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Abstract

Filtering and smoothing of stochastic state space dynamic systems have bene�ted

from several generations of estimation approaches since the seminal works ol Kalman

in the sixties. A set of global analytical or numerical methods are now available, as

the well known sequential Monte Carlo particle methods which o�er some theoretical

convergence results for both types of problem. However save in the case of linear

Gaussian systems, objectives of the third kind i.e. prediction objectives, which aim

at estimating k time steps ahead the anticipated probability density function of the

system state variables, conditional on past and present system output observations,

still raise theoretical and practical di�culties. The aim of this paper is to propose

a nonparametric particle multi-step prediction method able to consistently estimate

such anticipated conditional pdf of the state variables as well as their expectations.
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1 Introduction

Given a discrete-time dynamic system with unobserved state variables xt

and observed output variables yt, one often wants to estimate when it ex-

ists, the conditional probability density function (pdf) p(xt+k |y1, . . . , yt), from

the knowledge of the system model and some initial distribution of the state

variables. When −t < k < 0 the problem is known as smoothing. When k = 0,

it is known as �ltering, and it is known as prediction when k > 0. The the-

oretical general solution of this estimation problem is given by the so-called

Bayesian Recursive Relations (BRR). However it can be solved exactly only

in the linear Gaussian case (Anderson and Moore,1979) and corresponds to

the well-known Kalman �lter/predictor/smoother (K-FPS). See Lewis (1986).

In the general case one has to resort to some approximation approaches of

the Bayesian Recursive Relations solutions. The �rst ones have been local

approaches, in which the nonlinear state model and/or observation model

are approximated by Taylor series. They have given rise to the famous and

widely used Extended K-FPS and its re�nements, as the Second Order K-

FPS, the Iterative K-FPS, and some derivative-free versions, and also to a

large amount of literature (Jazwinski 1970, Tanizaki 1993, Nørgaard et al.

2000, Duník et al. 2005, to cite just a few). Other local approaches rely on

approximations of the state variables pdf rather than the model equations,

leading for example to the so-called Unscented Kalman �lter (Wan and Van

der Merwe 2000, Julier and Uhlmann 2004). The local validity of these ap-

proximations does not ensure convergence of the corresponding pdf estimates

and the main interest of these approaches is their relative simplicity when

approximating the BRR solutions. Global approximation approaches to the

state FPS problem, with validity in the full state space, have also been de-
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veloped. A �rst global, analytical approach, is represented by the Gaussian

Sum method which involves multiple linearizations of the state space and ap-

proximations of the conditional state variables pdf by sums of Gaussian densi-

ties, providing weighted averages of collections of Extended K-FPS (Sorenson

and Alspach 1971, �imandl and Královec 2000). More accurate but also more

computer-intensive, global approximation methods, are numerical methods

which approximate the state space by a system of numerous discrete points.

For example, the Point Mass method (Kramer and Sorenson 1988, �imandl

et al. 2006, Královec and �imandl 2004) approximates the state space by an

orthonormal grid. Other and now famous numerical global approaches are the

Monte Carlo approaches in which the state space is approximated by randomly

distributed particles (Liu and Chen 1998, Doucet et al. 2001).They bene�ted

from theoretical convergence results (Del Moral 1998, 2004, Del Moral et al.

2001). Several convergence improvements starting from the discrete nature of

the probability distribution approximation provided by the �rst sequential im-

portance sampling and resampling Monte Carlo approaches, were performed,

as probability distribution regularizations (Musso et al. 2001). But in spite of

their acknowledged e�ciency in smoothing and especially �ltering estimation

problems (Doucet and Johansen 2009, Briers et al. 2009), the theoretical and

practical application of the particle methods to prediction problems seems to

be not so advanced. The issue is however of great concern and deserves special

attention: an e�cient multi-step prediction facility is of crucial importance in

several applications of the dynamic systems state space modelling approach

(e.g. radio guidance, economics, predictive miocrobiology, etc) an especially

in predictive control context (Magni et al. 2009).

The aim of this note is to propose such a convergent multi-step prediction
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method, relying on sequential recursive random particle simulations and non-

parametric density estimation procedures. This prediction method can be seen

as an extension of a new generation of convergent �ltering methods based on

convolution kernel density estimation and implicit regularization of both state

and output variables probability distribution estimates (Rossi 2004, Rossi and

Vila 2005, 2006, Hilgert et al. �3.2, 2007). Moreover this approach allows to

deal with the frequent situation in which the probability distributions of both

state and output variables are analytically unknown but can be simulated.

The paper is organized as follows. Section 2 presents the general structure

of stochastic state space models to be considered. The multi-step prediction

problem and the corresponding Bayesian recursive relations are introduced in

Section 3. Section 4 is devoted to the construction of the proposed nonpara-

metric particle multi-step predictor. Its convergence properties are presented

in Section 5.

2 The modelling context

The systems of interest are supposed to obey general state space models of

the form:





xt = ft(xt−1, θ
x, εt)

yt v gt(.|xt, θ
y)

(1)

in which xt ∈ IRd is the vector of the unobserved state variables, yt ∈ IRq that

of the observed output variables. θ = (θxT , θyT )T ∈ Θ ⊂ IRp is a vector of p

unknown �xed parameters. εt is a vector of random variables (possibly noises),
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the {εt} being independent from each other. ft is a known Borel measurable

function. gt is an absolutely continuous probability distribution function with

bounded density. ft and gt can both be possibly time-varying. The probability

distribution function gt and that of εt are not necessarily known but supposed

to be at least simulatable. As a particular case the output variables model

can be given by a regression equation yt = rt(xt, θ
y, ηt) in which rt is a known

Borel measurable function, where ηt is a vector of random variables (possibly

noises) supposed to be at least simulatable.

Remark 1 In predictive control context (Magni et al. 2009), some control vari-

ables ut are present in the state model function ft, in order to allow the op-

timization over a chosen sliding horizon, of a given criterion function of the

predicted state variables values. The principles of the prediction algorithm to

be presented in the following are unchanged and easily adapted to that case.

2.1 Assumptions and notations

Let

• px
0 : the known probability density of the state variables x at time t = 0.

• pθ
0 : a given prior density for θ ∈ Θ, non zero for θ∗ the true values of the

parameters.

• Lεt : the probability distribution function of εt, not necessarily analytically

known but at least simulatable whatever t.

• y1:t := (y1, . . . , yt), observed values of the output variables up to time t

(notation).
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3 The multi-step prediction problem

Given a positive time shift k, the objective as told previously is to estimate

at time t, p(xt+k |y1:t), the k-step-ahead probability density of the state vector

xt+k, conditional on the observed values up to time t of the output vari-

ables. One can also wish to estimate the corresponding conditional expecta-

tion IE[xt+k |y1:t]. The pdf of interest p(xt+k |y1:t) satis�es the following obvious

Bayesian recursive relation:

p(xt+k |y1:t) =
∫

p(xt+k, xt+k−1|y1:t)dxt+k−1

=
∫

p(xt+k |xt+k−1, y1:t)p(xt+k−1|y1:t)dxt+k−1

=
∫

p(xt+k |xt+k−1)p(xt+k−1|y1:t)dxt+k−1 (2)

Only in few special cases (as linear systems with Gaussian noises) can this re-

cursive equation be solved analytically, starting from the �ltering pdf p(xt|y1:t).

The next section is devoted to a convergent nonparametric particle estimation

of the solution of this equation.

4 A nonparametric approach

4.1 A reformulation of the problem

At time t:

Let us consider the state vector x at the k next future times:

xt+1 = ft+1(xt, θ, εt+1) = ft+1(ft(xt−1, θ, εt), θ, εt+1) := Ft+1(xt−1, θ, εt, εt+1)

xt+2 = ft+2(xt+1, θ, εt+2) = . . . := Ft+2(xt−1, θ, εt, εt+1, εt+2)

...
xt+k = ft+k(xt+k−1, θ, εt+k) = . . . := Ft+k(xt−1, θ, εt, εt+1, . . . , εt+k) (3)
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Let us consider the following k random variables:

ν1
t ∼ Lεt+1 , ν2

t ∼ Lεt+2 , . . . , νk
t ∼ Lεt+k

.

Let us then de�ne k new variables of dimension d, zi
t, i = 1, . . . , k, such that:

zi
t = Ft+i(xt−1, θ, εt, ν

1
t , . . . , ν

i
t).

The variables {zi
t } are jointly distributed as the corresponding variables xt+i,

i = 1, . . . , k, and the recursive relation (2) applies to the zi
t's as well, particu-

larly to zk
t :

p(zk
t |y1:t) =

∫
p(zk

t |zk−1
t )p(zk−1

t |y1:t)dzk−1
t (4)

Estimating the conditional pdf p(zk
t |y1:t) is then equivalent to estimating the

pdf of interest p(xt+k |y1:t).

The remaining of the paper is devoted to a convergent approximation of (4).

4.2 Nonparametric particle estimation of p(zk
t |y1:t)

Let us introduce zk
t as a new state variable of dimension d into the state equa-

tions of model (1), and let us also introduce as state equation the parameter

invariance equality θt = θt−1. Model (1) is unchanged by these additions but

it writes now:
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xt = ft(xt−1, θ
x
t−1, εt)

zk
t = Ft+k(xt−1, θ

x
t−1, εt, ν

1
t , . . . , ν

k
t )

θt = θt−1

yt v gt(.|xt, θ
y
t−1)

(5)

The estimation of the joint conditional pdf p(xt, z
k
t , θt|y1:t) and its marginals

p(xt|y1:t), p(zk
t |y1:t), p(θt|y1:t), is now a �ltering problem. A convergent non-

parametric particle �ltering approach has been recently proposed to solve

�ltering problems under the mild assumptions of Section 2 (Rossi 2004, Rossi

and Vila 2006, 2005, Hilgert et al. �3.2, 2007). In the following this approach

is adapted to the estimation of the pdf p(zk
t |y1:t).

The approach relies on the simulation of n particles (x̃i
t, z̃

k,i
t , θ̃i

t, ỹ
i
t), i =

1, . . . , n, at each time step t.

Let:

• Ky
∆n

(v) = Πq
j=1

1
δy
n,j

Ky( vj

δy
n,j

), where Ky(.) is a positive bounded Parzen-

Rosenblatt kernel (Parzen 1962) of dimension 1, and vj is the jth component

of the vector v of dimension q. δy
n,j is the kernel window width parameter,

chosen empirically. In the present case, a relevant choice can be derived from

recommendations of Silverman (1986):

At time t: δy
n,j = 1.06 × min (

√
var(ỹt,j),

iqr(ỹt,j)

1.34
) × n− 1

4+q , where ỹt,j is

the vector of the n particles (ỹi
t,j, i = 1, . . . , n ) and iqr(ỹt,j) is the

inter-quartile range of the ỹi
t,j, i = 1, . . . , n.

we shall denote: ∆q
n = Πq

j=1δ
y
n,j.
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• Kx
∆n

(.), Kz
∆n

(.), Kθ
∆n

(.): positive bounded Parzen-Rosenblatt kernels of di-

mension d, d and p, corresponding to x, zk, and θ respectively, de�ned like

Ky
∆n

(.) for the output vector y, and with window width parameters ana-

log to that of the kernel Ky
∆n

(.) and collectively denoted as δn, vector of

dimension q + 2d + p.

we shall denote: ∆q+2d+p
n = Πq

j=1δ
y
n,j · Πd

j=1δ
x
n,j · Πd

j=1δ
z
n,j · Πp

j=1δ
θ
n,j.

Algorithm:

• Step t = 0: For i = 1, . . . , n: x̄i
0 ∼ px

0 , θ̄i
0 ∼ pθ

0, t = t + 1.

• Step t > 0: For i = 1, . . . , n

- if t = 1: ε̃i
1 ∼ Lε1 , ν̃1,i

1 ∼ Lε2 , . . . , ν̃k,i
1 ∼ Lε1+k

, x̃i
1 = f1(x̄

i
0, θ̄

x,i
0 , ε̃i

1),

z̃k,i
1 = F1+k(x̄

i
0, θ̄

x,i
0 , ε̃i

1, ν̃
1,i
1 , . . . , ν̃k,i

1 ), θ̃i
1 = θ̄i

0, ỹi
1 ∼ g1(.|x̃i

1, θ̃
y,i
1 ).

- if t > 1: (x̄i
t−1, z̄

k,i
t−1, θ̄

i
t−1) ∼ pn(x, zk, θ|y1:t−1), ε̃i

t ∼ Lεt ,

ν̃1,i
t ∼ Lεt+1 , ν̃2,i

t ∼ Lεt+2 , . . . , ν̃k,i
t ∼ Lεt+k

,

x̃i
t = ft(x̄

i
t−1, θ̄

x,i
t−1, ε̃

i
t), z̃k,i

t = Ft+k(x̄
i
t−1, θ̄

x,i
t−1, ε̃

i
t, ν̃

1,i
t , . . . , ν̃k,i

t ),

θ̃i
t = θ̄i

t−1, ỹi
t ∼ gt(.|x̃i

t, θ̃
y,i
t ).

Let

pn(x, zk, θ|y1:t) :=
∑n

i=1 Ky
∆n

(ỹi
t − yt) × Kx

∆n
(x̃i

t − x) × Kz
∆n

(z̃k,i
t − zk) × Kθ

∆n
(θ̃i

t − θ)
∑n

i=1 Ky
∆n

(ỹi
t − yt)

(6)

pn(zk |y1:t) :=

∑n
i=1 Ky

∆n
(ỹi

t − yt) × Kz
∆n

(z̃k,i
t − zk)

∑n
i=1 Ky

∆n
(ỹi

t − yt)
(7)

t = t + 1, go back to Step t.

pn(x, zk, θ|y1:t) and pn(zk |y1:t) are nonparametric particle estimators of

the conditional joint and marginal pdf p(x, zk, θ|y1:t) and p(zk |y1:t) of

(xt, z
k
t , θt) and zk

t , respectively. pn(zk |y1:t) is then also a nonparametric

9



particle estimator of the conditional pdf of xt+k at time t, i.e a predictor at

time t of the k-step ahead conditional pdf of the x variables. Similar estimators

can be proposed for the conditional pdf's of xt and θt.

The following presentation of convergence results is restricted to pn(zk |y1:t)

the estimator of the conditional pdf of zk
t , i.e. of xt+k (similar convergence

results have been established for the estimators at time t of the conditional

pdf's of xt and θt. See Rossi and Vila 2005, 2006).

Remark 2 It can be checked that (7) is a recursive kernel approximation of

(4) for zk = zk
t .

5 Convergence properties of the particle multi-step predictor

5.1 Almost sure L1-convergence of the predictor pn(zk |y1:t) of the conditional

pdf of xt+k at time t.

Theorem 5.1 If the pdf p(y|y1:t−1) is continuous and strictly positive at yt

whatever t, then





limn→∞
n∆q+2d+p

n

log n
= ∞

limn→∞ δn = 0

∆q
n = o(n−α/2), 0 < α < 1

=⇒
limn→∞ ‖pn(x, zk, θ|y1:t) − p(x, zk, θ|y1:t)‖L1 = 0 a.s.

limn→∞ ‖pn(zk |y1:t) − p(zk |y1:t)‖L1 = 0 a.s.

Proof. It is a straightforward application to the extra state variable zk
t , of the

a.s. L1 convergence result of the convolution particle �lter (Rossi 2004, Rossi

and Vila 2006).
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Convergence speed results as the number of particles n grows to in�nity, of

pn(zk |y1:t) to p(zk |y1:t) the true conditional pdf of xt+k at time t, can also be

obtained in the same way.

5.2 Punctual multi-step prediction

Let z̄k,i
t ∼ pn(zk |y1:t), i = 1, . . . , n, and ẑk,n

t = 1
n

∑n
i=1 z̄k,i

t .

Theorem 5.2 If Var[x, zk, θ|y1:t] according to p(x, zk, θ|y1:t) exists, then ∀ t





limn→∞
n∆q+2d+p

n

log n
= ∞

limn→∞ δn = 0

∆q
n = o(n−α/2), 0 < α < 1

=⇒ limn→∞
∣∣∣ẑk,n

t − IE[xt+k |y1:t]
∣∣∣ = 0 a.s.

Proof: application to the extra state variable zk
t of the punctual convergence

results of the convolution particle �lter (Rossi and Vila 2005).

Remark 3 As in most particle sequential methods, for a given application,

there is at present no de�nitive rule to guess the minimum value of the particle

number n to be chosen, which depends on the system complexity and problem

setting. If the cinetic of the process is rather slow (e.g. biotechnological pro-

cesses), one can rely on empirical run comparisons with di�erent values of n:

in convolution �ltering one can start with n = 10000. Sometimes n = 1000

may be acceptable to stabilize convergence of the estimations, but one has to

go much more beyond quite often. This practical issue will be considered more

11



deeply in applications of the algorithm to real and simulated case studies in

another paper to come.

6 Conclusion

A nonparametric particle k-step ahead predictor of the state vector pdf con-

ditional on the past and present output variables values of a state space dy-

namic system has been proposed, as well as a predictor of the k-step ahead

conditional expectations of the state variables. Convergence results of these

predictors to their true counterparts when the number of particles used grows

to in�nity, have been provided. These nonparametric particle predictors can be

considered as generalizations of corresponding nonparametric particle �ltering

estimators recently developed. Under rather mild assumptions these nonpara-

metric particle predictors provide a theoretical and practical solution to the

prediction problem in general nonlinear state space dynamic systems, still

rather neglected by the existing particle estimation methods. Applications of

this particle multi-step prediction approach to real and simulated case studies

will be presented in a more practically oriented paper to come, with discussion

on practical implementation of the proposed algorithm.
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