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Abstract.  This research is devoted to the construction and the ideatiin of a prior stochastic model for an uncertain
Rigid Body (RB) of a multibody dynamical system (MDS). Thihods developed in the context of the multibody dynamics
analysis are commonly used in many application fields (Aatiwe, railway vehicles, launch vehicle,) for which the uggd
accuracy makes the modelling and the quantification of uag®res unavoidable whenever they are not negligible. dme
particular cases, rigid bodies can not be considered asrdatestic (RB model of passengers, of a fuel tank,). In thistext,

we propose a construction of a random RB using the maximuromnprinciple. Therefore the mass, the center of mass amd th
tensor of inertia of the classical deterministic rigid boale replaced by random variables which allows the randomedyical
response of the MDS to be calculated. The PDF of these randoiables depend on some parameters which are identified
using experimental responses of the MDS. The methodol@ygdented and is validated through an application.

Keywords: uncertainties; random; rigid body.

1 INTRODUCTION

This study is devoted to the construction of a probabilistadel of uncertainties for a rigid multibody dynamical
system made up of uncertain rigid bodies. In some cases, &lss distribution inside a rigid body is not perfectly
known and must be considered as random (for example, thréodisbn of passengers inside a vehicle) and therefore,
this unknown mass distribution inside the rigid body induigacertainties in the model of this rigid body. Here,
we propose a new probabilistic modeling for uncertain rigatlies in the context of the multibody dynamics.
Concerning the modeling of uncertainties in multibody dyizal system, a very few previous researches have been
carried out. These researches concerned parameters vaschilie the joints linking each rigid body to the others
and the external sources (see [1-5]), but not rigid bodiem#elves. In the field of uncertain rigid bodies, a first
work has been proposed in [6, 7], in which the authors tal@astount uncertain rigid bodies for rotor dynamical
systems using the nonparametric probabilistic approaci®9][8onsisting in replacing the mass and gyroscopic
matrices by random matrices.

In this paper, a general and complete stochastic model istiwarted for an uncertain rigid body. The mass, the
center of mass and the tensor of inertia which describe tfid biody are modeled by random variables. The
prior probability distributions of the random variable® aonstructed using the maximum entropy principle [10]
from Information Theory [11]. The generator of independezalizations corresponding to the prior probability
distributions of these random quantities are developedoaesented. Then, several uncertain rigid bodies can be
linked each others in order to calculate the random respohaa uncertain multibody dynamical system. The
stochastic multibody dynamical equations are solved usiagvionte Carlo simulation method.

Section 2 is devoted to the construction of the mean modethf®rigid multibody dynamical system by using
the classical method. In Section 3, firstly, we propose a @gmpeobability model for an unconstrained uncertain
rigid body and secondly, the uncertain rigid multibody dyrmeal system is obtained by joining this unconstrained
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uncertain rigid body to the other rigid bodies. The lastisects devoted to an application which illustrates the
proposed theory.

2 MEAN MODEL FOR THE RIGID MULTIBODY DYNAMICAL SYSTEM

In this paper, the usual model of a rigid multibody dynammatem for which all the mechanical properties are
known will be called the mean model (or the nominal model)isBection is devoted to the construction of the mean
model for a rigid multibody dynamical system. This mean midgleonstructed as in ([12, 13]) and is summarized
below.

2.1 Dynamical equations for a rigid body of the multibody sysem

Let RB; be the rigid body occupying a bounded dom&inwith a given geometry. Leg be the generic point of
the three dimensional space. bet (z;,z9, 23) be the position vector of poigtdefined in a fixed inertial frame
(O,x01,0,2,%0,3), sSuch thak = O¢. The rigid body class is then defined by three quantities.

(1) The first one is the mass; of RB; which is such that

m; :/g.lvp(x) ax 1)

wherep(x) is the mass density.
(2) The second quantity is the position veatpof the center of mass;, defined in the fixed inertial frame, by

1
ri——/QiXp(X)dX . (2)

my;

(3) Let(Gi, x} , , 7} 5 , 7} 3) be the local frame for which the origin s; and which is deduced from the fixed frame

(O,20,1,%0,2,%0,3) by the translatiortiﬁ and a rotation defined by the three Euler anglgs3; and~;. The third
quantity is the positive-definite matrj¥;] of the tensor of inertia in the local frame such that

[Ji]u:f/( X' xxX' xup(x)dx , YueR?® | (3)
2

in which the vectox’ = (1, 25, z3) of the components of vectdr;¢ are given in(G; , z; |, 2} 5,75 3). In the
above equationy x v denotes the cross product between the veat@nsdyv.

2.2 Matrix model for the rigid multibody dynamical system

The rigid multibody dynamical system is made uprgfrigid bodies and ideal joints including rigid joints, joint
with given motion (rheonomic constraints) and vanishirigt® (free motion). The interactions between the rigid
bodies are realized by these ideal joints but also by sprid@spers or actuators which produce forces between
the bodies. In this paper, only. holonomic constraints are considered. Lebe the vector ifR" such that
U= (ri,...,rn,,S1,...,S,,) in whichs; = (a4, 8;,7:) is the rotation vector. The, constraints are given by,
implicit equations which are globally written ggu,t) = 0. The(6n, x 6n;) mass matri¥)| is defined by

[M] = { []\gr] []\25] ] ) (4)
where the(3n;, x 3ny) matriceg M| and[M?] are defined by
my[ls] - 0 [Ji]--- 0
[M”] S N A (5)
0 - mp, I3 0 - [Jn,]

in which [I3] is the (3 x 3) identity matrix. The functiof{u(t), < [0,T]} is then the solution of the following
differential equation (see [13])

a0 TR =L | ©
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with the initial conditions
u0)=up , u0)=vy , @)

in whichk(u) is the vector of the Coriolis forces and whéygg, (u(t), t)];; = 9pi(u(t),t)/0u;(t) ande, = dp/0t.
The vectog(u, U, t) is constituted of the applied forces and torques induceghbpgs, dampers and actuators. The
vector A(t) is the vector of the Lagrange multipliers. Equation (6) cansblved using an adapted integration
algorithm (see for instance [14]).

3 STOCHASTIC MODEL FOR THE DYNAMICAL SYSTEM WITH UNCERTAIN R  IGID BODIES

Firstly, a stochastic model for an uncertain rigid body @ thultibody dynamical system is proposed and secondly,
the stochastic model for the multibody dynamical systenhwihcertain rigid bodies is constructed joining the
stochastic model of the uncertain rigid bodies.

3.1 Stochastic model for an uncertain rigid body of the multbody dynamical system

The properties of the mean model (or the nominal model) ofitid body RB are defined by its mass,, the
position vectorr, ; of its center of masé}i at initial time ¢ = 0 and the matriXJ,] of its tensor of inertia with
respect to the local framgs, 2} |, 2}, , 2} 3). The probabilistic model of uncertainties for this rigiddyois
constructed by replacing these three parameters by theniialy) three random variables: the random maksthe
random position vectoR ; of its random center of mass; at initial time¢ = 0 and the random matrijJ;] of

its random tensor of inertia with respect to the random Ide@ahe (G; , z; , , z} , , 2} 3). The probability density
functions (PDF) of these three random variables are cartstluwusing the maximum entropy principle (see [11],
[10]), that is to say, in maximizing the uncertainties in thedel under the constraints defined by the available
information.

3.1.1 Construction of the PDF for the random mass

(i) Available information

Let E{.} be the mathematical expectation. The available informdtiothe random mas&/; is defined as follows.

Firstly, the random variablé/; must be positive almost surely. Secondly, the mean valukeofandom masa/;

must be equal to the value, of the mean (or nominal) model. Thirdly, as it is proven in, [8le random mass

must verify the inequality?{ M, ?} < +oc in order that a second-order solution exists for the stdahdgnamical

system. In addition, it is also proven that this constraamt be replaced by {log M; }| < +o0.

(i) Maximum entropy principle

The probability density functiop — p,, (1) of the random variabl@/; is constructed by maximizing the entropy

under the constraints defined above. The solution of thisnigdtion problem is the PDF of a gamma random vari-
able defined ofi0, +oo[. This PDF depends on two parameters which are the nominagxal and the coefficient

of variationd,, of the random variabl@/; such that,;, = o,, /m; whereo,, is the standard deviation of the

random vanabIeM Therefore, the PDF of the random mass is completely defiggdbmean valuen,; and by

the dispersion parametgy, .

3.1.2 Construction of the PDF for the random position vectoiR ;

In this subsection, the PDF of the random initial positiosteeR, ; of the center of mass of RBEat initial time
t = 0 is constructed.

(i) Available information

The position vector, ; of the center of masé&; at initial timet = 0 of the mean (or nominal) model is given.
However, the real position is not exactly known aggd only corresponds to a mean position. Consequently, there
is an uncertainty about the real position and this is theareaghy this position is modeled by the random vector
Ro,;. Some geometrical and mechanical considerations lead insréaluce an admissible domain; of random
vectorRy ;. We introduce the vectdr of the parameters describing the geometry of donain In addition, the
mean value of the random vect8y ; must be equal to the valug ; of the mean (or nominal) model. Therefore,
the available information for random variatitg ; can be written as

R()_’i € Dz(h) a.s. , (a)

(8)
E{Ro} =1y, € Di(h) . (b)
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(i) Maximum entropy principle

The probability density functio@ — p,_ ( a) of random variableR, ; is then constructed by maximizing the
entropy with the constraints defined by ‘the available infation in Eq. (8). The solution of this optimization
problem depends on two parameters whichrgreand vector-valued parameterand is such that

Pro. (&h) =1p,m () Co em <M 9
The positive valued paramet€y and vector\ are the unigue solution of the equations
C M@ da=1
0 fDi(h) €_<>\ N (a) (10)
Co fDi(h) ae”M>da=r,,; . (b)

(iii) Generator of independent realizations

The independent realizations of random variaRlg must be generated using the constructed IiapF Such a
generator can be obtained using the Monte Carlo Markov Ci\@MC) method (Metropolis- Hastlngs algorithm
[18]).

3.1.3 Random matrix[J;] of the random tensor of inertia.

In this subsection, the random matfik] of the random tensor of inertia with respect(®; , z; ; ,z; 5, x; 3) IS
defined and an algebraic representation of this random xmiatgonstructed. The mass distribution around the
random center of mass; is uncertain and consequently, the tensor of inertia is @fsertain. This is the reason
why the matrix[.J;] of the tensor of inertia of the mean (or nominal) model witbpect to(G, , ;  , x; 5 , 2} 3) iS
replaced by a random matrj¥;] which is constructed by using the maximum entropy prlnC|pIe

We introduce the positive-definite matfiX;] independent ofn; such that

21 = o { S - 10} 1)

Thenl[J;] can be calculated as a function[&f;],

[Ji] = mi{tr([Z:]) [I5] — [Zi]} - (12)

It can be proven thdtZ;] is positive definite and that each positive definite maltii constructed using Eq. (12),
where[Z;] is a given positive definite matrix, can be interpreted asniarix of a tensor of inertia of a physical
rigid body for which the mass is (see [15]).

The probabilistic modeling);] of [J;] consists in introducing the random matf;] and in using Eq. (12) in which
m, is replaced by the random variabll¢; and whergZ;] is replaced byZ,]. We then obtain

2= 37 {52 -} (13)
[3i] = Mi{tr([2:]) [Is] — [2:]} . (14)

(i) Available information concerning random matiix;

Let us introduce (1) the nominal val(g;] of deterministic matri¥Z;] such thafZ;] = (1/m;){tr([;])/2[I5] —
[J;]} and (2) the upper boun™*] of random matrix[Z;]. Then, the available information fdZ,] can be
summarized as follows,

(Z;] e M7 (R) as. |,
{[Zz*] — 2]} e M3 (R) as. ,
E{Zi]} = 2] , (15)
B{log(det[Z;])} = C} , [C]| <400,
E{log(det([Z]™*] — [Z:]))} = C3 ,  [C}] < +o0 .(e)
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For more convenience, random matiZx] is normalized as follow. Matri¥Z,| being positive definite, its Cholesky
decomposition yield§Z,] = [L, |” [L,] in which [L, ] is an upper triangular matrix in the set;(R) of all the
(3 x 3) real matrices. Then, random matfi;] can be rewritten as

2] =[Lz]"[G][Lz] (16)
in which the matriXG;] is a random matrix for which the available information is

[G;] e Mf (R) a.s. ,
{[GT**] - [Gi]} e MF(R) a.s.

E{[Gi]} =[I3] 17)
E{log(det[Gi])} = CI' , |C| <400
Ef{log(det([GT*] - [Gi]))} = C' ,  |CF] <400

in which C’f/ = C! —log(det[Z,]), C¥ = C* — log(det[Z,]) and where the matri{G™*] is an upper bound for
random matriXG;] and is defined byG"**] = ([L,.]7) "' [Z™*] [L, ]~

(i) Maximum entropy principle
The probability distribution of random matr{;] is constructed using the maximum entropy principle under th
constraints defined by the available information given by(&®d). The probability density functignc,;([G ]) with

respect to the volume elemefd of random matri{G;] is then written as

Pa(G]) = Dy ) ([G]) X Dyt ([GT7] = [G]) X C,

=X max —Au —tr([u][G)) (18)
x(det [G]) ™" x (det ([GT*] — [G])) x e TG

in which the positive valued paramet€y;, is a normalization constant, the real paramefgersc 1 and ), < 1

are Lagrange multipliers relative to the two last constsadefined by Eq. (17) and the symmetric real malikx

is a Lagrange multiplier relative to the third constrainfided by Eq. (17). This probability density function is a

particular case the Kummer-Beta matrix variate distrifiut{see [16], [17]) for which the lower bound is a zero

matrix.

Parameter€'q,, A;, A, and matrix[u] are the unique solution of the equations

E{lys ) (G} =1 ,
E{[Gi]} = [I5]
E{log(det[G;])} 3: cr o, (19)

Eflog(det([G*] - [Gi]))} = C}

For fixed values of\; and\,,, parameter€’s, and|[u] can be estimated using Eq. (19). In Eq. (19), since the pa-
rameterff’ andC?" have no real physical meaning, the paramelerand \,, are kept as parameters which then
allows the "shape” of the PDF to be controlled. If experinadata are available for the responses of the dynamical
system, then the two parameteyisand A\, can be identified solving an inverse problem. If experimietéiza are

not available, these two parameters allow a sensitivityyarsof the solution to be carried out with respect to the
level of uncertainties.

(iii) Properties for random matrixJ;]
It is proven in [15] that using Eqg. (14) and the available mifation defined by Eq. (15), the following important
properties for random matrid;] can be deduced,

{3tr([3:) [Is] — [3:]} e M (R) a.s (a)
{71 =[]} e MF (R) a.s (0) (20)

E{[3:]} = L] (c)

(N <=2, M <0} = B{[3]7} < 40, (d)
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in which the random matrifd]"**], which represents a random upper bound for random midtiixis defined by

(97 = Mi{tr([Z*"]) [Is] = (2]} (21)

It should be noted that Eq. (20-a) implies that each reatinaif random matriXJ;] corresponds to the matrix of a
tensor of inertia of a physical rigid body. In addition, teiguation implies that random matifik] is almost surely
positive definite. Eq. (20-b) provides a random upper boumddndom matri{J;]. Eq. (20-c) corresponds to a
construction for which the mean value of random maft¥ix is equal to the nominal valug,]. Finally, Eq. (20-d)

is necessary for that the random solution of the nonlineaadyical system be a second-order stochastic process.

(iv) Generator of independent realizations for random rxalt#; ]

The generator of independent realizations of random mé#BiX is based on the Monte Carlo Markov Chain
(MCMC) (Metropolis-Hastings algorithm [18] with the PDFfdeed by Eq. (18). Then, independent realizations of
random matri{Z;] are obtained using Eq. (16). Finally, independent reatinatof random matrixJ,] are obtained
using Eg. (14) and independent realizations of random miss

3.2 Stochastic matrix model for a multibody dynamical systen with uncertain rigid bodies and its random
response

In order to limit the developments, it is assumed that onlg ofthen, rigid bodies denoted by RBof the rigid
multibody system is uncertain. The extension to severaéuam rigid bodies is straightforward. Let tiée,

random coordinates be represented byRf&:-valued stochastic process= (Ry, ...,R,,, Si, .., Sy, ) indexed by
[0,T] and let then. random Lagrange multipliers be represented byRHRe-valued stochastic procedsindexed
by [0, T']. The deterministic Eq. (6) becomes the following stocleaatjuation

T .
M o] HU]:[ a-K (22)
[ @] 0] A i AL
Uo)=Uy , U0 =vy , a.s. (23)
in which the vectoldy = (ro.1,.--,R0,i,- -, 0.ny,%,15 - - -, S0,n,, ) IS random due to the random vect®s ;. For

all given real vector, the vectoiK (u) of the Coriolis forces is random due to the random m4ttik The random
mass matriXM] is defined by

= M0 | @4)

in which the(3n; x 3n;) random matricefM "] and[M]* are defined by

mih] 0
M= L (25)
0 mnb[IB]
g 0
M= | o (26)
0 ’ [an]

Random Eqgs. (22) and (23) are solved using the Monte Carlolatian method.

4 APPLICATION
In this section, we present a numerical application whididates the methodology presented in this paper.
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Figure 1: Random transient acceleration of pdiy,;, Case 1: confidence region (upper and lower thin solid lines)

mean response (thick solid line) and response of the mearindashed line)z, s-acceleration (left figure) and

xp,1-angular acceleration (right figure).

4.1 Description of the mean model

The rigid multibody model is made up of five rigid bodies anx jsints which are described in the fixed frame
(O,20,1,%0,2,0,3). The plan defined byO, z¢ 1, z¢2) is identified below as the "ground”. The gravity forces in
thez( 3-direction are taken into account.

() Rigid bodies

In the initial configuration, the rigid bodid8b1, Rb2, Rb3 andRb4 are cylinders for which the axes follow thg 3-
direction. In the initial configuration, the rigid bodyb5 is supposed to be symmetric with respect to the planes
(G5, 20,1, 0,2) and(G5, xo 1, x0,3) In Which G5 is the center of mass dtb5.

(i) Joints

— The joint Ground-Rb1 is made up of a prismatic joint followingy s-direction. The displacement following
x 3-direction, denoted byi1(¢), is imposed. Displacementl () is zero in the rangé), 1 x 10~3]s, is linearly
inscreasing in the randé x 1073,6 x 1073]s and is equal td0~2 m in the rangg6 x 1073,3 x 1072]s. The
joint Ground-Rb2 is a prismatic joint followingr s-direction. The displacement following, s-direction denoted
by u2(t), is imposed. Displacement (t) is zero in the rang@, 1.1 x 10~2]s, is linearly inscreasing in the range
[1.1x 1072,1.6 x 10~2]s and is equal td0~2 m in the rangd1.6 x 1072, 3 x 10~2]s. The displacement following
x0,1-direction is unconstrained.

— The jointsRb1-Rb3 and Rb2- Rb4 are constituted of 6D spring-dampers.

— Finally, the jointsRb3- Rb5 and Rb4-Rb5 arex »-direction revolute joints.

4.2 Random response of the stochastic model

Rigid body Rb5a is considered as uncertain and is therefore modeled by amandid body. As explained in Sec-
tion 3, the elements of inertia of the uncertain rigid Bdelyp are replaced by random quantities. The fluctuation of
the response is controlled by four parametgrs, h, \; and\,. A sensitivity analysis is carried out with respect to
these four parameters. Statistics on the transient resmyesestimated using the Monte Carlo simulation method
with 500 independent realizations. The initial velocities and dageelocities are zero. The observation paifi
belongs taRb5.

(i) Case 1:M5 is randomRg 5 is deterministic ands] is deterministic.

We choose),, . = 0.5. The confidence region, with a probability levél = 0.90, of the random acceleration of
point P, is plotted in Fig. 1. It can be noted that the acceleratiorisgive to the mass uncertainties.

(i) Case 2:M; is deterministicR 5 is deterministic andlJs] is random.

We choose\; = —5 and),, = —5 for random matri¥Js]. The confidence region, with a probability level = 0.90,

of the random acceleration of poift,,, is plotted in Fig. 2. We can remark, as it was expected, ttaatigular
acceleration is sensitive to uncertainties on the tensrerfia.

(iii) Case 3:Mj5 is deterministicRy 5 is random andJs] is deterministic.

The domain oR 5 is supposed to be a parallelepiped which is centered at fift0.55) for which its edges are
parallel to the directionsy 1, zo 2 andzy s and for which the lengths following these three directioresraspec-
tively 0.5, 0.2 and0.02. The confidence region, with a probability levél = 0.90, of the random acceleration of
point P, is plotted in Fig. 3. We can remark that the angular acceteras sensitive to uncertainties on initial
center of mass aRb5.

(iv) Case 4:Ms5, Ry 5 and[Js] are random.
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Figure 2: Random transient acceleration of paipts, Case 2: confidence region (upper and lower envelopes),
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Figure 3: Random transient acceleration of paipts, Case 3: confidence region (upper and lower envelopes),
mean response and response of the mean model are superimposecceleration (left figure) and, ;-angular
acceleration (right figure).

The values of the parameters of the PDF are those fixed in the firevious cases. The confidence region, with a
probability level P. = 0.90, of the random acceleration of poiftt; is plotted in Fig. 4. It can be viewed that (1)
the randomness on the acceleration is mainly due to the nanelss of masa/s, (2) the randomness on the angular
acceleration is mainly due to the randomness of the initaltnR 5 of the center of mass and the random tensor
of inertia[Js].

5 CONCLUSION

We have presented a complete and general probabilistic imgd# uncertain rigid bodies taking into account
all the known mechanical and mathematical properties ofjid thody. This probabilistic model of uncertainties

is used to construct the stochastic equations of uncertaitibmdy dynamical systems. The random dynamical
responses can then be calculated. In the proposed praigbitiodel, the mass, the center of mass and the tensor of
inertia are modeled by random variables for which the priobpbility density functions are constructed using the
maximum entropy principle under the constraints definedlltha available mathematical, mechanical and design
properties. Several uncertain rigid bodies can be linkexh eghers in order to obtain the stochastic dynamical
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Figure 4: Random transient acceleration of pdiy;, Case 4: confidence region (upper and lower thin solid lines)
mean response (thick solid line) and response of the meaelnfashed line);x, s-acceleration (left figure) and
x0,1-angular acceleration (right figure).
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model of the uncertain multibody dynamical system. The th@ooposed has been illustrated analyzing a simple
example. The results obtained clearly show the role playedrzertainties and the sensitivity of the responses
due to uncertainties on (1) the mass (2) the center of mas¢3rite tensor of inertia. Such a prior stochastic

model allows the robustness of the responses to be analyitetbapect to uncertainties. If experimental data were
available on the responses, then the parameters whictottrdevel of uncertainties could be estimated by solving
an inverse stochastic problem.
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