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∗Université d’Evry Val d’Essonnne, LMEE
4, rue du Pelvoux, CE 1455, 91 020 Evry cedex, France

e-mail: olm@iup.univ-evry.fr
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Abstract. We present a probabilistic model of uncertainties for the two-phase flow

through a porous medium. The uncertainty in the model comes from an incomplete knowl-

edge of the saturation-dependent effective mobilities of the phases, which are consequently

considered as random processes. The probability laws of these processes are derived follow-

ing the maximum entropy principle. After discretization, the random effective mobilities

can be sampled allowing for Monte-Carlo simulations of the random model and analysis

of the resulting random flow.

1 INTRODUCTION

In the last years, uncertainty quantification in fluid flow simulations has considerably
developed in response to more and mode concerns regarding the exploitation and interpre-
tation of numerical results1. These developments were essentially made possible by the
introduction of efficient numerical procedures as the stochastic finite element method2

and Polynomial-Chaos type expansions in CFD models3,4,5, allowing for compact repre-
sentations of uncertainty using a limited number of orthogonal modes. However, these
techniques are limited to the propagation of data (parametric) uncertainties in a fixed
flow model and so can not deal with model uncertainties. In fact, the analysis of model
uncertainty requires a non-parametric approach6 that to our knowledge remains to be
developed in the context of fluid flow simulations.

In this paper, we present a preliminary attempt toward the development of non-
parametric techniques for the analysis of uncertainty in fluid flow models. A simple
one-dimensional, capillarity-free, incompressible two-phase flow in a porous medium with
perfectly known porosity and permeability is considered. The governing equations for this
flow are given in section 2. These equations consist of the mass conservation equation
and two constitutive relations prescribing the relationships between the effective mobil-
ities and the saturations of the respective phases. The model uncertainty arises from
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an incomplete knowledge of the effective mobilities which are consequently considered
as random processes. In section 3, the maximum entropy principle is invoked to derive
the least informative probability laws of the effective mobilities of the fluids, from the
available information and assumptions on the stochastic model. In section 4, a finite
dimensional discretization of the effective mobilities is introduced, based on quadratic
shape-preserving splines, and a numerical procedure is proposed for the determination of
the probability laws of the discretized effective mobilities. Whence these probability laws
are found out, they can be sampled to generate realizations of the random flow model,
allowing for a Monte-Carlo analysis of the uncertainty impact on the solution. This type
of analysis is presented in section 5. Finally, principal findings and major conclusions
from this work are reported in section 6, together with possible improvements.

2 TWO-PHASE FLOW MODEL

2.1 Conservative equations

As a preliminary attempt toward non-parametric analysis of model uncertainties in
fluid flow simulations, we restrict ourselves to the 1-D, capillarity free, incompressible
two-phase flow in a porous medium. The porosity φ and absolute permeability a of the
medium are certain and uniform through the domain Ω = [z−, z+] ⊂ R. The mass
conservation equations for the two phases (l = 1, 2) are :

∀z ∈ Ω :





φ
∂s(l)

∂t
+
∂ψ(l)

∂z
= 0 l = 1, 2

ψ(l) = −λ(l)

(
∂p

∂z
− g(l)

)
l = 1, 2

s(1) + s(2) = 1.

(1)

In Eq. 1, s(l) ∈ [0, 1] is the saturation (or phase’s fraction), ψ(l) is the Darcy velocity, p is
the pressure, g(l) the gravity term and λ(l) ≡ ak(l) is the effective mobility with k(l)(s(l))
the saturation dependent mobility of phase l. Introducing q = ψ(1)+ψ(2) the total Darcy’s
velocity (which is constant in space for an incompressible 1-D flow) the pressure can be
easily eliminated from the expressions of the Darcy’s velocities to obtain

ψ(1) =
λ(1)

λ(1) + λ(2)

[
q + (g(1) − g(2))λ(2)

]
, ψ(2) =

λ(2)

λ(1) + λ(2)

[
q + (g(1) − g(2))λ(1)

]
. (2)

Setting s ≡ s(1) and the flux f ≡ ψ(1) the mass conservation becomes

φ
∂s

∂t
+
∂f

∂z
= 0, f =

λ(1)

λ(1) + λ(2)

[
q + (g(1) − g(2))λ(2)

]
. (3)

To solve Eq. (3), initial and boundary conditions are required. We shall consider that the
flow takes place in a domain bounded by impermeable boundaries at z = z±; boundary
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and initial conditions are then
{
f(z = z±, t) = 0, ∀t,
s(z, t = 0) = s0(z) ∈ [0, 1], ∀z ∈ Ω.

(4)

Eq. (3) has also to be supplemented with constitutive relations prescribing the effective
mobilities λ(1)(s) and λ(2)(s). As a result, the full model consists of the mass conservation
(Eq. (3)), initial and boundary conditions (Eqs. (4)) and the two effective mobilities λ(l)

for l = 1, 2.
It can be shown that if s 7→ λ(1)(s) (resp. s 7→ λ(2)(s)) is an increasing function of s

(resp. decreasing), and assuming g(1) > g(2) (i.e. fluid 1 is heavier), then the flux f(s)
has a unique maximum at a saturation denoted θ :

θ ≡ arg max
s∈[0,1]

f(s). (5)

2.2 Solvability condition

The mass conservation equations for the two phases are combines leading to an elliptic
equation for the pressure,

∂

∂z

[
(λ(1) + λ(2))

∂p

∂z

]
= g(1)∂λ

(1)

∂z
+ g(2)∂λ

(2)

∂z
. (6)

For impermeable walls (q = 0), the pressure boundary conditions are

∂p

∂z
=
λ(1)g(1) + λ(2)g(2)

λ(1) + λ(2)
, z = z±. (7)

This pressure equation is solvable and has a unique solution (up to an additive constant)
if and only if λ(1) + λ(2) > 0 for all z ∈ Ω. Alternatively, valid constitutive relations must
satisfy the constraint :

0 < max
s∈[0,1]

[
1

λ(1)(s) + λ(2)(s)

]
< +∞. (8)

2.3 Numerical method

Eq. (3) is solved using a classical cell-centered finite volume discretization. The domain
Ω is divided into Nz cells with constant size h = (z+−z−)/Nz. We denote zi+1/2 = z−+ih,
for i = 0, . . . , Nz, the position of the cells’ interfaces. A cell with index i corresponds to
z ∈ [zi−1/2, zi+1/2]. Let ŝi be the saturation spatially averaged over the cell with index i :

ŝi =
1

h

∫ zi+1/2

zi−1/2

s(z)dz. (9)
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A first order conservative discretization of Eq. (3) is

φ
ŝn+1

i − ŝn
i

∆t
+

1

h

(
fn

i+1/2 − fn
i−1/2

)
= 0, (10)

where the superscripts refer to the time index. In Eq. (10) the numerical fluxes are
expressed as fi+1/2 = g(ŝi, ŝi+1), where the function (x, y) 7→ g(x, y) is the solution of a
Riemann problem satisfying the following conditions :

• consistency : g(x, x) = f(x),

• monotonicity : g(x, y) increasing (resp. decreasing) with x (resp. with y),

• Lipschitz continuity.

Following Jaffré7, we use the Godunov’s flux

g(ŝ, ŝ′) ≡ min [f (min{ŝ, θ}) , f (max{θ, ŝ})] , f =
λ(1)λ(2)

λ(1) + λ(2)
(g(1) − g(2)). (11)

The modelling of the effective mobilities λ(l), closing the model, is now considered.

3 NON PARAMETRIC MODEL UNCERTAINTY

The uncertainty in the model is assumed to arise from an incomplete knowledge of the
effective mobilities only, since the principle of mass conservation expressed by Eq. (3) is
unquestionable. It is then natural to consider these relations as random processes defined
on an abstract probability space (A,F , dµ) and indexed by s ∈ [0, 1]. To make clear the
distinction between random and deterministic quantities we shall use uppercase (resp.
lowercase) letters to denote random (resp. deterministic) quantities.

3.1 Functional constraints

As stated before, Λ(l) are stochastic processes defined on (A,F , dµ), indexed by s ∈
[0, 1] and taking value in R

+. It is required that Λ(1) (resp. Λ(2)) is increasing (resp.
decreasing) with s and that it vanishes for s = 0 (resp. s = 1). Also, the saturated
values of Λ(1) and Λ(2) (for s = 1 and s = 0 respectively) are known without uncertainty
as they can be accurately measured in single-phase experiments. The saturated values
will be simply denoted λ

(1)
| and λ

(2)
| . Furthermore, it will be assumed that the effective

mobilities are almost surely (a.s.) differentiable and convex functions of s. To summarize
these functional assumptions, Λ(1) is such that

• s 7→ Λ(1)(s) is a.s. continuous, increasing, differentiable and convex ∀s ∈ [0, 1],

• Λ(1)(s = 0) = 0 a.s.,
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• Λ(1)(s = 1) = λ
(1)
| a.s.,

while for Λ(2) :

• s 7→ Λ(2)(s) is a.s. continuous, decreasing, differentiable and convex ∀s ∈ [0, 1],

• Λ(2)(s = 1) = 0 a.s.,

• Λ(2)(s = 0) = λ
(2)
| a.s..

It will be further assumed that the two stochastic processes are independent. In the
following, we detail the construction of the probability law for Λ = Λ(1), the methodology
for Λ(2) being essentially similar. We denote V[0,1] the space of continuous differentiable
functions defined on [0, 1] such that

V[0,1] ≡
{
f : s ∈ [0, 1] 7→ R

∣∣∣∣
df

ds
≥ 0,

d2f

ds2
≥ 0, f(0) = 0, f(1) = λ| > 0

}
. (12)

3.2 Probabilistic constraints

We denote pλ(λ) the probability density function (pdf or density for short) of the
stochastic process Λ. Clearly, pλ(λ) = 0 for λ /∈ V[0,1]. Any functional u : Λ ∈ V[0,1] 7→ R

is a random variable defined on (A,F , dµ) with expectation

E[u(Λ)] =

∫

A

u(Λ(s, ω))dµ(ω) =

∫

V[0,1]

u(λ)pλ(λ)dλ,

where Λ(s, ω) denotes a realization of Λ. We define u1(Λ) ≡ Λ(0.5) and u2(Λ) = Λ2(0.5),
so that E[u1(Λ)] and E[u2(Λ)] are the first and second moments of the effective mobility
at s = 0.5, denoted m1 and m2 respectively. Due to the functional properties of Λ, it is
easy to show that :

m1 ∈ [0, λ|/2], m2 ∈ [m2
1, m1λ|/2]. (13)

In the following, m1 and m2 are prescribed -satisfying Eqs. (13)- and used to control the
stochastic process Λ : m1 controls the mean of the effective mobility while m2 controls its
variability, decaying as m2 goes to m2

1. In fact, we have to determine the density of Λ for
given m1 and m2, i.e. pλ(λ;m1, m2). However, to simplify the notations, the dependence
of the probability density function with the prescribed first and second moments will not
be mentioned explicitly.

3.3 Maximum entropy principle

There is in general an infinite number of densities pλ yielding the prescribed moments
m1 and m2. An additional requirement is necessary to ensure uniqueness; specifically, we
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want the the probability density function which is the least informative, i.e. the density
maximizing the entropy8

S(pλ) = −
∫

V[0,1]

pλ log pλdλ,

while satisfying the constraints :

∫

V[0,1]

pλ(λ)dλ = 1, (14)

∫

V[0,1]

u1(λ)pλ(λ)dλ = m1, (15)

∫

V[0,1]

u2(λ)pλ(λ)dλ = m2. (16)

This density is solution of a constrained optimization problem with Lagrangian

L(pλ, β0, β1, β2) = −
∫

V[0,1]

pλ log(pλ)dλ+ (β0 − 1)

[
1 −

∫

V[0,1]

pλdλ

]

+ β1

[
m1 −

∫

V[0,1]

u1pλdλ

]
+ β2

[
m2 −

∫

V[0,1]

u2pλdλ

]
, (17)

where β0,...,2 are the Lagrange multipliers associated to the constraints in Eqs. (14-16).
The stationarity of the Lagrangian with regard to the density pλ leads to

pλ(λ) = exp [−β0 − β1u1(λ) − β2u2(λ)] . (18)

Replacing the last expression of pλ in Eqs. (14-16) gives the (non-linear) equations for
the Lagrange multipliers. To solve these equations, integrations over V[0,1] are required
but the dimension of V[0,1] is infinite : a discretization of Λ in necessary to approach the
problem in a finite dimensional space.

4 DISCRETIZATION OF THE PROCESS

4.1 Spline approximation

Let 0 = s0 < s1 < . . . < sn = 1, be a set of points evenly distributed on [0, 1] with
step size δ = 1/n : si = iδ, for i = 0, . . . , n. Let W ≡ (W1, . . . ,Wn) be a random vector
defined on (A,F , µ) with value in W n ⊂ (R+)n such that

W n =

{
W ∈ (R+)n

∣∣∣∣∣
n∑

i=1

(n+ 1 − i)Wi = λ|

}
. (19)
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We denote Λi the stochastic process value at s = si. Then, setting for W ∈W n

Λ0 = 0, Λi = λ|

(
i∑

j=1

(i+ 1 − j)Wj

)
for i = 1, . . . , n, (20)

we have :

• Λ(0) = 0 a.s.;

• Λi − Λi−1 ≥ 0 a.s. for i = 1, . . . , n (increasing process);

• Λi+1 − 2Λi + Λi−1 ≥ 0 a.s. for i = 1, . . . , n− 1 (convexity);

• Λn = Λ(1) = λ| a.s. (termination condition).

At this point, we have expressed the process values at a finite number of points si in
terms of a finite dimensional random vector. These process values are consistent with the
monotonicity, convexity and termination conditions. To complete the approximation of
Λ for any s ∈ [0, 1] we rely on a shape preserving quadratic spline interpolation9 between
the data points (si,Λi)i=0,...,n. This interpolation scheme preserves the monotonicity and
convexity of the data and yields continuous first order derivatives. It remains to determine
the density of the finite dimensional vector W .

4.2 Determination of the Lagrange multipliers

We denote pW the probability density function of W and u0.5(W ) the spline value of
Λ at s = 0.5. The Eqs. (14-16) become :

∫

W n

pW(w; β)dw = 1, (21)
∫

W n

u0.5(w)pW(w; β)dw = m1, (22)
∫

W n

u2
0.5(w)pW(w; β)dw = m2, (23)

where the density of W is now

pW(w; β) = exp[−β0 − β1u0.5(w) − β2u
2
0.5(w)].

Here, we have made explicit the dependence of pW with regard to the vector of Lagrange
multipliers β = (β0, . . . , β2). We propose the following iterative algorithm for the compu-
tation of the Lagrange multipliers.

1. Set β(0) to an initial guessed value and iteration index k to zero.
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2. Draw a sample {wl, l = 1, . . . , m} from pW(w,β(k)). A numerical procedure to
generate such sample is detailed in the next paragraph.

3. Compute a new estimate β(k+1) of β solution of Eqs. (21-23), where the expectations
are substituted with their Monte Carlo approximations based on the current sample :

1

m

m∑

i=1

pW(wi; β
(k+1))

pW(wi; β
(k))

− 1 = 0, (24)

1

m

m∑

i=1

u0.5(wi)
pW(wi; β

(k+1))

pW(wi; β
(k))

−m1 = 0, (25)

1

m

m∑

i=1

u2
0.5(wi)

pW(wi; β
(k+1))

pW(wi; β
(k))

−m2 = 0. (26)

4. Repeat from step 2 for the next iteration of the algorithm.

Efficient non-linear solvers, e.g. Newton-Raphson iterations, can be used to solve the
equations at step 3 : derivation of the equations with regard to the unknown β(k+1) is
straightforward. Note also that during non-linear iterations, only the densities of the
sample points wi need to be updated, since u0.5(wi) and sampling densities pW(wi; β

(k))
are left unchanged.

Because the estimates of β are based on randomly generated samples, they are random
estimates with inherent variability. Consequently, the sequence of β(k) is not expected to

converge as k → +∞ for finite samples size m. On the contrary, the averages, β̂(k), of
successive estimates is expected to converge, at least for reasonable initial guessed value
β(0) and sufficiently large samples size m :

β = lim
k→+∞

β̂(k), β̂(k) =
1

k

k∑

j=1

β(j). (27)

In practice, the convergence of β̂(k) is monitored during the iterations which are stopped
when estimated relative variances of its components are all less than 1%.

4.3 Markov Chain Monte Carlo sampling

The main ingredient of the algorithm proposed in the previous paragraph is the sam-
pling of W n from the density pW(w; β(k)). To this end, a particular Markov Chain Monte
Carlo10 (MCMC) sampler, known as the hit-and-run algorithm11 is used. This MCMC
sampler is designed to yield a sequence of dependent sample points {wl, l = 1, . . . , m}
converging (in distribution) to W ∼ pW(w; β(k)).

To construct this algorithm, it is first remarked that the admissible space W n is a
bounded portion of an hyperplane Π of R

n. Boundaries of W n are the intersections of Π

8
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with the n hyperplanes Πi=1,...,n having for equations wi = 0. A direction normal to Π is
c ≡ (c1, . . . , cn), the vector of R

n with components ci=1,...,n = n+ 1− i. We denote c′ the
unitary vector normal to Π : c′ ≡ c/‖c‖. The situation is schematically illustrated for
n = 3 in the left plot of Figure 1.

Since sample points are in W n, it is obvious that (wl+1 − wl) · c′ = 0; in other words
the “move” between two successive sample points is parallel to Π. This suggests to
sample W n using displacements in Π along random directions orthogonal to c. To sample
the direction parallel to Π, let δl be a vector of R

n drawn at random with independent
identically distributed components (for instance normalized Gaussian distributions). This

vector can be decomposed in terms of a vector δ
‖
l parallel to Π and a vector δ⊥

l orthogonal
to c′,

δl = δ
‖
l + δ⊥

l , δ⊥
l ≡ (δl · c′)c′.

We define w∗(r) = wl + rδ
‖
l .

For w∗(r) ∈ W n it is necessary that r− ≤ r ≤ r+ as illustrated in the middle plot of
Figure 1. Consequently, wl+1 will be constructed by sampling a scalar rl ∈ [r−, r+] from

the density f(r) ∝ pW(wl + rδ
‖
l ; β

(k)) and setting wl+1 = wl + rlδ
‖
l . Because f(r) is

univariate, it can be easily sampled.
As mentioned previously, repetitions of the hit-and-run iteration yields successive sam-

ple points wl that converge in probability to W ∼ pW(w; β(k)). However, the convergence
rate of the sequence to the stationary distribution pW is finite so that the first m′ iterates
should be disregarded and the total length of the simulated Markov Chain is m + m′.
Determination of the length of burn-in m′ is not an easy task even-though criteria can be
found in the literature. However, for the application of the hit-and-run algorithm consid-
ered in this work, we do not expect the successive iterates β(k) of the Lagrange multipliers
to be significantly different from an iteration to the next one, but to fluctuate because
of sampling error only, as k → ∞. As a consequence, if m is large enough, changes in
the sampling density should be small too, such that taking at random a sample point
wl of the Markov Chain based on β(k) as initial sample point w0 of the following chain
to be constructed with β(k+1), significantly reduce the burn-in length. In the numerical
examples presented below, the burn-in length m′ was varied from a few hundreds (n = 4)
to a few thousands (n = 32). The dimension m of the sample has also to be increased
with the dimension n of the discretization space; we have used m = 104n to ensure a
sufficient excursion of W n.

4.4 Numerical examples

In this paragraph, we present examples of the construction of a discretized random
process Λ(s) with λ| = 1 and m1 = 0.2. The second parameter, m2, is selected to yield a
standard deviation of Λ at s = 0.5 equal to 0.025.

The convergence of the stochastic process for increasing discretization space W n, n = 4,
8, 16 and 32, is first investigated. Results are reported in Figure 2, where plotted are

9
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a) b) c)

W n

w

w

w1

2

3

c’

Π

Π Π
2

1

3

Π

w  = 01

w
  =

 0
2

w
  = 0
3

W n

w+r −

w ++r 

δ

δ

δ

w

Π

//

//

//

W n

w0

wl

wl+1

δ l

δ0

�
�
�
�

�
�
�
�

�
�
�
�

Π//

//

Figure 1: Illustration of the hit-and-run sampling algorithm for n = 3. a) Representation of the sampling
domain Wn as a portion of the plane Π with normal c′ and bounded by the planes Πi=1,2,3. b) Illustration

of the possible move from a point w along a direction δ‖ parallel to Π : the move is limited to r±δ‖ in
order to remain in Wn. c) Representation of successive hit-and-run iterations : the displacement from

wl to wl+1 is rlδ
‖
l where rl ∈ [r−l , r+

l ] is drawn at random from f(r) ∝ pW(wl + rδ
‖
l ; β

(k)).

20 realizations Λ(s;ω) drawn at random from the computed probability density functions
and, to ease the comparison between different n, the usual ±3 standard deviations bounds
centered on the respective expectations E[Λ(s)]. These results highlight the quick con-
vergence of E[Λ] with n : expectations are virtually equal for n ≥ 8. On the contrary,
the convergence of the variance of Λ(s) is much slower with n. Specifically, for n = 4
and 8 the variances present a local minimum (a node) at s = 0.5 which is not present for
larger n. Since the variance of Λ at s = 0.5 is the same in every cases, the node has for
origin an over-estimation of the actual variability of the process at s 6= 1/2 and small n.
This effect can be attributed to a lack of degrees of freedom in the stochastic model to
properly account for the dependencies in Λ between different index values s.

Figure 3 reports, for n = 32, the convergence of the averages β̂
(k)
1 and β̂

(k)
2 with the

iteration index k of the computational algorithm described in paragraph 4.2. The curves

show that, after some iterations along which β̂(k) significantly evolves, denoting the influ-
ence of the initial guessed value β(0), it ends oscillating with fluctuations having decaying
amplitude (note the log-scale in iteration index). As explained previously, these fluctu-
ations are due to the finite size of the samples used in the computation, that induces
randomness in the successive estimates of β(k). However, when averaged, these stochastic
fluctuations cancel as shown in Figure 4 where plotted are Monte Carlo estimations of

the standard deviations of β̂
(k)
1 and β̂

(k)
2 as a function of the iteration index k. As one

may have expected, the standard deviations of the averages β̂(k) decay with a 1/
√
k rate,

demonstrating the convergence of the algorithm.

10
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Figure 2: Convergence of the approximated stochastic process Λ(s) as n increases : n = 4, 8, 16 and
32 (from left to right). Plots show a sample of 20 random realizations Λ(s; ω) and the ± 3 standard
deviations bounds centered on E[Λ(s)]. The process is characterized by m1 = 0.2, m2 = 0.040625 and
λ| = 1.
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2 as a function the iteration index k. The

solid line corresponds to a decay rate of 1/
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k. The process is characterized by m1 = 0.2, m2 = 0.04025
and λ| = 1. The discretization uses n = 32.

5 ANALYSIS OF MODEL UNCERTAINTY

5.1 Test flow and uncertainty model

The impact of model uncertainty on the two-phase flow is now investigated for the
separation by gravity of two phases with different densities, in a vertical (align with
gravity) column with normalized height L = 2 (Ω = [−1, 1]) and porosity φ = 0.9. The
normalized gravity terms are set to g1 = 1 and g2 = 0.7. At t = 0, the two fluids are well
mixed (s = 0.5) then the gravity separates the phases as the heavy fluid (phase 1) flows
downward while the light fluid (phase 2) flows upward. The boundary conditions for this
problem are no-flux across the boundaries (z = ±1). The discretization used a time step
∆t = 0.025 and Nz = 400 cells. The asymptotic solution for t → +∞ is s = 0 for z > 0
and s = 1 for z < 0. This behavior is illustrated in Figure 5.

The effective mobilities have known termination conditions at s = 0 and s = 1, as
discussed in section 3. Specifically, we set λ

(1)
| = 1 and λ

(2)
| = 1.43. The random consti-

tutive relations Λ(1) and Λ(2) are independent and parametrized by their first and second
moments at s = 0.5. We write these moments as

m
(l)
1 = αλ

(l)
| , m

(l)
2 = (1 + γ2)

(
m

(l)
1

)2

l = 1, 2.

For this setting, the two effective mobilities have expectations at s = 0.5 equal to the
same fraction α of their respective maximum λ

(l)
| and equal relative level of variability

(coefficient of variation) controlled by γ2. As a consequence, Λ(1)(s)/λ
(1)
| and Λ(2)(1 −

s)/λ
(2)
| are equivalent stochastic processes. Moreover, provided that the two effective

mobilities are approximated on the same finite dimensional space W n, one has to solve
a unique optimization problem, using the methodology described in the previous section,

12
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Figure 5: Deterministic solution at different times t as indicated of the two-phase flow problem as defined
in section 5. The constitutive relations used in this simulations are the expectations of Λ(1) and Λ(2) for
α = 0.2, γ = 0.025 and n = 32.

for m1 = α, m2 = (1 + γ2)α2 and λ| = 1. The effective mobility Λ(1) and Λ(2) are

then simply deduced from Λ(s) by means of a rescaling by λ
(l)
| and a change of variable

s → (1 − s) for Λ(2). In fact, when the process Λ(s) is determined, two independent hit-
and-run Markov chains are run, yielding samples of Λ(1) and Λ(2). To improve further the
mixing of the chains, sample points of the effective mobilities are recorded every 10,000
hit-and-run iterations of the MCMC algorithm. This procedure yields a sample of the
effective mobilities (i.e. of the random model)

M ≡ {(Λ(1)(s;ωi),Λ
(2)(s;ωi)), i = 1, . . . , q}.

Then, for each realizations of the effective mobilities in the sample M , the deterministic
equations of the flow are solved yielding realizations of the solution of the random model.
This set of realizations {S(z, t;ωi), i = 1, . . . , q} can be used in turn to estimate the
probability law of the flow (e.g. moments, quartiles, correlations, . . . ) as shown below.
In the following numerical examples, the sample size is fixed to q = 2, 500.

5.2 Convergence of the random flow with discretization

We set α = 0.2 and γ = 0.025 and we analyze the convergence of S(z, t) as the
discretization of the effective mobilities is refined from n = 4 to n = 32. Figure 6 presents
the MC sample mean of S(z, t) at t = 5, 10, 15 and 20 for different discretizations using
n = 4, 8, 18 and 32. It is found that the sample mean indeed converges with n. However,
noticeable differences are reported for n = 4 and n = 8. These differences are essentially
due to the over-estimation of the variability of the effective mobilities for small values of
n as shown in section 4 : because the flow is non-linear, the mean solution depends on the
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O. Le Mâıtre and C. Soize

 0

 0  0.5  1

z

s

t=5

n=32
n=16
n=8
n=4

 0

 0  0.5  1

z

s

t=10

n=32
n=16
n=8
n=4

 0

 0  0.5  1

z
s

t=15

n=32
n=16

n=8
n=4

 0

 0  0.5  1

z

s

t=20

n=32
n=16
n=8
n=4

Figure 6: Convergence with the discretization parameter n of the sample mean of S(t, z) for a fixed
random model (α = 0.2 and γ = 0.025). Plots show the expectations of S at different times as indicated.

model variability even if the mean model (expected mobilities) is essentially independent
of n. In fact, the differences with n of the sample mean can be attributed to a larger
dispersion of the characteristic flow time-scale for small n.

Figure 6 presents for n = 4, 8, 16 and 32 the resulting variability in the random solution
in terms of the sample mean with ± 3 standard deviation bounds at t = 10 (top line)
and t = 20 (bottom line). Again, the plots show that the discretized model tends to
over-estimates the variability of the solution for small n. This trend is consistent with the
findings of section 4 as a larger dispersion of the effective mobilities reasonably induces a
larger dispersion of the model solution. It is also found that the uncertainty in S is larger
where the mean solution presents significant gradients.

5.3 Impact of mean model

The impact of the parameter α of the random model is now investigated, for fixed
relative variability γ = 0.025. Roughly speaking, this is equivalent to compare the random
solutions corresponding to random models with different means but constant variability.
Figure 8 depicts the sample means of S(z, t) with ± 3 standard deviation bounds for two
random models using α = 0.2 and α = 0.3. The two simulations use n = 32. The results
show that the main impact of the selected mean model is on the mean characteristic time
scale of the flow : the separation speed of the two phases is larger for α = 0.3 than for
α = 0.2. On the contrary, the variability of the solution seems to be much less affected
by the selected mean model. However, a proper time rescaling of the solutions would be
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Figure 7: Convergence with the discretization parameter n of the random solution S(z, t) at t = 10 (top
line) and t = 20 bottom lines. Plots show the sample mean of S(t, z) with ± 3 standard deviation bounds.
The random models are characterized by α = 0.2 and γ = 0.025.
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Figure 8: Comparison at different times of the sample means with ± 3 standard deviation bounds of the
random solutions S(z, t) for two uncertain models with different means corresponding to α = 0.2 and
0.3. The relative variability of the two models is equal and given by γ = 0.025. Random models are
discretized using n = 32.

necessary for a finer comparison of the variability.

5.4 Impact of model variability

Finally, in a last numerical experiment, we set α = 0.2 and we vary γ. This experiment
corresponds roughly to a constant mean model with increasing variability. We used γ =
0.015, 0.025 and 0.05 and a discretization with n = 16. The results are summarized
in Figure 9 where plotted are the sample means of S(t, z) with ± 3 standard deviation
bounds at times t = 5, 10, 15 and 20. As expected, a larger variability of the model
induces a larger variability of the solution. Also, the influence of the model variability on
the mean solution is clearly visible. Again this is essentially explained by the non-linearity
of the flow as the mean model is weakly affected by the value of γ. In fact, it is found
that a larger value of γ leads to a smoother profile E[S(t, z)] at a given time. This trend
denotes an increased dispersion of the characteristic time-scale of the flow as γ increases.

6 CONCLUSION

A non parametric approach has been proposed for the analysis of model uncertainty
in two-phase flow through a porous medium. The stochastic flow model is constructed
using the maximum entropy principle on the basis of the available information regarding
the effective mobilities of the phases (functional and probabilistic constraints).

The discretization of the effective mobilities leads to the resolution of an optimiza-
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Figure 9: Comparison at different times of the sample means with ± 3 standard deviation bounds of the
random solution S(z, t) for uncertain models with increasing relative variability : γ = 0.015, 0.025 and
0.050. The three models have similar means given by (α = 0.2). Random models are discretized using
n = 16.

tion problem for the probability density function of a finite dimensional random vector.
Resolution of this optimization problem allows for the sampling of the effective mobili-
ties yielding realizations of the random model and corresponding realizations of the flow.
Then, a Monte Carlo simulation technique can be used to estimate the probability law
of the flow. Numerical examples have shown the effectiveness of the methodology in
estimating the resulting characteristics of the random flow depending on the assumed
characteristics of the random model (the value of the mean model and its variability at
s = 0.5).

However, some aspects of the proposed methodology need further investigations :

• The convergence of the random effective mobilities with the discretization parameter
n should be improved to avoid the difficulties associated with high-dimensional
sampling. Here, a different discretization strategy may be a solution.

• The characteristics of the random model are parametrized by the expectations and
variances of the effective mobilities at s = 0.5, the two constitutive equations being
assumed independent. This may be too restrictive and arbitrary. In fact, we believe
that the random model should account for the random solvability constraint :

E

[(
max
s∈[0,1]

1

[Λ(1)(s) + Λ(2)(s)]

)2
]

= ζ < +∞.
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The random models presented in this paper indeed satisfy the solvability constraint,
but it is not controlled. Substituting the solvability constraint to Eq. (16) would
lead to a theoretically better grounded random models with a unique parameter
ζ controlling the model variability. However, it will render the two constitutive
relations dependent with a joined density p(λ(1), λ(2)) to be computed.

• The physical model of the flow should be complemented to account for instance of
capillarity forces, by means of an additional random process Pc(s).

On-going work is focusing on these aspects.

REFERENCES

[1] O. Knio and O. Le Mâıtre, Uncertainty Propagation in CFD Using Polynomial Chaos
Decompositions, Fluid Dynamics Research, (in press).

[2] R.G. Ghanem and P.D. Spanos, Stochastic Finite Elements: A Spectral Approach,
Springer Verlag, (1991)
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