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Abstract

We study the convergence of the false discovery proportion (FDP) of the Benjamini-Hochberg
procedure in the Gaussian equi-correlated model, when the correlation p,, converges to zero as
the hypothesis number m grows to infinity. By contrast with the standard convergence rate m'/?
holding under independence, this study shows that the FDP converges to the false discovery rate
(FDR) at rate {min(m, 1/p,,)}'/? in this equi-correlated model.

Keywords: False discovery rate, Donsker theorem, equi-correlation, functional Delta method,
p-value.
2000 MSC: 62G10, 62J15, 60F05

1. Introduction

When testing simultaneously a large number m of null hypotheses, a popular global type I
error, that can be traced back to Seeger (1968), is the false discovery proportion (FDP), defined
as the ratio of the number of erroneous rejections to the number of rejections. The average of this
random variable, called the false discovery rate (FDR, introduced by Benjamini and Hochberg
(1995)), has been studied by a considerable number of works, see for instance Sarkar (2008) and
Blanchard and Roquain (2009) for a review. However, studying the FDR is not sufficient to catch
the full behavior of the FDP, for instance a FDR control does not prevent the FDP from having
large variations. Therefore, some other studies aim to directly control the upper-quantile of the
FDP distribution, see e.g. Genovese and Wasserman (2006); Lehmann and Romano (2005), or
to directly compute the distribution of the FDP, either non-asymptotically Chi and Tan (2008);
Roquain and Villers (2010), or asymptotically Genovese and Wasserman (2004). Recently, Neu-
vial (2008, 2009) computed the asymptotic distribution of the FDP actually achieved by the
Benjamini-Hochberg (BH) procedure (and some other adaptive procedures) under independence
of the p-values. It is proved that the FDP converges to the FDR at the parametric rate /. Fur-
thermore, Farcomeni (2007) showed that this convergence is unchanged under a specific short-
range dependency between the p-values.

In this paper, we are interested in studying the convergence of the FDP of the BH procedure
in the model where the test statistics have exchangeable Gaussian errors, with equi-correlation
p (allowing for instance long-range dependencies). This model has become quite standard in
multiple testing (see e.g. Benjamini et al. (2006); Finner et al. (2007)), as it is a very simple
instance of dependent p-value model. From an intuitive point of view, the test statistics can be
seen as independent test statistics plus a disturbance variable whose importance depends on the
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value of p. When p € (0, 1) is fixed with m (and in the “ideal” setting where the p-values under
the alternative are all equal to zero), Finner et al. (2007) proved that the FDP of the BH procedure
converges to a non-deterministic random variable that still depends on the disturbance variable.
When p,, — 0, we show here that this disturbance variable has no effect on the limit of the FDP
anymore, which equals moa (where 7 is the proportion of true nulls), but can still have an effect
on the asymptotic variance of the FDP or even on the convergence rate. More precisely, when
Pm — 0 our main result states that {min(m, 1/p,,)}"/>(FDP,, — mya) ~+ N(0, V) holds for a given
V > 0; in comparison with the independent case, we may distinguish the two following cases,
recovering all the possible convergence regimes of p,, to zero:

e when lim,, mp,, = 8 € [-1,+0), the limit of the FDP and the convergence rate are the
same as in the independent case. The asymptotic variance V is larger if 8 > 0, smaller if
6 < 0 and is the same whenever 8 = 0 (i.e. mp,, — 0).

e when lim,, mp,, = +co and lim,, p,, = O the convergence rate is p,, /> instead of m'/2.

On the one hand, this shows that the FDP of the BH procedure is still well concentrated around
moa under weak equi-correlation such that p,, = O(1/m). On the other hand, this puts forward
that the concentration of the FDP of the BH procedure around the FDR may be arbitrarily slow
when p,, — 0, which is a striking result that has not been reported before to the best of our
knowledge. Therefore, our recommendation is that the BH procedure can be used under Gaussian
equi-correlation when p,, = O(1/m) (including the case of a negative equi-correlation) but should
be used carefully as soon as mp,, — oo, as the actual convergence rate of the FDP to the FDR
might be much slower.

The paper is organized as follows: Section 2 presents the model, the notation and the main
result. The latter is proved in Section 3, including a generalization to any “regular” thresholding
procedure, recovering the so-called mp-adaptive procedures studied in Neuvial (2008). Finally,
some further points in connexion with our methodology are discussed in Section 4.

2. Setting and main result

We observe X; = 7; + Y;, 1 < i < m, where the parameter of interest is (7;); € {0, u}" (for a
given u > 0) and the (unobservable) error vector (Y7, ..., Y,,) is an exchangeable Gaussian vec-
tor with EY; = 0 and VarY; = 1. We let p,, = Cov(Y},Y>) € [-(m — 1)"!,1]. We consider
the problem of the one-sided testing of the null “r; = 0 against the alternative “r; = y”, si-
multaneously for any 1 < i < m. To test each null, we define the p-value p; = ®(X;), where
D(z) = P(Z > z) is the standard Gaussian upper-tail function. The c.d.f. of each p-value is
denoted by Go(f) = ¢ under the null and by G,() = ®(®~'(¥) — ) under the alternative. The
number of true nulls is denoted by mo(m) = |[{i | 7; = 0} and is assumed to be of the form
mmy] for a given proportion of true null 7y € (0, 1) independent of m. The “mixture” c.d.f.
of the p-values is denoted by G(r) = mGo(?) + (1 — m)G (). Next, we define the e.c.d.f.’s
Gom(1) = (mo(m)™ T, Uz; = 011{p; < 1}, G1w(®) = (m — mo(m))™" T, Uz > O}{p; < 1} and
Cult) = m™ S Up; <1).

Given a pre-specified level « € (0, 1), the procedure of Benjamini and Hochberg (1995) can
be defined as the procedure rejecting the nulls corresponding to p; < TB“(@m) where the (data-
driven) threshold 7~ BH(@m) is max{r € [0, 1] | @m(t) > t/a}. Next, the false discovery proportion




at a given threshold ¢ € [0, 1] is defined as the proportion of true nulls among the hypotheses
having a p-value smaller than or equal to #:

{1 <

{1

where | - | denotes the cardinality function.
We now state our main result.

i<m|ti=0,p; <8l _mom) Goul)
<i<m|pi<tivl = m @m(t)\/m-l’

FDP,,(t) =

Theorem 2.1. There is a unique point t* € (0, 1) such that G(t*) = t* /a and we have

(i) iflim,, mp,, = 6 € [—1, +00), then

w1 (S 2= T ey
Nm(FDP,(T"(G,,)) — moe) ~ N |0, moa e Hme ; (1)
(ii) iflim,, mp,, = +co and lim,, p,, = 0, then
mya?
" 2m(t*)?

p;ll/z(FDPm(TEH(@m)) _ ﬂ'OCY) ~ N [0 e‘((l)"([* ))2) . (2)

3. Proof of Theorem 2.1

3.1. A more general result

In what follows, we denote the space of functions from [0, 1] to R which are right-continuous
and with left-hand limits (Skorokhod’s space) by D(0, 1) and the space of continuous functions
from [0, 1] to R by C(0, 1). The method for proving our result relies on the methodology let down
by Neuvial (2008) which consider the case of a general threshold function 7~ : D(0, 1) — [0, 1]
which is Hadamard differentiable at G, tangentially to C(0, 1) (see van der Vaart (1998) for a
formal definition). The proof of Theorem 2.1 is presented here as a consequence of a more
general theorem, true for any such threshold. The derivative of the threshold 7 at G, which is
a continuous linear form on C(0, 1), is denoted by 7. According to the Riesz representation
theorem, the continuous linear form 7 can be written as 7g(F) = fol F(1)7(dt), where we
identified the linear form 7 and the corresponding signed measure.

Theorem 3.1. L?t T : D, 1) — [0, 1] be Hadamard differentiable at G, tangentially to C(0, 1),
with derivative T¢. Let q(t) = not/G(t) for t > 0, let t* = T(G) and assume t* > 0. We set

*\(1=g(1* . . *(1=g(* . .
G = LD, 4 (1 )meT 6, £ = LML s 4 ()1 = )T and

1 1
oT) = ny f e @O fo(dry + (2 f e 2O (diy:
0 0

o (T) =ny! fo (s Vt = sH)lo(ds)o(dt) + (1 = mo) ™! fo 1 (Gi(s V 1) = Gi()G1()1(ds){1(dD) .
[0,117 [0,11?

Then the following holds:
(i) if lim,, mp,, = 6 € [—1, +00),

Nm(FDP(T(G)) = q(t*)) ~ N (0,0%(T) + 0c(T)?) ; 3)
3




(ii) if lim,, mp,, = +oo and lim,, p,, = 0,

o A(FDP(T(G)) — q(t*)) ~ N (0. e(T)?) . @)

Let us now check that Theorem 2.1 follows from Theorem 3.1. From Neuvial (2008) Corol-
lary 7.12, 7" : F — max{t € [0, 1] | F(¢) > t/a} is Hadamard differentiable at G, tangentially to
C(0, 1), with derivative ‘7"5” = (1/a - G(t*))"'6,~. Moreover, t* = max{t € [0,1] | G(?) > t/a} is
positive, because lim,_¢+ t/G(f) = 0. Also, since G(t*) = t*/a and §(t*) = (1/a—G({*))moa?/1*,
we may check that £} = 0 and ¢y = (moa/t*)d in the above theorem, which leads to Theorem 2.1.

3.2. Proof of Theorem 3.1

Let us now prove Theorem 3.1. First write FDP,,,(T(@,,,)) = (mo(m)/m)r; 1‘I’(@Qm, @1,,,,),
where for any Fy, F; in D(0, 1) with F(7(F)) > 0 (letting F = moFo + (1 — mp)F;), we put
Y(Fy, F1) = mg f;’((Trr((FF)))). From standard computations, ¥ is Hadamard differentiable at (G, G1),
tangentially to C(0, 1)? and the derivative takes the form, for (Ho, Hy) € C(0, 1), ¥g,.6,(Ho, H) =
q(t*)(1 = g()) (%f*) - %ﬁ:;) +q(t*)T6(H), where H = moHy + (1 — 7p)H, . Applying the func-
tional Delta method, this leads to the following useful result, which was essentially stated in
Neuvial (2008).

Proposition 3.2. Let 7 : D(0,1) — [0, 1] be Hadamard differentiable at G, tangentially to
C(0, 1), with derivative T¢. Let q(t) = mot/G(@) for t > 0, let t* = T(G) and assume t* > 0. If
for a given sequence a,, — oo with a,, = o(m),

a, Gom = Go W( Wo ), )
G 1m — G 1 Wl
where the convergence in distribution is relative to the Skorokhod topology and where Wy and
W, are processes with continuous paths, then we have

an(FDP(T(G)) — q(t*)) ~ X, (©6)
where X = {o(Wo) + £ 1(Wy) and £y, £, are defined as in Theorem 3.1.

A convergence of the type (5) in the particular Gaussian equi-correlated model is stated in
Lemma 3.3. Using Proposition 3.2, this proves that (6) holds both in the cases (i) and (ii) with
a, = \Vm and a,, = p,},l/ 2, which respectively leads to (3) and (4) (the variance computations are
straightforward).

3.3. Convergence of the e.c.d.f’s in the Gaussian equi-correlated model

Lemma 3.3. Let (Zy, Zy,Z) be a random variable such that Z @ 71'(_)1/2]B, 7, @ (1 -7 2B o
G, B being a standard Brownian bridge on [0, 1], Zy is independent from Z,, Z ~ N(O, 1),
Cov(Z, Zo(t) = 2m)~"/ exp (~{®~(1))*/2) and Cov(Z, Z (1)) = 2r)~ " exp (=@~ (1) — u}*/2).
Let also U ~ N(0,1) be independent of the vector (Zo,Z1,Z). Then we have the following
convergences in law for the Skorokhod topology:

(i) iflim,, mp, =0 € [-1, +0),

\/ﬁ( go,m—Go)w( Zo+(Z = N1+6U) Do ! o

Gim -G Zi+Z - NT+OU) do @ —p) |’
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(ii) if lim,, mp,, = +oo and lim,, p,, = 0,

@ -G U®od!
-12| Gom —Go : _ 3
P (@Lm—cl]“(vd)o(dr‘—u)) ®

To prove Lemma 3.3, first remark that the distribution of the X;’s may be realized as X; =
V1 —pm& -8+ \/(1 + (m— Dpy)/m U + ul{r; > 0}, where (¢4, ..., &y, U) are all 1.i.d. N(0, 1)
variables and E denotes the empirical mean of the &;’s. Let Gf),m(t) = (mo(m))~! D=0 HO(E) < 1),

G (0) = (m = mo(m)) ™! Sirino UDE + ) < 1} and

Fnt, Uspm) = (1= py) ™2 (@7 (0) = V(I + (m = Dpp)/m U).

The process (@o,m - Gy, @l,m — Gy) is then equal to V,,, + W,,, where

Vin(#) = ( —~ (@(/),m - GO)((D(fm(t,_U, Om) + E)) ]
e @}, = GO@fyu(t, Uy p) + & = (1 = p) 2 + 1))
W) =( Ut Uy +B) 1 )
’ O(fou(t, U ) + € = (1 = pp)™ ') = 0@~ (D) — ) |

Next, applying Donsker’s theorem, we derive \/ﬁ(@&m - GO’@/I,m - GI,E)W(ZO,ZI,Z),
where (Zg,Z1,Z) is defined as in Lemma 3.3. Since p,, — 0, the inverse functions of ¢
O(fu(t, U, pm) + E") and ¢ — O(f,,(t, U, py) + E — u(1 = p,)"1% + w) converge uniformly on [0, 1]
to the identity a.s. Therefore, applying the Skorokhod’s representation theorem, we get

NIV, €) ~ (Zo, 71, Z). )

Let us now consider the case (i), in which lim,, mp,, = 6 € [-1, +00). In that case, a standard
reasoning involving Taylor expansions of ® and y + ®(y®~!(¢)) leads to

[ d@ ) (VméE- VT+6U) ) (Ro,m(o)
WWm(t)_((iD((Dl(t)—,u)(\/ﬁg—\/l+9U) " Rin() )

with remainder terms satisfying [|Romllo V [IR1mllo — 0O in probability. Since U is independent
of all the other variables, we derive from (9) that Vm(V,, W) ~ (Zo, Z1,(Z — V1 + 6U)) Do
O, (Z - V1 +6U)) ® o (@' — ). This implies (7). Consider now the case (ii), in which
lim,, mp,, = +co and lim,, p,, = 0. In that situation, we deduce from (9) that p,;” 2 V.n converges

in probability to 0. Furthermore, using that ol I2E tends to zero in probability, we obtain that

b(@~! ())(-U) )+( To,(1) )

-1/2 = .
P W) = DD (r) -w(-U) Ty ()

with remainder terms satisfying ||7o,ulle V [IT1mllc — O in probability. This implies (8).

4. Discussion: FDP convergence in the case p,, = p € (0,1)

When p,, = p € (0, 1), we cannot expect that the FDP concentrates around the FDR as in
Theorem 2.1 (see e.g. Finner et al. (2007) Theorem 2.1). As a consequence, even if the FDP has
5




a mean below mya (because the false discovery rate of the BH procedure is below mya for each
m for PRDS statistics, see Theorem 1.2 in Benjamini and Yekutieli (2001)), the FDP can exceed
moa + € (¢ > 0) with a probability that does not vanish when m grows to infinity.

We claim here that in the ideal situation where the parameters of the model my, u, p are
perfectly known, it is possible to modify the p-values so that the FDP convergence to the FDR
keeps the parametric convergence rate +/m. For this, we replace each test statistic X; by X =
\/m/((m — (1 - p)(X; — X + (1 — mp)p), so that (X1, ..., X,,) is a Gaussian vector with variances
equal to 1, equi-correlation p,, = —(m — 1)~! and means EX; = ym/((m = 1)(1 = p))7;. We build
the corresponding p-values by letting p; = ®(X;), which are uniform under the null and have
the c.d.f. Gy mu(t) = OD (1) = Tiyn) for I = (m/(m — 1))2u(1 — p)~Y/2 under the alternative.
Although the latter depends (slightly) on m, we easily check that our methodology applies using
51 () = (@' (1) — ) for g = p(1 — p)‘l/ 2 and that the following convergence holds:

Vm(FDP o N[0, o L ey
m m — o) ~~ , Tp" ———— — —————¢ R
0 T )2

where FDP,, denotes the FDP of the BH threshold 7™ used with the p-values p;’s and where
1% € (0, 1) is the unique point 7 € (0, 1) satisfying 7or+(1-m0) (@~ () =u(1-p)~"/?) = t/a (which
depends on p). Of course, while this p-value modification greatly improves the concentration of
the FDP, this approach is oracle because 7, u, p are generally unknown. A correct estimation of
the model parameters within such a procedure stays an open issue.
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