ∈ {0, 1} Z and every n ≥ 3

p f n (x (n-1) ) = k 0 - 6∧n j=2 a j j-1 u=1 b(p f n-u (x (n-u-1) ); x n-u ) -1 + |k| 2 2 b(k 0 ; x n-2 ) 2 u=1 b(p f n-u (x (n-u-1) ); x n-u ) -1 - j∈{3,5},j≤n c j b(k 0 ; x n-j+2 ) j-1 u=1 b(p f n-u (x (n-u-1) ); x n-u ) -1 (15) where p f 1 (x (0) ) := P f 1 ({1}), a j (2 ≤ j ≤ 6
), b and c j (j = 3, 5) are defined as in (10), (11), and (12), respectively. Proof. To prove (15), it is sufficient to compute p f n (x (n-1) ) = P f n ({(x 1 , . . . , x n-1 , 1)})/P f n-1 ({(x 1 , . . . , x n-1 )}), using (9), and notice that

P f n ({(x 1 , . . . , x n )}) P f n-j ({(x 1 , . . . , x n-j )}) = j-1 u=0 p f n-u-1 (x (n-u-2) ) xn-u-1 (1-p f n-u-1 (x (n-u-2 )) 1-xn-u-1
for every n = 1, 2, . . . and j < n.

The next corollary allows us to construct samples from P f n starting from independent random variables. The proof is similar to that of Corollary 2.

Corollary 3. Let k 0 ∈ (0, 1), k 1 ∈ R and k 2 ∈ C be such that, for every s ∈ T, f (s) := 2 j=-2 k j exp(i2πjs) ∈ [0, 1]. Let a j (2 ≤ j ≤ 6
), b and c j (j = 3, 5) be defined as in (10), ( 11) and (12), respectively. Furthermore, let (Z n ) n∈N be a sequence of independent random variables defined on a probability space (Ω, F, P ) and uniformly distributed on [0, 1].

If X n = 1 [0,Wn] (Z n ) (n ≥ 1), W 1 = k 0 , W 2 = k 0 + k 2
1 (1k 0 ) -1 (1 -1/k 0 ) X1 and, for n ≥ 3,

W n = k 0 - 6∧n j=2 a j j-1 u=1
(1 -1/W n-u ) Xn-u (1 -W n-u )

+ |k 2 | 2 (1 -1/k 0 ) Xn-2 (1 -k 0 ) 2 u=1 (1 -1/W n-u ) Xn-u (1 -W n-u ) - j∈{3,5}j≤n c j (1 -1/k 0 ) X n-j+2 (1 -k 0 ) j-1 u=1 (1 -1/W n-u ) Xn-u (1 -W n-u ) ,
then, for every n ≥ 1, the probability distribution of X (n) coincides with P f n .

Equations ( 9) and ( 15) simplify when k 2 is real. Actually, recursive equations of lower degree hold in this case. It can be proved with techniques similar to the ones used in the proof of Theorem 2 that (16) where p f 1 (x (0) ) := P f 1 ({1}), b is defined as in (11),

d 1 = k 2 d 2 = -k 2 1 d 3 = -k 2 1 k 2 d 4 = k 4 2 d 5 = -k 5 2 ,
e j = (-k 2 ) j-1 (1 ≤ j ≤ 4).

Furthermore, one can construct a two-dependent SDP X (n) with k 2 ∈ R p(x) = lim n→∞ p f n (x (n-1) ). Then, by (16),

p(x) = k 0 -k 2 + k0k2-k 2 1 p(x) -k 2 k0k2-k 2 1 p(x) 2 -k 3 2 k0-k2 p(x) 3 + k 5 2 p(x) 4 = k 0 -k 2 + k0k2-k 2 1 p(x) -k 2 k0k2-k 2 1 p(x) 2 -k 3 2 k0-k2 p(x) 3 - k 5 2 p(x) 3 (1-p(x)) .
Simplifying, we find We close by noting that the problem is still open whether fixed order recursive equations hold for m-dependent SDP's when m > 2.

  p f n ({x (n-1) }) = k 0k 2 1b(k 0 ; x n-1 ) b(p f n-1 (x (n-2) ); x n-1 ) (x (n-u-1) ); x n-u ) -1

  3 (p(x)-1) which leads to a contradiction since k 2 = 0. We deduce that M ∩ N ∩ Q = ∅ and, therefore P f (Q) = 0.
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(n ≥ 2), (Z n ) n∈N independent and uniformly distributed on [0, 1].

The above results can be used either to simulate two-dependent SDP's sequentially with efficient algorithms or to explore the properties of the predictive distributions of P f . The next example shows that the predictive probabilities of a non-degenerate two-dependent SDP converge nowhere a.s. [START_REF] Lyons | Determinantal probability measures[END_REF], it holds lim inf n→∞ p f n (X (n-1) ) ≥ lim inf n→∞ p f n (1 (n-1) ). On the other hand, (p f n (1 (n-1) )) n≥2 is a decreasing sequence converging to p := exp T log f dλ (see [START_REF] Lyons | Determinantal probability measures[END_REF]. To show that p > 0 without evaluating the integral, we can use (16). In fact p must satisfy

2 and p = 0 is not a solution of this equation. By duality, q := lim n→∞ p f n (0 [START_REF] Lyons | Stationary determinantal processes: Phase transitions, Bernoullicity, entropy and domination[END_REF], it is ergodic. Hence P f (M ) and P f (N ) are either equal to zero or equal to one. On the other hand, P f has full support (see Theorem 4.2 in [START_REF] Lyons | Stationary determinantal processes: Phase transitions, Bernoullicity, entropy and domination[END_REF]. Hence P f (M ) = P f (N ) = 1. Let now Q = {x ∈ {0, 1} Z : lim inf n→∞ p f n (x (n-1) ) = lim sup n→∞ p f n (x (n-1) )}. Then P f (Q ∩ M ∩ N ) = P f (Q). Suppose that there exists x ∈ M ∩ N ∩ Q and let