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Abstract

The purpose of this research is to introduce a new approach to the decompo-
sition of the Gini measure in terms of concordance and discordance shares:
a new kind of dependence, the Gini rank dependence (GRD), and its formal
definition are provided.

Keywords: Gini measure, concordance curve, Gini rank dependence.

1. Introduction

The Gini measure decomposition always assumed the role of partioning
the total inequality of a population into two components, concerning the in-
equality between and within subpopulations. Theil (1967), partitioning the
total population into h subpopulations, decomposed the total inequality T
into the inequality within (Tw) and between (Tb) the h subpopulations, such
that T = Tw + Tb (where Tb is Theil inequality between the income means
of the h subpopulations weighted by the subpopulations sizes). This de-
composition approach stimulated further research: for example, researchers
concentrated on the Gini ratio, deriving important transformations to cap-
ture the idea of decomposability, see, for example, Rao (1969) and Yitzhaki
(1994). More recently Dagum (1997) suggested to decompose the Gini ra-
tio into three components: the Gini inequality within the subpopulations
(Gw), the Gini inequality between subpopulations (Gb) and the intensity
of transvariation between subpopulations. According to Gini (1959) two
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groups G1 and G2 are said to transvary if there exists at least one pair of
units, belonging to different groups, such that the sign of the difference be-
tween their values is opposite to that of m1 − m2, where m1 and m2 are the
corresponding group mean values.

Our research aim consists in proposing a new approach devoted to em-
ploy the Gini measure decomposition in terms of concordance and discor-
dance. Section 2 describes the main statistical tools useful in characterizing
this new approach. Section 3 is focused on defining a new kind of depen-
dence, the Gini rank dependence (GRD), whose formal definition is pro-
vided. Finally, Section 4 is devoted to the conclusion and further reaserch
developments.

2. Background

The aim of this section is introducing the main topics concerning the sta-
tistical tools needed in obtaining the Gini measure decomposition in terms
of multivariate concordance and discordance.
Muliere et al. (1992) have illustrated these topics in order to define a new
multidimensional concordance index through the employment of the Lorenz
curves: in this context of analysis, we now recall all the background elements
that allow to establish the decomposition of the Gini measure through the
so called concordance curve.

Let us suppose to consider a k-variate random vector (Y, X1, X2, . . . ,
Xk−1), on which one can apply a model able to describe the relation among
a response variable Y and the explanatory variables X1, X2, . . . , Xk−1. For
this purpose one can recur, for example, to the linear regression function

E(Y |X1, X2, . . . , Xk−1) = Ŷ . (1)

Given the response variable Y , our starting point is based on building its
Lorenz curve, denoted with LY , and its dual, denoted with L

′
Y : the former

is characterized by the set of ordered pairs (i/n, Si/(nMY )), i = 1, . . . , n,
where Si =

∑i
j=1 y(j), denoting the sum of the yi ordered in an increasing

sense and MY is the Y variable mean. The latter is characterized by the
set of ordered pairs (i/n, S

′
i/(nMY )), where S

′
i =

∑i
j=1 y(n+1−j) denotes the

sum of the yi ordered in a decreasing sense. Once computed the estimated
Y values, ŷi, through (1), one can proceed by the construction of the con-
cordance curve based on ordering the Y values with respect to the ranks as-
signed by its estimated values ŷi. Let us denote this ordering with (yi|r(ŷi))
and, more specifically, by y∗

i . The set of pairs (i/n, (1/(nMY ))
∑i

j=1 y∗
j )
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defines the concordance curve, denoted with C(Y |r(ŷi)).
Through a direct comparison between the set of points that represent the

Y Lorenz curve, LY , and the set of points that represent the concordance
curve, C(Y |r(ŷi)), one can show that a perfect ”overlap” is provided only if

i∑

j=1

y(j) =
i∑

j=1

y∗
j for every i = 1, 2, . . . , n, (2)

that is, if and only if r(yi) = r(ŷi). The further comparison between the set
of points that represent the Y dual Lorenz curve, L

′
Y , and the set of points

that represent the concordance curve, C(Y |r(ŷi)), allows to conclude that
there is a perfect ”overlap” if and only if

i∑

j=1

y(n+1−j) =
i∑

j=1

y∗
j for every i = 1, 2, . . . , n. (3)

that is, if and only if r(y(n+1−i)) = r(ŷi)
Note that the egalitarian line, which represents the bisector of the unit

side square in which the Lorenz and the dual Lorenz curves lie, splits the
Gini measure in two equal parts: we call the upper area, located between
the egalitarian line and the Y dual Lorenz curve, the discordance area while
the lower area, located between the egalitarian line and the Y Lorenz curve,
the concordance area.

3. The Gini measure decomposition: a proposal

This section is devoted to the decomposition of the Gini measure. The
role of the Gini measure consists in describing the statistical dispersion and,
therefore, one can consider it as a variability measure.

3.1. The concentration curve, its dual and the Gini measure
Let us start our analysis providing the definition of the Gini measure.

To help our illustration, Figure 1, represents an example of a Lorenz and a
dual Lorenz curve.

The Gini measure is defined as the ratio of the areas on the Lorenz curve
diagram. If the area between the egalitarian line and the Lorenz curve is
A (see Figure 1), and the area under the Lorenz curve is B, then the Gini
measure is A/(A + B). Since A + B = 0.5, the Gini measure can be defined
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Figure 1: The Gini measure diagram: Gini measure=A
′
+ A.

as G = A/(0.5) = 2A = 1 − 2B. If the Lorenz curve of the Y variable is
denoted with LY (t), the value of B can be found by integration and

G = 1 − 2
∫ 1

0
LY (t)dt, with 0 ≤ t ≤ 1. (4)

It is trivial to establish that if the concordance curve C(Y |r(ŷi)) is close
to the Y dual Lorenz curve, the relationship between the response variable
Y and the estimated response Ŷ based on the explanatory variables, points
towards discordance, in the other case towards concordance. For this rea-
son we call the area between the Y dual Lorenz curve and the egalitarian
line ”discordance area” and the area between the Y Lorenz curve and the
egalitarian line ”concordance area”.

Let us now provide the measures associated to these two different areas.
The concordance area (CA) can be defined as follows:

CA =
1
2

−
∫ 1

0
LY (t)dt with 0 ≤ t ≤ 1; (5)

on the other hand, being the Y dual Lorenz curve, denoted with L
′
Y (t),

equivalent to 1 − LY (1 − t) (see e.g. Koshevoy et al. (1996)), with 0 ≤ t ≤ 1,
the discordance area (DA) can be computed as follows:

DA =
∫ 1

0
L

′
Y (t)dt − 1

2
=
∫ 1

0
[1 − LY (1 − t)]dt − 1

2
(6)

= 1 −
∫ 1

0
LY (1 − t)dt − 1

2
=

1
2

−
∫ 1

0
LY (1 − t)dt.
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The relationship between the Gini measure and the discordance and
concordance areas can thus be expressed as

G = CA + DA =
1
2

−
∫ 1

0
LY (t)dt +

1
2

−
∫ 1

0
LY (1 − t)dt (7)

= 1 −
∫ 1

0
LY (t)dt −

∫ 1

0
LY (1 − t)dt = 1 − 2

∫ 1

0
LY (t)dt,

since
∫ 1
0 LY (1 − t)dt =

∫ 1
0 LY (t)dt, for all 0 ≤ t ≤ 1. Note that, in

particular, the maximum concordance and discordance areas are equal to
each other and assume value G/2.

A direct implication of the previous definition is that the Gini measure
corresponds to the area between the Y variable Lorenz curve and the Y
variable dual Lorenz curve, that is the area given by the sum of A and A

′

in Figure 1.

3.2. The Gini rank dependence
Our main purpose is now decomposing the Gini measure in terms of

concordance and discordance. More precisely, we define the share of the
Gini measure which corresponds to a concordance or to a discordance situ-
ation between Y an Ŷ . This kind of proceeding implies the study of a new
form of dependence that we call rank dependence: the measure associated
to this dependence form will be called Gini rank dependence and denoted
with GRD.
Our proposal can be explained considering three different cases, illustrated
in Figure 2, Figure 3 and Figure 4.

Case 1: the concordance curve C(Y |r(ŷi)) completely lies in the concor-
dance area.

Our aim is to measure the ”concordance” degree: in other terms, to de-
fine the measure of the Y variable concentration ”explained” by the Y rank
dependence with respect to the explanatory variables.

The Gini measure, explained by the rank dependence (GRD), assumes
the following expression

GRD =
1
2

−
∫ 1

0
C(Y |r(ŷi))dy : (8)

which can be normalized by dividing it by 2G.
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Figure 2: a) Case 1 and b) Case 2. The concordance curve is the continuous curve.

Case 2: the concordance curve C(Y |r(ŷi)) completely lies in the discor-
dance area.

In this case the aim is the mirror image of the previous one, in fact one
has to define the measure of the Y variable concentration ”explained” by
the Y rank dependence with respect to the explanatory variables, so

GRD =
∫ 1

0
C(Y |r(ŷi))dy − 1

2
, (9)

which can be normalized by dividing it by 2G.

Case 3: the concordance curve C(Y |r(ŷi)) partially lies in the concordance
area and partially in the discordance area meaning that between the con-
cordance curve and the egalitarian line there are one or more intersection
points. This case is a little more complex than the first two and deserves a
further development: we need to describe the main conditions that can occur
in relation to the number of intersection points, between the concordance
curve and the egalitarian line, and the concordance curve initial position
with respect to the concordance or discordance area. More precisely, in or-
der to measure the concordance and discordance areas, one has to consider
the following steps:

1. identifying the number of intersection points between the concordance
curve and the egalitarian line;
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2. defining the concordance and discordance ”extent” recurring to a se-
ries of integrals whose integration extremes are represented by the
intersection points x-axis values.

Through some examples we can get the ”size” of Gini measure explained
by the rank dependence in terms of concordance and discordance, distin-
guishing between two main situations, as follows.

Even number of intersection points. Let us start considering an even
number of intersection points: for instance let us suppose that the concor-
dance curve intersects the egalitarian line in two points, A and B, respec-
tively of x-axis values a1 and a2.
The subsequent step concerns the identification of the the first segment posi-
tion of the concordance curve with respect to the concordance or discordance
area: let us denote with Con the concordance area share and with Dis the
discordance area share, whose bounds are defined by the concordance and
the egalitarian curves. Two subcases have to be taken into account.

Figure 3: a) Subcase 1: even number of intersection points and first segment of the
concordance curve located in the discordance area and b) Subcase 2: even number of
intersection points and first segment of the concordance curve located in the concordance
area.

Subcase 1: the first segment of the concordance curve lies in the discor-
dance area.

Since Con =
∫ a2

a1
tdt −

∫ a2

a1
C(Y |r(ŷi))dy, with 0 ≤ t ≤ 1, and Dis =
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[ ∫ a1

0 C(Y |r(ŷi))dy −
∫ a1

0 tdt
]

+
[ ∫ 1

a2
C(Y |r(ŷi))dy −

∫ 1
a2

tdt
]

the measure of
the Y variable concentration ”explained” by the Y rank dependence with
respect to the explanatory variables is obtained by the following expression:

GRD = Con + Dis =
∫ a1

0
C(Y |r(ŷi))dy −

∫ a2

a1

C(Y |r(ŷi))dy+

+
∫ 1

a2

C(Y |r(ŷi))dy +
[

− a2
1 + a2

2 − 1
2

]
.

Subcase 2: the first segment of the concordance curve lies in the concor-
dance area.

The GRD is obtained by the following expression:

GRD = Con + Dis = −
∫ a1

0
C(Y |r(ŷi))dy +

∫ a2

a1

C(Y |r(ŷi))dy+

−
∫ 1

a2

C(Y |r(ŷi))dy +
[
a2

1 − a2
2 +

1
2

]
,

being Con =
[ ∫ a1

0 tdt −
∫ a1

0 C(Y |r(ŷi))dy
]

+
[ ∫ 1

a2
tdt −

∫ 1
a2

C(Y |r(ŷi))dy
]

and Dis =
∫ a2

a1
C(Y |r(ŷi)dy −

∫ a2

a1
tdt.

Odd number of intersection points. Let us continue considering an
odd number of intersection points: for instance let us suppose that the con-
cordance curve intersects the egalitarian line in three points, A, B and C
respectively of x-axis values a1, a2 and a3. Then, as described previously,
we have to proceed to the identification of the first segment position of the
concordance curve with respect to the concordance or discordance area. We
have to take into account two subcases, as before.

Subcase 1: the first segment of the concordance curve lies in the discor-
dance area.

The measure of the Y variable concentration ”explained” by the Y rank
dependence with respect to the explicative variables is obtained by the fol-
lowing expression:
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Figure 4: a) Subcase 1: odd number of intersection points and first segment of the con-
cordance curve located in the discordance area, b) Subcase 2: odd number of intersection
points and first segment of the concordance curve located in the concordance area.

GRD = Con + Dis =
∫ a1

0
C(Y |r(ŷi))dy −

∫ a2

a1

C(Y |r(ŷi))dy+

+
∫ a3

a2

C(Y |r(ŷi))dy −
∫ 1

a3

C(Y |r(ŷi))dy +
[

− a2
1 + a2

2 − a2
3 +

1
2

]
,

where Con =
[ ∫ a2

a1
tdt −

∫ a2

a1
C(Y |r(ŷi))dy

]
+
[ ∫ 1

a3
tdt −

∫ 1
a3

C(Y |r(ŷi))dy
]

and Dis =
[ ∫ a1

0 C(Y |r(ŷi))dy −
∫ a1

0 tdt
]

+
[ ∫ a3

a2
C(Y |r(ŷi))dy −

∫ a3

a2
tdt
]
.

Subcase 2: the first segment of the concordance curve lies in the concor-
dance area.

The GRD is obtained by the following expression:

GRD = Conc + Dis = −
∫ a1

0
C(Y |r(ŷi))dy +

∫ a2

a1

C(Y |r(ŷi))dy+

−
∫ a3

a2

C(Y |r(ŷi))dy +
∫ 1

a3

C(Y |r(ŷi))dy +
[
a2

1 − a2
2 + a2

3 − 1
2

]
,

being Con =
[ ∫ a1

0 tdt −
∫ a1

0 C(Y |r(ŷi))dy
]

+
[ ∫ a3

a2
tdt −

∫ a3

a2
C(Y |r(ŷi))dy

]

and Dis =
[ ∫ a2

a1
C(Y |r(ŷi))dy −

∫ a2

a1
tdt
]

+
[ ∫ 1

a3
C(Y |r(ŷi))dy −

∫ 1
a3

tdt

]
.

9



3.3. The GRD generalization formula
The previous construction inductively suggests to find a general formula-

tion of GRD. Through the computations related to the GRD definition, one
can obtain a recursive form consisting in alternate signs in integral terms
and in constant terms, represented by the intersection points x-axis val-
ues: this recursive formula depends either on the nature of the intersection
points number as well as on the first segment position of the concordance
curve with respect to the concordance or discordance area.

Let us suppose to have p intersection points (whose x-axis values can be
denoted with a1, a2, . . . , ap).

Before proceeding we have to define some conditions:

• aj = 1 with j = p + 1;

• aj−1 = 0 with j = 1.

In order to achieve a general formulation, we need to take into account
the difference between the even or odd number of the intersection points
but also the first segment concordance curve position with respect to the
concordance/discordance area. We thus need to consider a further term
in the expression characterizing GRD. This term is a moltiplicative factor
equivalent to (−1)s, where s can assume only two values 0 or 1: in particular

• if s = 0, then the first segment of the concordance curve is located in
the discordance area;

• if s = 1, then the first segment of the concordance curve is located in
the concordance area.

In conclusion, GRD can be defined as:

GRD = (−1)s

{
p+1∑

j=1

(−1)j+1

[∫ aj

aj−1

C(Y |r(ŷi))dy − a2
j

]
+

1
2

}
, (10)

for p even and

GRD = (−1)s+p

[
p+1∑

j=1

(−1)j+1

(
a2

j −
∫ aj

aj−1

C(Y |r(ŷi))dy

)]
− 1

2
(−1)s, (11)
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for p odd.

Note that the extreme cases, characterized by a null number of inter-
section points, occur when the concordance curve completely lies in the
concordance area (Case 1) or in the discordance area (Case 2). In order to
conduct these cases under the general formulation, we have to determine the
nature of the 0 number. Pitaghora considers this number neither even nor
odd even if the number 0 satisfies some typical even numbers conditions.
Indeed to support considering the number 0 as even, in our context, note
that the existence of an even number of intersection points implies that nei-
ther the first nor the last segments of the concordance curve lie in the same
concordance or discordance area. Since our current discussion regards the
cases where the concordance curve does not present any position reversal
(in particular any reversal in the first or in the last segment) we will thus
recur to the generalized expression concerning p even.

Now if we let:

• aj−1 = 0 if j = 1, then a0 = 0;

• aj = 1 if j = p + 1, then a1 = 1,

we can show that the two extreme cases are special cases of the general
formulation:

Case 1: the concordance curve C(Y |r(ŷi)) completely lies in the concor-
dance area ⇒ s = 1.

GRD = (−1)1
{

1∑

j=1

(−1)j+1

(∫ 1

0
C(Y |r(ŷi))dy − a1

)
+

1
2

}

= (−1)1
{∫ 1

0
C(Y |r(ŷi))dy − 1 +

1
2

}

=
1
2

−
∫ 1

0
C(Y |r(ŷi))dy

Case 2: the concordance curve C(Y |r(ŷi)) completely lies in the discordance
area ⇒ s = 0
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GRD = (−1)0
{

1∑

j=1

(−1)j+1

(∫ 1

0
C(Y |r(ŷi))dy − a2

1

)
+

1
2

}

= (−1)2
(∫ 1

0
C(Y |r(ŷi))dy − 1

)
+

1
2

=
∫ 1

0
C(Y |r(ŷi))dy − 1

2

4. Conclusions

This study has introduced a new approach to the decomposition of the
Gini measure into a concordance share and a discordance share. This in
order to obtain the “quota” of the the response variable Y concentration
explained by Ŷ , function of the explanatory variables X1, . . . , Xk−1.

We remark that our proposal can be applied to the model assessment
context, particularly when one wants to compare alternative classifiers (e.g.
logistic regression, tree models). In this context, a frequent model perfor-
mance measure is the area under the ROC curve (AUC). It can be shown
that the ROC curve is the equivalent to the Lorenz dual curve (see e.g. Hand
(2009)). AUC then corresponds to the Gini measure defined above (see e.g.
Bradley (1997), Fawcett (2006), Hand (2009), Krzanowski et al. (2009)).

In this respect, in the paper we have provided a way to decompose the
contribution to the AUC measure in terms of the contributions of the dif-
ferent observed units.

Another application of our approach can be as an useful measure of fit
when the relevant dependent variables are of qualitative nature (nominal
or ordinal): in the classical literature one can recur to the measure of fit
represented by R2 and residual analysis, but when qualitative variables are
involved and prevalent in the explanation of the response variable, R2, based
on the euclidean distance, may not be appropriate. Instead one can recur
to the Gini measure in place of R2, and to its decomposition, in place of
residual analysis. In particular, one can split the response variable values in
deciles (obtained by ordering these values in an increasing sense), one can
establish the position of each value, with respect to the ranks assigned by its
corresponding regression estimates, in order to define the single contribution
to the concordance or discordance. If the position of the observed variable
values are different with respect to the fitted ones, one can conclude that
the predictive selected model does not allow a good fitting.

Finally we would like to remark that our approach is nonparametric and
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can thus be applied, generally, for all predictive models. A relevant fur-
ther research topic could concern the definition of the concordance curve
analytical expression, characterized as a functional of order statistics, under
alternative parametric assumptions.

5. Acknowledgements

The authors acknowledge financial support from the European grant EU-
IP MUSING (contract number 027097).
The paper is the result of the close collaboration among the authors, how-
ever, it has been written by Emanuela Raffinetti with the supervision of
Paolo Giudici.
The authors wish to thank the Associate Editor for his helpful comments.

References

[1] Bradley, A. P., 1997. The use of the area under the ROC curve in the
evaluation of machine learning algorithms. Pattern Recognition, 30,
1145–1159.

[2] Dagum, C., 1997. A new Approach to the Decomposition of the Gini
Income Inequality Ratio. Empirical Economics 22, 515–531.

[3] Fawcett, T., 2006. An introduction to ROC analysis. Pattern Recogni-
tion, 27, 861–874.

[4] Gini, C., 1959. Transvariation, Rome (in Italian). Libreria Goliardica.

[5] Hand, D. J., 2009. Measuring classifier performance: a coherent alter-
native to the area under the ROC curve. Mach Learn, 77, 103–123.

[6] Koshevoy, G., Mosler, K., 1996. The Lorenz Zonoids of a Multivariate
Distribution. Journal of the American Statistical Association, 91, No.
434, Theory and Methods.

[7] Krzanowski, W. J., Hand, D. J., 2009. ROC curves for continuous data.
London: Chapman and Hall.

[8] Muliere, P., Petrone, S., 1992. Generalized Lorenz curve and monotone
dependence orderings. Metron, L, n. 3–4.

[9] Rao, V. M., 1969. Two decompositions of concentration ratio. Journal
of the Royal Statistical Society, CXXXII, A, 418–425.

13



[10] Theil, H., 1967. Economics and information Theory. North-Holland
Publishing Company, Amsterdam.

[11] Yitzhaki, S., 1994. Economic distance and overlapping of distributions.
Journal of Econometrics, 61, 147–159.

14


