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Filtering and smoothing of stochastic state space dynamic systems have beneted from several generations of estimation approaches since the seminal works ol Kalman in the sixties. A set of global analytical or numerical methods are now available, as the well known sequential Monte Carlo particle methods which oer some theoretical convergence results for both types of problem. However save in the case of linear Gaussian systems, objectives of the third kind i.e. prediction objectives, which aim at estimating k time steps ahead the anticipated probability density function of the system state variables, conditional on past and present system output observations, still raise theoretical and practical diculties. The aim of this paper is to propose a nonparametric particle multi-step prediction method able to consistently estimate such anticipated conditional pdf of the state variables as well as their expectations.

Introduction

Given a discrete-time dynamic system with unobserved state variables x t and observed output variables y t , one often wants to estimate when it exists, the conditional probability density function (pdf) p(x t+k |y 1 , . . . , y t ), from the knowledge of the system model and some initial distribution of the state variables. When -t < k < 0 the problem is known as smoothing. When k = 0, it is known as ltering, and it is known as prediction when k > 0. The theoretical general solution of this estimation problem is given by the so-called Bayesian Recursive Relations (BRR). However it can be solved exactly only in the linear Gaussian case (Anderson and Moore,1979) and corresponds to the well-known Kalman lter/predictor/smoother (K-FPS). See [START_REF] Lewis | Optimal Estimation[END_REF].

In the general case one has to resort to some approximation approaches of the Bayesian Recursive Relations solutions. The rst ones have been local approaches, in which the nonlinear state model and/or observation model are approximated by Taylor series. They have given rise to the famous and widely used Extended K-FPS and its renements, as the Second Order K-FPS, the Iterative K-FPS, and some derivative-free versions, and also to a large amount of literature (Jazwinski 1970, Tanizaki 1993[START_REF] Nørgaard | New developments in state estimation for nonlinear systems[END_REF], Duník et al. 2005, to cite just a few). Other local approaches rely on approximations of the state variables pdf rather than the model equations, leading for example to the so-called Unscented Kalman lter [START_REF] Wan | The Unscented Kalman lter for nonlinear estimation[END_REF]Van der Merwe 2000, Julier and[START_REF] Julier | Unscented ltering and nonlinear estimation[END_REF]. The local validity of these approximations does not ensure convergence of the corresponding pdf estimates and the main interest of these approaches is their relative simplicity when approximating the BRR solutions. Global approximation approaches to the state FPS problem, with validity in the full state space, have also been de-veloped. A rst global, analytical approach, is represented by the Gaussian Sum method which involves multiple linearizations of the state space and approximations of the conditional state variables pdf by sums of Gaussian densities, providing weighted averages of collections of Extended K-FPS (Sorenson andAlspach 1971, imandl and[START_REF] Imandl | Filtering, prediction and smoothing with Gaussian sum representation[END_REF]. More accurate but also more computer-intensive, global approximation methods, are numerical methods which approximate the state space by a system of numerous discrete points.

For example, the Point Mass method [START_REF] Kramer | Recursive Bayesian estimation using piece-wise constant approximations[END_REF][START_REF] Imandl | Advanced point-mass method for nonlinear state estimation[END_REF][START_REF] Královec | Filtering, prediction and smoothing with point-mass approach[END_REF] approximates the state space by an orthonormal grid. Other and now famous numerical global approaches are the Monte Carlo approaches in which the state space is approximated by randomly distributed particles [START_REF] Liu | Sequential Monte Carlo methods for dynamic systems[END_REF]Chen 1998, Doucet et al. 2001).They beneted from theoretical convergence results (Del Moral 1998[START_REF] Rossi | Filtrage non linéaire par noyaux de convolution[END_REF], Del Moral et al. 2001). Several convergence improvements starting from the discrete nature of the probability distribution approximation provided by the rst sequential importance sampling and resampling Monte Carlo approaches, were performed, as probability distribution regularizations [START_REF] Musso | Improving regularized particle lters[END_REF]. But in spite of their acknowledged eciency in smoothing and especially ltering estimation problems (Doucet andJohansen 2009, Briers et al. 2009), the theoretical and practical application of the particle methods to prediction problems seems to be not so advanced. The issue is however of great concern and deserves special attention: an ecient multi-step prediction facility is of crucial importance in several applications of the dynamic systems state space modelling approach (e.g. radio guidance, economics, predictive miocrobiology, etc) an especially in predictive control context (Magni et al. 2009).

The aim of this note is to propose such a convergent multi-step prediction method, relying on sequential recursive random particle simulations and nonparametric density estimation procedures. This prediction method can be seen as an extension of a new generation of convergent ltering methods based on convolution kernel density estimation and implicit regularization of both state and output variables probability distribution estimates [START_REF] Rossi | Filtrage non linéaire par noyaux de convolution[END_REF][START_REF] Rossi | Approche non paramétrique du ltrage de système non linéaire à temps discret et à paramètres inconnus[END_REF], 2006, Hilgert et al. 3.2, 2007). Moreover this approach allows to deal with the frequent situation in which the probability distributions of both state and output variables are analytically unknown but can be simulated.

The paper is organized as follows. Section 2 presents the general structure of stochastic state space models to be considered. The multi-step prediction problem and the corresponding Bayesian recursive relations are introduced in Section 3. Section 4 is devoted to the construction of the proposed nonparametric particle multi-step predictor. Its convergence properties are presented in Section 5.
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The modelling context

The systems of interest are supposed to obey general state space models of the form:

               x t = f t (x t-1 , θ x , ε t ) y t g t (.|x t , θ y ) (1)
in which x t ∈ IR d is the vector of the unobserved state variables, y t ∈ IR q that of the observed output variables. • p θ 0 : a given prior density for θ ∈ Θ, non zero for θ * the true values of the parameters.

θ = (θ xT , θ yT ) T ∈ Θ ⊂ IR p is
• L εt : the probability distribution function of ε t , not necessarily analytically known but at least simulatable whatever t.

• y 1:t := (y 1 , . . . , y t ), observed values of the output variables up to time t (notation).
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The multi-step prediction problem Given a positive time shift k, the objective as told previously is to estimate at time t, p(x t+k |y 1:t ), the k-step-ahead probability density of the state vector

x t+k , conditional on the observed values up to time t of the output variables. One can also wish to estimate the corresponding conditional expectation IE[x t+k |y 1:t ]. The pdf of interest p(x t+k |y 1:t ) satises the following obvious Bayesian recursive relation:

p(x t+k |y 1:t ) = p(x t+k , x t+k-1 |y 1:t )dx t+k-1 = p(x t+k |x t+k-1 , y 1:t )p(x t+k-1 |y 1:t )dx t+k-1 = p(x t+k |x t+k-1 )p(x t+k-1 |y 1:t )dx t+k-1 (2)
Only in few special cases (as linear systems with Gaussian noises) can this recursive equation be solved analytically, starting from the ltering pdf p(x t |y 1:t ).

The next section is devoted to a convergent nonparametric particle estimation of the solution of this equation.
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A nonparametric approach 4.1 A reformulation of the problem At time t:

Let us consider the state vector x at the k next future times:

x t+1 = f t+1 (x t , θ, ε t+1 ) = f t+1 (f t (x t-1 , θ, ε t ), θ, ε t+1 ) := F t+1 (x t-1 , θ, ε t , ε t+1 ) x t+2 = f t+2 (x t+1 , θ, ε t+2 ) = . . . := F t+2 (x t-1 , θ, ε t , ε t+1 , ε t+2 )
. . .

x t+k = f t+k (x t+k-1 , θ, ε t+k ) = . . . := F t+k (x t-1 , θ, ε t , ε t+1 , . . . , ε t+k ) (3) 
Let us consider the following k random variables:

ν 1 t ∼ L ε t+1 , ν 2 t ∼ L ε t+2 , . . . , ν k t ∼ L ε t+k .
Let us then dene k new variables of dimension d, z i t , i = 1, . . . , k, such that:

z i t = F t+i (x t-1 , θ, ε t , ν 1 t , . . . , ν i t ).
The variables {z i t } are jointly distributed as the corresponding variables x t+i , i = 1, . . . , k, and the recursive relation (2) applies to the z i t 's as well, particularly to z k t :

p(z k t |y 1:t ) = p(z k t |z k-1 t )p(z k-1 t |y 1:t )dz k-1 t (4)
Estimating the conditional pdf p(z k t |y 1:t ) is then equivalent to estimating the pdf of interest p(x t+k |y 1:t ).

The remaining of the paper is devoted to a convergent approximation of (4). 

Nonparametric particle estimation of p(z

                                       x t = f t (x t-1 , θ x t-1 , ε t ) z k t = F t+k (x t-1 , θ x t-1 , ε t , ν 1 t , . . . , ν k t ) θ t = θ t-1 y t g t (.|x t , θ y t-1 ) (5) 
The estimation of the joint conditional pdf p(x t , z k t , θ t |y 1:t ) and its marginals p(x t |y 1:t ), p(z k t |y 1:t ), p(θ t |y 1:t ), is now a ltering problem. A convergent nonparametric particle ltering approach has been recently proposed to solve ltering problems under the mild assumptions of Section 2 [START_REF] Rossi | Filtrage non linéaire par noyaux de convolution[END_REF][START_REF] Rossi | Nonlinear ltering in discrete time: A particle convolution approach[END_REF][START_REF] Rossi | Approche non paramétrique du ltrage de système non linéaire à temps discret et à paramètres inconnus[END_REF], Hilgert et al. 3.2, 2007). In the following this approach is adapted to the estimation of the pdf p(z k t |y 1:t ).

The approach relies on the simulation of n particles (x i t , zk,i t , θi t , ỹi t ), i = 1, . . . , n, at each time step t.

Let:

• K y ∆n (v) = Π q j=1 1 δ y n,j K y ( v j δ y n,j
), where K y (.) is a positive bounded Parzen-Rosenblatt kernel [START_REF] Parzen | On estimation of a probability density function and mode[END_REF] of dimension 1, and v j is the j th component of the vector v of dimension q. δ y n,j is the kernel window width parameter, chosen empirically. In the present case, a relevant choice can be derived from recommendations of [START_REF] Silverman | Density Estimation[END_REF]: At time t: δ y n,j = 1.06 × min ( var(ỹ t,j ), iqr(ỹ t,j )

1.34 ) × n -1 4+q , where ỹt,j is the vector of the n particles (ỹ i t,j , i = 1, . . . , n ) and iqr(ỹ t,j ) is the inter-quartile range of the ỹi t,j , i = 1, . . . , n.

we shall denote: ∆ q n = Π q j=1 δ y n,j .

• K x ∆n (.), K z ∆n (.), K θ ∆n (.): positive bounded Parzen-Rosenblatt kernels of dimension d, d and p, corresponding to x, z k , and θ respectively, dened like K y ∆n (.) for the output vector y, and with window width parameters analog to that of the kernel K y ∆n (.) and collectively denoted as δ n , vector of dimension q + 2d + p.

we shall denote:

∆ q+2d+p n = Π q j=1 δ y n,j • Π d j=1 δ x n,j • Π d j=1 δ z n,j • Π p j=1 δ θ n,j .
Algorithm:

• Step t = 0: For i = 1, . . . , n: xi 0 ∼ p x 0 , θi 0 ∼ p θ 0 , t = t + 1. • Step t > 0: For i = 1, . . . , n -if t = 1: εi 1 ∼ L ε 1 , ν1,i 1 ∼ L ε 2 , . . . , νk,i 1 ∼ L ε 1+k , xi 1 = f 1 (x i 0 , θx,i 0 , εi 1 ), zk,i 1 = F 1+k (x i 0 , θx,i 0 , εi 1 , ν1,i 1 , . . . , νk,i 1 ), θi 1 = θi 0 , ỹi 1 ∼ g 1 (.|x i 1 , θy,i 1 ). -if t > 1: (x i t-1 , zk,i t-1 , θi t-1 ) ∼ p n (x, z k , θ|y 1:t-1 ), εi t ∼ L εt , ν1,i t ∼ L ε t+1 , ν2,i t ∼ L ε t+2 , . . . , νk,i t ∼ L ε t+k , xi t = f t (x i t-1 , θx,i t-1 , εi t ), zk,i t = F t+k (x i t-1 , θx,i t-1 , εi t , ν1,i t , . . . , νk,i t ), θi t = θi t-1 , ỹi t ∼ g t (.|x i t , θy,i t ). Let p n (x, z k , θ|y 1:t ) := n i=1 K y ∆n (ỹ i t -y t ) × K x ∆n (x i t -x) × K z ∆n (z k,i t -z k ) × K θ ∆n ( θi t -θ) n i=1 K y ∆n (ỹ i t -y t ) (6) 
p n (z k |y 1:t ) := n i=1 K y ∆n (ỹ i t -y t ) × K z ∆n (z k,i t -z k ) n i=1 K y ∆n (ỹ i t -y t ) (7) 
t = t + 1, go back to Step t.
p n (x, z k , θ|y 1:t ) and p n (z k |y 1:t ) are nonparametric particle estimators of the conditional joint and marginal pdf p(x, z k , θ|y 1:t ) and p(z k |y 1:t ) of (x t , z k t , θ t ) and z k t , respectively. p n (z k |y 1:t ) is then also a nonparametric particle estimator of the conditional pdf of x t+k at time t, i.e a predictor at time t of the k-step ahead conditional pdf of the x variables. Similar estimators can be proposed for the conditional pdf's of x t and θ t .

The following presentation of convergence results is restricted to p n (z k |y 1:t )

the estimator of the conditional pdf of z k t , i.e. of x t+k (similar convergence results have been established for the estimators at time t of the conditional pdf's of x t and θ t . See [START_REF] Rossi | Filtrage non linéaire par noyaux de convolution[END_REF]Vila 2005, 2006).

Remark 2 It can be checked that ( 7) is a recursive kernel approximation of (4) for z k = z k t .

5 Convergence properties of the particle multi-step predictor 5.1 Almost sure L 1 -convergence of the predictor p n (z k |y 1:t ) of the conditional pdf of x t+k at time t.

Theorem 5.1 If the pdf p(y|y 1:t-1 ) is continuous and strictly positive at y t whatever t, then

                           lim n→∞ n∆ q+2d+p n log n = ∞ lim n→∞ δ n = 0 ∆ q n = o(n -α/2 ), 0 < α < 1 =⇒ lim n→∞ p n (x, z k , θ|y 1:t ) -p(x, z k , θ|y 1:t ) L1 = 0 a.s. lim n→∞ p n (z k |y 1:t ) -p(z k |y 1:t ) L1 = 0 a.s.
Proof. It is a straightforward application to the extra state variable z k t , of the a.s. L 1 convergence result of the convolution particle lter [START_REF] Rossi | Filtrage non linéaire par noyaux de convolution[END_REF][START_REF] Rossi | Nonlinear ltering in discrete time: A particle convolution approach[END_REF].

Convergence speed results as the number of particles n grows to innity, of p n (z k |y 1:t ) to p(z k |y 1:t ) the true conditional pdf of x t+k at time t, can also be obtained in the same way.

Punctual multi-step prediction

Let zk,i t ∼ p n (z k |y 1:t ), i = 1, . . . , n, and z k,n t = 1 n n i=1 zk,i t . Theorem 5.2 If Var[x, z k , θ|y 1:t ] according to p(x, z k , θ|y 1:t ) exists, then ∀ t                            lim n→∞ n∆ q+2d+p n log n = ∞ lim n→∞ δ n = 0 ∆ q n = o(n -α/2 ), 0 < α < 1 =⇒ lim n→∞ z k,n t -IE[x t+k |y 1:t ] = 0 a.s.
Proof: application to the extra state variable z k t of the punctual convergence results of the convolution particle lter [START_REF] Rossi | Approche non paramétrique du ltrage de système non linéaire à temps discret et à paramètres inconnus[END_REF].

Remark 3 As in most particle sequential methods, for a given application, there is at present no denitive rule to guess the minimum value of the particle number n to be chosen, which depends on the system complexity and problem setting. If the cinetic of the process is rather slow (e.g. biotechnological processes), one can rely on empirical run comparisons with dierent values of n: in convolution ltering one can start with n = 10000. Sometimes n = 1000 may be acceptable to stabilize convergence of the estimations, but one has to go much more beyond quite often. This practical issue will be considered more deeply in applications of the algorithm to real and simulated case studies in another paper to come.

Conclusion

A nonparametric particle k-step ahead predictor of the state vector pdf conditional on the past and present output variables values of a state space dynamic system has been proposed, as well as a predictor of the k-step ahead conditional expectations of the state variables. Convergence results of these predictors to their true counterparts when the number of particles used grows to innity, have been provided. These nonparametric particle predictors can be considered as generalizations of corresponding nonparametric particle ltering estimators recently developed. Under rather mild assumptions these nonparametric particle predictors provide a theoretical and practical solution to the prediction problem in general nonlinear state space dynamic systems, still rather neglected by the existing particle estimation methods. Applications of this particle multi-step prediction approach to real and simulated case studies will be presented in a more practically oriented paper to come, with discussion on practical implementation of the proposed algorithm.

  {ε t } being independent from each other. f t is a known Borel measurable function. g t is an absolutely continuous probability distribution function with bounded density. f t and g t can both be possibly time-varying. The probability distribution function g t and that of ε t are not necessarily known but supposed to be at least simulatable. As a particular case the output variables model can be given by a regression equation y t = r t (x t , θ y , η t ) in which r t is a known Borel measurable function, where η t is a vector of random variables (possibly noises) supposed to be at least simulatable.

a vector of p unknown xed parameters. ε t is a vector of random variables (possibly noises), the Remark 1 In predictive control context

(Magni et al. 2009)

, some control variables u t are present in the state model function f t , in order to allow the optimization over a chosen sliding horizon, of a given criterion function of the predicted state variables values. The principles of the prediction algorithm to be presented in the following are unchanged and easily adapted to that case.

2.1 Assumptions and notations

Let

• p x 0 : the known probability density of the state variables x at time t = 0.
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