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Abstract

In this paper the notion of Variance Bounding introduced by Roberts and
Rosenthal (2008) is extended to continuous time Markov Chains. Moreover,
it is proven that, as in the discrete time case, the notion of Variance Bounding
for reversible Markov Chains is equivalent to the existence of a central limit
theorem. A connection with the continuous time Peskun ordering, introduced
by Leisen and Mira (2008), concludes the paper.

Keywords: Variance Bounding, Central Limit Theorems, Peskun Ordering.

1. Introduction

Roberts and Rosenthal (2008) introduced the notion of Variance Bound-
ing for discrete time Markov chains (DTMC). Let v(h, P ) be the asymptotic
variance of a DTMC with transition kernel P , stationary w.r.t. a distribution
π. Let V arπ(h) be the stationary variance. The transition kernel P is Vari-
ance Bounding if there exists K <∞ such that for all real valued functions
h we have v(h, P ) ≤ KV arπ (h). For a reversible P, Roberts et al. (2008)
proved that the variance bounding of the DTMC is a necessary and sufficient
condition to get a central limit theorem (CLT). In this paper, the notion of
variance bounding is extended to continuous time Markov Chains and it is
shown that a reversible continuous time Markov Chain (CTMC) satisfies a
usual CLT if and only if it is variance bounding. It is well known that in the
Markov Chain Monte Carlo (MCMC) setting we have a degree of freedom in
the choice of the Markov Chain that we run in the simulation. Many criterias
have been thus developed to maximize the efficiency of the MCMC simula-
tion. One of the most notable is the Peskun ordering (see Peskun, 1973;
Tierney, 1998 for discrete time), which allows to compare the asymptotic
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variances of different Markov Chains. In Roberts et al. (2008) it is shown
that if a Markov Chain dominates another one in the Peskun ordering, and
the latter is variance bounding then the former is variance bounding as well.
Peskun ordering was extended to CTMCs by Leisen and Mira (2008). The
last Section of the paper gives a connection between variance bounding in
continuos time and the continuous time Peskun ordering.

2. Preliminaries

Let (Xt)t∈R+ be a continuous time Markov Chain (CTMC) with values in
a measurable space (X ,F) and with generator G. Throughout the paper we
assume that the CTMC is reversible with respect to π, i.e.

∫

x∈A
π(dx)P t(x,B) =

∫

x∈B
π(dx)P t(x,A) for any A,B ∈ F and t ∈ R+,

where P t(x, dy) is the t-step transition kernel.

Definition 1. (see Bhattacharya (1982)) For every h : X → R, the asymp-
totic variance of the CTMC (Xt)t∈R+ is defined as

v(h,G) := lim
n→+∞

1

n
V ar

(∫ nt

0

h(Xs) ds

)
.

Bhattacharya (1982) shows that a CLT holds true for functions h : X →
R in the range of the generator G. In the paper, we thus will refer to functions
h in this class. In particular for functions h in the range of the generator, we
have

v(h,G) = −2〈h,G−1h〉,
where 〈f, g〉 =

∫
f(x)g(x)π(x) denotes the scalar product in L2(π). Sup-

pose that the chain starts in stationarity and that V arπ(h) = E[(h(X0) −
E[h(X0)])2] is the stationary variance. Then, the natural extension of the
definition of variance bounding to CTMC is the following

Definition 2. The generator G is Variance Bounding if there exists K <∞
such that for all h in the range of the generator we have

v(h,G) ≤ K V arπ(h).

Let σ(P ) be the spectra of an operator P . In particular, the spectra of
a generator G is a subset of R−. We denote by EP the resolution of the
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identity of an operator P given in the spectral theorem (see Conway, 1985;
Rosenthal 2003; Mira and Leisen, 2009). We thus have

g(P ) =

∫

σ(P )

g(λ)EP (dλ),

for every bounded and measurable function g : σ(P ) → R. Moreover, given
a bounded and measurable function g, let Eg,P be the spectral measure as-
sociated with g and P , so that Eg,P (A) = 〈g, EP (A)g〉 and

〈g, h(P )g〉 =

∫

σ(P )

h(λ)Eg,P (dλ)

for every bounded and measurable function h : R → R. Let G be the
generator of a CTMC. Let

Λ = Λ(G) := sup
λ∈σ(G)

λ.

Theorem 1. Let G be the generator of a CTMC reversible w.r.t. π. G is
variance bounding if and only if Λ < 0.

Proof. We prove the sufficiency part of the theorem by contradiction. Thus
suppose that sup

λ∈σ(G)

λ = 0 and let r < 0. Then EG
(
(r, 0]

)
is non zero, so

there exists h ∈ L2
0(π) in the range of EG

(
(r, 0]

)
such that

v(h,G) = −2〈h,G−1h〉 = −
∫

σ(G)

2

λ
Eh,G(dλ) ≥ −

∫ 0

r

2

λ
Eh,G(dλ)

≥ −2

r
Eh,G

(
(r, 0]

)
=
−2

r
〈h,EG

(
(r, 0]

)
h〉 =

−2

r
〈h, h〉 = −2

r
V arπ(h).

Hence
v(h,G)

V arπ(h)
≥ −2

r

and

sup
h∈L2

0(π)

v(h,G)

V arπ(h)
≥ sup

r<0
−2

r
= +∞.

Thus G is not variance bounding, and we get a contradiction. Hence Λ =
Λ(G) = sup

λ∈σ(G)

λ < 0.
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Conversely, suppose that Λ = Λ(G) = supλ∈σ(G) λ < 0. Hence for h ∈ L2
0(π)

in the range of the generator

v(h,G) = −2〈h,G−1h〉 = −
∫

σ(G)

2

λ
Eh,G(dλ) ≤ − 2

Λ

∫

σ(G)

〈h,EG(dλ)h〉

= − 2

Λ
〈h, h〉 = − 2

Λ
V arπ(h).

Thus G is variance bounding with K = − 2
Λ

.

3. Relation with central limit theorems

The following theorem shows that for reversible CTMC, the hypothesis
of variance bounding is a necessary and sufficient condition to get a usual
CLT. A similar result holds for DTMC (see Roberts et al. (2008)).

Theorem 2. Let G be reversible w.r.t. π. G is variance bounding if and
only if every h ∈ L2(π) in the range of the generator G satisfies a usual CLT
for G.

Proof. If G is variance bounding, then by Theorem 1 we have Λ = Λ(G) =
sup

λ∈σ(G)

λ < 0. Hence,

v(h,G) ≤ − 2

Λ
〈h, h〉 < +∞,

and a CLT holds (see Bhattacharya, 1982; Kipnis and Varadhan, 1986).
Conversely, suppose that G satisfies a CLT for every h ∈ L2(π) in the range
of G, but G is not variance bounding. Then by Theorem 1 we have Λ =
Λ(G) = sup

λ∈σ(G)

λ = 0. Thus EG
(
(r, 0]

)
6= 0 for any r < 0, and there must

exist infinitely many m ∈ N such that EG
(
(−2−m,−2−m−1]

)
is non zero. Let

m1 < m2 < . . . (and thus mi ≥ i) such that EG
(
(−2−mi ,−2−mi−1]

)
is non

zero. Let gi in the range of EG
(
(−2−mi ,−2−mi−1]

)
with ||gi|| = 〈gi, gi〉 = 1.

The gi are thus orthonormal and furthermore

〈gi, G−1gi〉 =

∫

σ(G)

λ−1Egi,G(dλ) =

∫ −2−mi−1

−2−mi

λ−1Egi,G(dλ)

≤ −2mi

∫ −2−mi−1

−2−mi

Egi,G(dλ) = −2mi < gi, gi >= −2mi .
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Define h =
∑+∞

i=1 2−
i
2 gi. From the orthonormality

V arπ(h) = 〈h, h〉 = 〈
+∞∑

i=1

2−
i
2 gi,

+∞∑

i=1

2−
i
2 gi〉 =

+∞∑

i=1

(2−
i
2 )2〈gi, gi〉 =

+∞∑

i=1

2−i = 1.

On the other hand, since 〈gi, G−1gi〉 ≤ −2mi and 〈gi, G−1gj〉 = 0 for all i 6= j

v(h,G) = −2〈h,G−1h〉 = −2〈
+∞∑

i=1

2−
i
2 gi, G

−1

+∞∑

i=1

2−
i
2 gi〉 = −2

+∞∑

i=1

(2−
i
2 )2〈gi, G−1gi〉

≥ −2
+∞∑

i=1

2−i(−2mi) = 2
+∞∑

i=1

2−i(2mi) ≥ 2
+∞∑

i=1

2−i2i = +∞.

Thus G does not satisfy a CLT, but this is in contrast with the hypothesis.
Hence G is variance bounding.

4. Relation with Peskun ordering

In Leisen and Mira (2008), the Peskun ordering has been extended to
CTMC. For MC with finite or countable state space, a natural definition for
continuous time Peskun ordering is the following

Definition 3. Suppose that G1 =
(
g(1)

)
ij

and G2 =
(
g(2)

)
ij

are the gener-

ators of two CTMCs, both stationary with respect to a distribution π (i.e.,
πG1 = 0, πG2 = 0 ), and suppose that the two chains are uniformizables.
Then we say that G1 dominates G2 in the continuous time Peskun ordering
and we write G1 �EP G2 if

g(1)ij ≥ g(2)ij, ∀i 6= j.

For general state space, we have to consider generators G which can be
written as

Gf(x) =

∫
f(y)Q(x, dy), (1)

where the kernel Q is defined in terms of the transition kernel P as

Q(x, dy) =
∂

∂t
P (t, x, dy)|t=0

In this case the Peskun ordering in a general state space (X ,F) is defined
in the following way
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Definition 4. Let G1 and G2 be the generators of two CTMCs admitting the
representation (1) with kernels Q1 and Q2 respectively, both stationary with
respect to a common distribution π on X . Assume supxQi(x,X \{x}) <∞,
for i = 1, 2. Then G1 dominates G2 in the continuous time Peskun ordering,
G1 �EP G2, if

Q1(x,A \ {x}) ≥ Q2(x,A \ {x}), ∀A ∈ F .

In Leisen et al. (2008) the following theorem for continuous time Peskun
ordering is proven

Theorem 3. If G1 �EP G2 and if the corresponding CTMCs are reversible,
then G2 −G1 is a positive operator.

As a consequence of Theorem 3, the following theorem holds.

Theorem 4. Let G1, G2 be the generators of two CTMCs reversible w.r.t.
π, which admit a representation as in equation (1). Let G1 �EP G2, and let
G2 be variance bounding. Then G1 is variance bounding.

Proof. By Theorem 3, the operator G2 − G1 is positive, thus supσ(G2) ≥
supσ(G1). Applying twice Theorem 1 the result easily follows.
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