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Abstract

In this paper, we consider estimation of the conditional density of a scalar response variable Y given a Hilbertian
random variable X when the observations are linked with a single-index structure. We establish the pointwise and
the uniform almost complete convergence (with the rate) of the kernel estimate of this model. As an application,
we show how our result can be applied in the prediction problem via the conditional mode estimate. Finally, the
estimation of the functional index via the pseudo-maximum likelihood method is also discussed but not attacked.

Key words: Conditional single-index, conditional density, nonparametric estimation, semiparametric estima-
tion, semi-metric choice.

1 Introduction

For the past two decades, the single-index model, a special case of projection pursuit regression, has proven to be
an efficient way of coping with the high dimensional problem in nonparametric regression. Here we deal with single-
index modeling when the explanatory variable is functional. More precisely, we consider the problem of estimating
the conditional density of a real variable Y given a functional variable X when the explanation of Y given X is done
through its projection on one functional direction.
The conditional density plays an important role in nonparametric prediction, because the several prediction tools
in nonparametric statistic, such as the conditional mode, the conditional median or the conditional quantiles, are
based on the preliminary estimate of this functional parameter. Nonparametric estimation of the conditional density
has been widely studied, when the data is real. The first related result in nonparametric functional statistic was
obtained by Ferraty et al. (2006). They established the almost complete consistency in the independent and
identically distributed (i.i.d.) random variables of the kernel estimator of the conditional probability density. The
asymptotic normality of this kernel estimator has been studied in the dependent data by Ezzahrioui and Ould Saïd
(2010).
The single-index approach is widely applied in econometrics as a reasonable compromise between nonparametric and
parametric models. Such kind of modelization is intensively studied in the multivariate case. Without pretend to
exhaustivity, we quote for example Härdle et al. (1993), Hristache et al. (2001). Based on the regression function,
Delecroix et al. (2003) studied the estimation of the single-index and established some asymptotic properties. The
∗corresponding author
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literature is strictly limited in the case where the explanatory variable is functional (that is a curve). The first
asymptotic properties in the fixed functional single-model were obtained by Ferraty et al. (2003). They established
the almost complete convergence, in the i.i.d. case, of the link regression function of this model. Their results were
extended to dependent case by Aït Saidi et al. (2005). Aït Saidi et al. (2008) studied the case where the functional
single-index is unknown. They proposed an estimator of this parameter, based on the cross-validation procedure.
The goal of this paper is to study the estimation of the conditional density in the single functional index model.
We construct an estimator of this model by a kernel method and we prove, under general conditions, its pointwise
and uniform almost complete convergence (with rate). This extend, to functional case, the work of Delecroix et al.
(2003) and complete the results of Ferraty et al. (2006) and Ferraty et al. (2010) by studying the conditional density
in the semi-parametric functional settings. In practice, this study has great importance, because, it permit us to
construct a prediction method based on the conditional mode estimator. Moreover, in the case where the functional
single index is unknown, our estimate can be used to estimate this parameter via the pseudo-maximum likelihood
estimation method. Noting that the estimation of the functional single-index has great interest on the semi-metric
choice in nonparametric functional data analysis but it has been not attacked in this paper.
The paper is organized as follows. We present our model in Section 2. In Section 3 we introduce notations,
assumptions and state the main results. Section 4 is devoted to some discussions and comments on the impact of
our study in the prediction problem. The proofs of the results are relegated to the last section.

2 Model

Let (X,Y ) be a couple of random variables taking its values in F × IR, where F is a Hilbertian space with scalar
product < ·, · >. Let (Xi, Yi)1≤i≤n, be n copies of independent vectors each having the same distribution as (X,Y ).
Assume that the explanation of Y given X is done through a fixed functional index θ in F . In the sense that, there
exists an θ in F (unique up to a scale normalization factor) such that

IE[Y |X] = IE[Y | < θ,X >]. (1)

The identifiability of this model has been studied in Ferraty et al. (2003). They supposed that the regression operator
r(x) = IE[Y |X = x] is differentiable and θ such that < θ, e1 >= 1, where e1 is the first vector of an orthonormal
basis of F .
Noting that, similarly to the multivariate case, the single functional index approach is very efficient way to reduce
the effect of the infinite dimensional feature of the nonparametric estimation in functional statistic. The main aim
of this work is the estimation of the conditional density of Y given < θ, x >, denoted by f(θ, ·, x). It is well known
that, in nonparametric statistics, this latter provides an alternative approach to study the links between Y and X
and it can be also used, in single index modelling, to estimate the functional index θ if it is unknown.

Naturally, the kernel estimator f̂(θ, y, x) of f(θ, y, x) is defined by

f̂(θ, y, x) =
h−1
H

∑n
i=1K(h−1

K (< x−Xi, θ >))H(h−1
H (y − Yi))∑n

i=1K(h−1
K (< x−Xi, θ >))

, ∀y ∈ IR

with the convention 0/0 = 0. The functions K and H are kernels and hK := hK,n (resp. hH := hH,n) is a sequence of
positive real numbers which goes to zero as n tends to infinity. Note that a similar estimate was already introduced
in the special case where X is a real random variable by Delecroix et al. (2003).

3 Main results

All along the paper, when no confusion is possible, we will denote by C and C ′ some strictly positive generic
constants. In the following, we put, for any x ∈ F , and i = 1, . . . , n,

Ki(θ, x) := K(h−1
K < x−Xi, θ >) and, for all y ∈ IR, Hi(y) := H(h−1

H (y − Yi))
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3.1 Pointwise almost complete convergence

In he following x is a fixed point in F , Nx is a fixed neighborhood of x and C is a fixed compact subset of IR. In
order to establish the almost complete (a.co.)1convergence of our estimate we need the following assumptions:

(H1) IP(| < X − x, θ > | < h) =: φθ,x(h) > 0.

(H2) The conditional density f(θ, y, x) satisfies the Hölder condition, that is:
∀(y1, y2) ∈ C2, ∀(x1, x2) ∈ Nx ×Nx,

|f(θ, y1, x1)− f(θ, y2, x2)| ≤ Cθ,x
(
‖x1 − x2‖b1 + |y1 − y2|b2

)
, b1 > 0, b2 > 0.

(H3) K is a positive bounded function with support [−1, 1].

(H4) H is bounded function, such that
∫
H(t)dt = 1,

∫
|t|b2H(t)dt <∞ and

∫
H2(t)dt <∞,

(H5) The bandwidths hK and hH satisfy

lim
n→∞

log n
nhHφθ,x(hK)

= 0.

Comments on the assumptions
Our assumptions are very standard for this kind of model. Assumptions (H1) and (H3) are the same as those used
in Ferraty et al. (2003). Assumption (H2) is a regularity conditions which characterize the functional space of our
model and is needed to evaluate the bias term of our asymptotic results. Assumptions (H4) and (H5) are technical
conditions and are also similar to those in Ferraty et al. (2006).

Our first main result is given in the following theorem.

Theorem 3.1 Under Assumptions (H1)-(H5), and for any fixed y, we have, as n goes to infinity

∣∣∣f̂(θ, y, x)− f(θ, y, x)
∣∣∣ = O(hb1K) +O(hb2H ) +Oa.co.

(√
log n

nhHφθ,x(hK)

)
. (2)

In the particular case, where the real random variable Z :=< X, θ > has continuous density we can reformulate the
general result given in Theorem 3.1 in the following way

Corollary 3.1 Under Assumptions (H2)-(H5) and if the density of Z does not vanish and for any fixed y, we have,
as n goes to infinity

∣∣∣f̂(θ, y, x)− f(θ, y, x)
∣∣∣ = O(hb1K) +O(hb2H ) +Oa.co.

(√
log n
nhHhK

)
.

Proof of Theorem 3.1.
The proof is based on the following decomposition

f̂(θ, y, x)− f(θ, y, x) =
1

f̂D(θ, x)

{(
f̂N (θ, y, x)− IE

[
f̂N (θ, y, x)

])
+
(

IE
[
f̂N (θ, y, x)

]
− f(θ, y, x)

)}

−f(θ, y, x)

f̂D(θ, x)

{
f̂D(θ, x)− 1

}

1We say that a sequence Zn converges a.co. to Z if and only if, for any ε > 0,
∑

n

IP (|Zn − Z| > ε) <∞.
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where

f̂N (θ, y, x) =
1

nhHIE [K1(θ, x)]

n∑

i=1

Ki(θ, x)Hi(y), f̂D(θ, x) =
1

nIE [K1(θ, x)]

n∑

i=1

Ki(θ, x).

So, the proof is a direct consequence of the following results

Lemma 3.1 (see Aït-Saidi et al., 2005) Under Assumptions (H1), (H3) and (H5), as n goes to infinity, we have

∣∣∣f̂D(θ, x)− 1
∣∣∣ = Oa.co.

(√
log n

nφθ,x(hK)

)
. (3)

Furthermore, we have
∞∑

n=1

IP
(∣∣∣f̂D(θ, x)

∣∣∣ ≤ 1/2
)
<∞. (4)

Lemma 3.2 Under Assumptions (H1)-(H5), as n goes to infinity, we have

∣∣∣f̂N (θ, y, x)− IE
[
f̂N (θ, y, x)

]∣∣∣ = Oa.co.

(√
log n

nhHφθ,x(hK)

)
. (5)

Lemma 3.3 Under Assumptions (H1)-(H5), as n goes to infinity, we have
∣∣∣IE
[
f̂N (θ, y, x)

]
− f(θ, y, x)

∣∣∣ = O(hb1K) +O(hb2H ). (6)

3.2 Uniform almost complete convergence

This section is devoted to derivation of the the uniform version of Theorem 3.1. The study of the uniform consistency
is motivated by the fact that the latter is an indispensable tool for studying the asymptotic properties of all estimate
of the functional index if is unknown. Noting that, in the multivariate case, the uniform consistency is a standard
extension of the pointwise one, however, in our functional case, it requires some additional tools and topological
conditions (see Ferraty et al., 2009, for more discussion on the uniform convergence in nonparametric functional
statistics). Thus, in addition to the conditions introduced in the previous section, we need the following ones.
Firstly, we suppose that C is subset compact of IR and SF (resp. ΘF , the space of parameters) are such that

SF ⊂
d

SF
n⋃

k=1

B(xk, rn) and ΘF ⊂
d

ΘF
n⋃

j=1

B(tj , rn) (7)

with xk (resp. tj)∈ F and rn, dSFn , dΘF
n are sequences of positive real numbers which tend to infinity as n goes to

infinity.
Furthermore, we need the following assumptions:

(U1) There exists a differentiable function φ(.) such that ∀x ∈ SF , and ∀θ ∈ ΘF ,

0 < Cφ(h) ≤ φθ,x(h) ≤ C ′φ(h) <∞ and ∃η0 > 0, ∀η < η0, φ
′(η) < C,

(U2) The conditional density is such that ∀(y1, y2) ∈ C × C, ∀(x1, x2) ∈ SF × SF , and ∀θ ∈ ΘF ,

|f(θ, y1, x1)− f(θ, y2, x2)| ≤ C
(
‖x1 − x2‖b1 + |y1 − y2|b2

)
,
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(U3) The kernel K satisfy (H3) and Lipschitz’s condition holds

|K(x)−K(y)| ≤ C‖x− y‖,

(U4) H is a bounded Lipschitz continuous function, such that
∫
H(t)dt = 1,

∫
|t|b2H(t)dt <∞ and

∫
H2(t)dt <∞,

(U5) For some γ ∈ (0, 1), limn→+∞ nγhH =∞, and for rn = O

(
log n
n

)
the sequences dSFn and dΘF

n satisfy:

(log n)2

nhH φ(hK)
< log dSFn + log dΘF

n <
nhH φ(hK)

log n
,

and ∞∑

n=1

n(3γ+1)/2(dSFn dΘF
n )1−β <∞, for some β > 1.

Remark 3.1 Note that Assumptions (U1) and (U2) are, respectively, the uniform version of (H1) and (H2).
Assumption (U4) is condition (H4) added by contion Lipschitz condition. Assumptions (U1) and (U5) are linked
with the the topological structure of the functional variable. For examples of subsets such as (7) see Ferraty et al.
(2009).

Theorem 3.2 Under Assumptions (U1)-(U5), we have, as n goes to infinity

sup
θ∈ΘF

sup
x∈SF

sup
y∈C

∣∣∣f̂(θ, y, x)− f(θ, y, x)
∣∣∣ = O(hb1K) +O(hb2H ) +Oa.co.



√

log dSFn + log dΘF
n

nhHφ(hK)


 . (8)

In the particular case, where the functional single-index is fixed we get the following result.

Corollary 3.2 Under Assumptions (U1)-(U5), we have, as n goes to infinity

sup
x∈SF

sup
y∈C

∣∣∣f̂(θ, y, x)− f(θ, y, x)
∣∣∣ = O(hb1K) +O(hb2H ) +Oa.co.



√

log dSFn
nhHφ(hK)


 .

Proof. Clearly Theorem 3.2 and Corollary 3.2 can be deduced from the following intermediate results which are
uniform version of Lemmas 3.1-3.3.

Lemma 3.4 Under Assumptions (U1), (U3) and (U5), we have as n→∞

sup
θ∈ΘF

sup
x∈SF

∣∣∣f̂D(θ, x)− 1
∣∣∣ = Oa.co.



√

log dSFn + log dΘF
n

nφ(hK)


 .

Corollary 3.3 Under the assumptions of Lemma 3.4, we have,
∞∑

n=1

IP
(

inf
θ∈ΘF

inf
x∈SF

f̂D(θ, x) <
1
2

)
<∞.

Lemma 3.5 Under Assumptions (U1), (U2) and (H4), we have, as n goes to infinity

sup
θ∈ΘF

sup
x∈SF

sup
y∈C

∣∣∣fN (θ, y, x)− IE
[
f̂N (θ, y, x)

]∣∣∣ = O(hb1K) +O(hb2H ).

Lemma 3.6 Under the assumptions of Theorem 3.2, we have, as n goes to infinity

sup
θ∈ΘF

sup
x∈SF

sup
y∈C

∣∣∣f̂N (θ, y, x)− IE
[
f̂N (θ, y, x)

]∣∣∣ = Oa.co.



√

log dSFn + log dΘF
n

nhHφ(hK)


 .
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4 Some applications and comments

4.1 The conditional mode in functional single-index model

Let us now study the estimation of the conditional mode in the functional single-index model. Our main aim, here,
is to establish the a.co. convergence of the kernel estimator of the conditional mode of Y given θX, denoted by
Mθ(x), uniformly on fixed subset SF of F . For this, we assume that Mθ(x) satisfies on S the following uniform
uniqueness property

(U6) ∀ε0 > 0 ∃η > 0, ∀υ : SF → C,

sup
x∈SF

|Mθ(x)− υ(x)| ≥ ε0 ⇒ sup
x∈SF

|f(θ, υ(x), x)− f(θ,Mθ(x), x)| ≥ η.

Moreover, we also suppose that there exists some integer j > 1 such that ∀x ∈ S the function f(θ, ·, x) is j times
continuously differentiable w.r.t. y on C and

(U7) 



f (l)(θ,Mθ(x), x) = 0 if 1 ≤ l < j

and f (j)(θ, ·, x) is uniformly continuous on C
such that |fx(j)(θ, ·, x)| > C > 0

where f (j)(θ, ·, x) is the jth order derivative of the conditional density f(θ, ·, x).
We estimate the conditional mode Mθ(x) with a random variable M̂θ(x) such that

M̂θ(x) = arg sup
y∈C

f̂(θ, y, x).

From Corollary 3.2 we derive the following result.

Corollary 4.1 Under the assumptions of Theorem 3.2 and if the conditional density f(θ, ·, x) satisfies (U6) and
(U7), we have

sup
x∈SF

|M̂θ(x)−Mθ(x)| = O(hb1K) +O(hb2H ) +Oa.co.



√

log dSFn
n1−γφ(hK)


 .

4.2 Application to prediction

Let us now define the application framework of our results to prediction problem. For each n ∈ IN∗, let (Xi(t))t∈IR

i = 1, . . . , n be a Hilbertian random variable. For each curve (Xi(t))t∈IR, we have a real response variable Yi. We
suppose that the observations (Xi, Yi)1≤i≤n are generated with single-index structure. The prediction aim is to
evaluate ynew given (Xn+1(t))t∈IR = xnew. The estimation of the conditional mode in functional single-index model
shows that the random variable ̂Mθ(xnew), is the best approximation of ynew, given xnew. Applying the result in the
above corollary, we obtain the following result.

Corollary 4.2 Under the assumptions of Corollary 4.1, we have as n goes to infinity
̂Mθ(xnew)−Mθ(xnew)→ 0 a.co.

4.3 On the estimation of the functional single index

Another way to highlight the interest of our study is to show how the conditional density estimate can be used
to derive an estimate of the functional single index if the latter is unknown. The estimation of the functional
single index has been extensively studied in the multivariate case. In the functional case, Aït-Saidi et al. (2008)
adopt the leave-out-one-curve cross-validation procedure. Their ideas can be combined with those of Laksaci et al.
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(2010), on the smoothing parameter choice in conditional density estimation, in order to construct an estimator of
θ asymptotically optimal. Of course the convergence of this estimator to the index θ request some additional model
assumptions. Alternatively, this parameter can be estimated via the pseudo-maximum likelihood method which is
based on the preliminary estimate of the conditional density of Y given X by

θ̂ = arg max
θ∈ΘF

L̂(θ)

with

L̂(θ) =
1
n

n∑

i=1

log f̂(θ, Yi, Xi)τ(Yi, Xi)

where τ(Yi, Xi) is a trimming function introduced to guard against small values for the denominators
This method has been studied by Delecroix et al. (2003) in the real case where they showed that this technique has
minimal variance among all estimators. The asymptotic optimality of this procedure in functional statistic, is an
important prospect of the present work. Noting that, technically, the main step is to show that the functional index
θ defined by (1) is the unique solution of the following optimization problem

max
θ

IE[log f(θ, Y,X)τ(Y,X)].

It should be noted that our asymptotic result is pivotal step for the both methods.
As an application, this approach can be used for answering the semi-metric choice question. Indeed, it is well known
that, in nonparametric functional statistic, the projection-type semi-metric is very interesting for increasing the
concentration property. The functional index model is a particular case of this family of semi-metric, because it is
based on the projection on one functional direction. So, the estimation procedures of this direction permit us to
compute adaptive semi-metrics in the general context of nonparametric functional data analysis.

5 Appendix

The Lemmas 3.2, 3.3 and 3.5, are special cases of the Lemmas 2.3.4, 2.3.5 in Ferraty et al (2006) and Lemma 14 in
Ferraty et al (2010) with d(x1, x2) =< x1− x2, θ > respectively. The proof of Lemma 3.4 and 3.6 are also very close
to those of Lemmas 8 and 15 in Ferraty et al. (2010) and they are therefore presented in a shorter fashion.
Proof of Lemma 3.4
For all x ∈ SF , and for all θ ∈ ΘF we set

k(x) = arg mink∈{1,...rn} ‖x− xk‖ and j(θ) = arg minj∈{1,...`n} ‖θ − tj‖.
We consider the following decomposition

sup
x∈SF

sup
θ∈ΘF

∣∣∣f̂D(θ, x)− IE
[
f̂D(θ, x)

]∣∣∣ ≤ sup
x∈SF

sup
θ∈ΘF

∣∣∣f̂D(θ, x)− f̂D(θ, xk(x))
∣∣∣

︸ ︷︷ ︸
T1

+ sup
x∈SF

sup
θ∈ΘF

∣∣∣f̂D(θ, xk(x))− f̂D(tj(θ), xk(x))
∣∣∣

︸ ︷︷ ︸
T2

+ sup
x∈SF

sup
θ∈ΘF

∣∣∣f̂D(tj(θ), xk(x))− IE
[
f̂D(tj(θ), xk(x))

]∣∣∣
︸ ︷︷ ︸

T3

+ sup
x∈SF

sup
θ∈ΘF

∣∣∣IE
[
f̂D(tj(θ), xk(x))

]
− IE

[
f̂D(θ, xk(x))

]∣∣∣
︸ ︷︷ ︸

T4

+ sup
x∈SF

sup
θ∈ΘF

∣∣∣IE
[
f̂D(θ, xk(x))

]
− IE

[
f̂D(θ, x)

]∣∣∣
︸ ︷︷ ︸

T5

.

For T1, T2, we use the Hölder continuity condition on K, the Cauchy-Schwartz’s inequality and the Bernstein’s
inequality. With theses arguments we get

T1 = O



√

log dSFn + log dΘF
n

nφ(hK)


 and T2 = O



√

log dSFn + log dΘF
n

nφ(hK)


 . (9)
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Moreover, using the fact that T4 ≤ T1 and T5 ≤ T2 to get, for n tending to infinity

T4 = O



√

log dSFn + log dΘF
n

nφ(hK)


 and T5 = O



√

log dSFn + log dΘF
n

nφ(hK)


 . (10)

Now, we deal with T3. For all η > 0, we have

IP


T3 > η

√
log dSFn + log dΘF

n

nφ(hK)




≤ dSFn dΘF
n max

k∈{1...dSF
n }

max
j∈{1...dΘF

n }
IP



∣∣∣f̂D(tj(θ), xk(x))− IE

[
f̂D(tj(θ), xk(x))

]∣∣∣ > η

√
log dSFn + log dΘF

n

nφ(hK)


 .

Applying Bernstein’s exponential inequality to ∆i =
1

φ(hK)

{
Ki(tj(θ), xk(x)) − IE

[
Ki(tj(θ), xk(x))

] }
one get, under

(U7),

T3 = O



√

log dSFn + log dΘF
n

nφ(hK)


 .

Finally the result can be easily deduced from the latter together with (9) and (10).
Proof of Lemma 3.6 We keep the same notations as in Lemma 3.4 and we use the compactness of C. We can write

C ⊂
zn⋃

k=1

(yj − `n, yj + `n)

with `n = n−
3
2
γ− 1

2 and zn ≤ C n
3
2
γ+ 1

2 . Taking

j(y) = arg min
j∈{1,2,...,zn}

|y − tj |.

We get the following decomposition:

∣∣∣f̂N (θ, y, x)− IE
[
f̂N (θ, y, x)

]∣∣∣≤
∣∣∣f̂N (θ, y, x)− f̂N (θ, y, xk(x)〉)

∣∣∣
︸ ︷︷ ︸

F1

+
∣∣∣f̂N (θ, y, xk(x))− f̂N (tj(θ), y, xk(x))

∣∣∣
︸ ︷︷ ︸

F2

+
∣∣∣f̂N (tj(θ), y, xk(x))− f̂N (tj(θ), yj(y), xk(x))

∣∣∣
︸ ︷︷ ︸

F3

+
∣∣∣f̂N (tj(θ), yj(y), xk(x))− IE

[
f̂N (tj(θ), yj(y), xk(x))

]∣∣∣
︸ ︷︷ ︸

F4

+
∣∣∣IE
[
f̂N (tj(θ), yj(y), xk(x))

]
− IE

[
f̂N (tj(θ), y, xk(x))

]∣∣∣
︸ ︷︷ ︸

F5

+
∣∣∣IE
[
f̂N (tj(θ), y, xk(x))

]
− IE

[
f̂N (θ, y, xk(x))

]∣∣∣
︸ ︷︷ ︸

F6

+
∣∣∣IE
[
f̂N (θ, y, xk(x))

]
− IE

[
f̂N (θ, y, x)

]∣∣∣
︸ ︷︷ ︸

F7

.

Using the same ideas as for T1, T2, T4 and T5, permit us to get, , for n tending to infinity

F7 ≤ F1 = Oa.co.



√

log dSFn + log dΘF
n

nhH φ(hK)


 , and F6 ≤ F2 = Oa.co.



√

log dSFn + log dΘF
n

nhH φ(hK)


 . (11)
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Concerning the terms F3 and F5, using Lipschitz’s condition on the kernel H, permits us to write,
∣∣∣f̂N (tj(θ), y, xk(x))− f̂N (tj(θ), yj(y), xk(x))

∣∣∣ ≤ `n
h2
H φ(hK)

.

Now, the fact that limn→+∞ nγhH =∞ and choosing `n = n−
3
2
γ− 1

2 imply that

`n
h2
H φ(hK)

= o



√

log dSFn + log dΘF
n

nhH φ(hK)


 .

Hence, for n large enough, we have

F5 ≤ F3 = Oa.co.



√

log dSFn + log dΘF
n

nhH φ(hK)


 . (12)

Finally, the evaluation of the term (F4) is very close to (T3) in Lemma 3.4. Applying Bernstein’s exponential
inequality to

Γi =
1

hH φ(hK)
[Ki(xk)Hi(tj)− IE (Ki(xk)Hi(tj))] ,

it follows that

F4 = Oa.co.



√

log dSFn + log dΘF
n

nhH φ(hK)


 . (13)

So, the Lemma can be easily deduced from (11)-(13).
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