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ABSTRACT

This paper is devoted to the construction of stochastic reduced-order model for dynamical struc-
tures having a high modal density in the low-frequency range. We are particularly interested
in automotive vehicles which are made up of stiff parts and flexible components. This type
of structure is characterized by the fact that it exhibits, in the low-frequency range, not only
the classical global elastic modes but also numerous local elastic modes which cannot easily
be separated from the global elastic modes. To solve this difficult problem, a new approach
has recently been proposed for constructing a reduced-order computational dynamical model
adapted to the low-frequency range. The proposed method requires to decompose the domain
of the structure into subdomains. Such a decomposition is carried out using the Fast Marching
Method. An adapted generalized eigenvalue problem is constructed using such a decomposition
and allows an adapted vector basis to be computed. This basis is then used to construct the
reduced-order model. Model uncertainties induced by modeling errors in the computational
model are taken into account using the nonparametric probabilistic approach which is imple-
mented in the reduced-order model. The methodology is applied on a complex computational
model of an automotive vehicle.

1 INTRODUCTION

This work is performed in the context of the dynamic analysis of automotive vehicles. An
automotive vehicle is made up of stiff parts and flexible components. In the low-frequency
range, this type of structure is characterized by the fact that it exhibits, not only the classical
global elastic modes, but also numerous local elastic modes in the same low-frequency band.
With such a complex heterogeneous structure, the global elastic modes cannot clearly be sep-
arated from the local elastic modes because there are many small contributions of the local
deformations in the deformations of the global elastic modes and conversely. We then have to
construct a new vector basis which allows a reduced-order dynamical system to be constructued
in the low frequency domain for predicting the global displacements. The vector basis of the
local displacements is not orthogonal to the global displacement vector basis. Consequenly, a
part of the mechanical energy is transferred from the reduced-order system constructed with
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the global displacements vector basis to the dynamical subsystem constructed with the local
displacements vector basis and which stores a part of the mechanical energy and then, which
induces an apparent damping for the reduced-order dynamical system. In order to construct
a reduced-order model for the low-frequency band, which allows a good approximation of the
global displacements to be predicted and then, if needed, to take into account the effects of the
local displacements in the total response, a new approach [1] has recently been proposed. This
method allows a basis of the global displacements and a basis of the local displacements to
be calculated by solving two separated eigenvalue problems, but which requires to decompose
the computational model in subdomains whose sizes are controlled. In this paper, we propose
to use the Fast Marching Method for the construction of such subdomains. We construct a
reduced-order model using only the basis of global displacements. In addition, in order to take
into account model uncertainties induced by modeling errors in the computational model, we
introduce a stochastic reduced-order model in order to taking into account the irreducible errors
introduced by neglecting the local displacements. In a first part, we present the construction
of the stochastic reduced-order model. Then, we present the Fast Marching Method (see [2]).
Finally, we apply the methodology for a complex finite element model of an automotive vehicle.

2 DESCRIPTION OF THE METHOD

In this section, we summarize the method introduced in [1]. This method allows a basis of the
global displacements and a basis of the local displacements to be constructed by solving two
separated eigenvalue problems. It should be noted that these two bases are not made up of the
usual elastic modes. The method is based on the construction of a projection operator which
reduces the kinetic energy while the elastic energy remain exact. This method is applied to the
structural part of the vibroacoustic system we are interested in.

2.1 Reference reduced model
We are interested in predicting the frequency response functions of a vibroacoustic damped
structure occupying a domain Ω, in the frequency band of analysis B = [ωmin, ωmax] with
0 < ωmin. Let U(ω) be the complex vector of the m DOF of the structural part of the vibroa-
coustic computational model constructed by the finite element method. Let [M] and [K] be the
mass and stiffness matrices which are positive-definite symmetric (m×m) real matrices. The
eigenfrequencies λ and the elastic modes ϕ in R

m of the conservative part of the dynamical
computational model of the structure are the solution of the following eigenvalue problem,

[K]ϕ = λ [M]ϕ . (1)

Then an approximation Un(ω) at order n of U(ω) can be written as

Un(ω) =

n∑

α=1

qα(ω)ϕα = [Φ] q(ω) , (2)

in which q(ω) = (q1(ω), . . . , qn(ω)) is the complex vector of the n generalized coordinates and

where [Φ] = [ϕ1 . . .ϕn] is the (m × n) real matrix of the elastic modes associated with the n

first eigenvalues.

2.2 Decomposition in subdomains for kinematic energy reduction.
In this section, we introduce a decomposition of the domain of the structure which allows
the kinematic energy to be reduced. We then obtained an associated mass matrix which is
adapted to the calculation of the global elastic modes in the low-frequency band of analysis in
which there are also a large there are a large number of local elastic modes. The details of the
methodology for the the continuous and the discrete cases are presented in [1].
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2.2.1 Decomposition of domain Ω
Domain Ω is partitioned into nJ subdomains Ωj such that, for j and k in {1, . . . , nJ},

Ω =

nJ⋃

j=1

Ωj , Ωj ∩ Ωk = ∅ . (3)

The choice of the length of subdomains is related to the smallest ”wavelength” of the global

elastic modes that we want to extract in presence of numerous local modes. The construction
of the subdomains are presented in Section 3.

2.2.2 Projection operator
Let u 7→ hr(u) be the linear operator defined by

{hr(u)}(x) =
nJ∑

j=1

IΩj
(x)

1

mj

∫

Ωj

ρ(x)u(x) dx , (4)

in which x 7→ IΩj
(x) = 1 if x is in Ωj and equal to 0 otherwise. The local mass mj is defined, for

all j in {1, . . . , nJ}, by mj =
∫
Ωj

ρ(x) dx, where x 7→ ρ(x) is the mass density. Let u 7→ hc(u)

be the linear operator defined by

hc(u) = u− hr(u) . (5)

Function hr(u) will also be denoted by ur and function hc(u) by uc. We then have u =

hr(u)+hc(u) that is to say, u = ur +uc. Let [Hr] be the (m×m) matrix relative to the finite
element discretization of the projection operator hr defined by Eq. (4). Therefore, the finite
element discretization U of u can be written as U = U

r + U
c, in which

U
r = [Hr]U

and
U

c = [Hc]U = U− U
r ,

which shows that [Hc] = [Im]− [Hr]. Then, the reduced (m×m) mass matrix [Mr] is such that

[Mr] = [Hr]T [M][Hr] ,

and the complementary (m×m) mass matrix [Mc] is such that

[Mc] = [Hc]T [M][Hc] .

Using the properties of the projection operator defined by Eq. (4), it can be shown [1] that

[Mc] = [M]− [Mr] .

2.3 Global and local displacements bases
There are two methods to calculate the global displacements basis and the local displacements
basis. The first one is the direct method that will be used to reduce the matrix equation. In
such a method, the basis of the global displacements and the basis of the local displacements
are directly calculated using matrix [Mr]. The second one, is the double projection. This
method is less intrusive with respect to the commercial software and less time-consuming than
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the direct method. The global displacements eigenvectors φg in R
m are solution of the following

generalized eigenvalue problem
[K]φg = λg[Mr]φg . (6)

The local displacements eigenvectors φℓ in R
m are solution of the generalized eigenvalue problem

[K]φℓ = λℓ[Mc]φℓ . (7)

The solutions of the generalized eigenvalue problems defined by Eqs. (6) and (7) are then
written, for n sufficiently large, as

φg = [Φ] φ̃
g

, φℓ = [Φ] φ̃
ℓ
, (8)

in which [Φ], defined in Eq. (2), is the matrix of the elastic modes. The global displacements

eigenvectors are the solutions of the generalized eigenvalue problem

[K̃] φ̃
g
= λg [M̃ r] φ̃

g
, (9)

in which [M̃ r] = [Φr]T [M] [Φr] and [K̃] = [Φ]T [K] [Φ], and where the (m × n) real matrix

[Φr] is such that [Φr] = [Hr] [Φ]. The local displacements eigenvectors are the solutions of the
generalized eigenvalue problem

[K̃] φ̃
ℓ
= λℓ[M̃ c] φ̃

ℓ
, (10)

in which [M̃ c] = [Φc]T [M] [Φc] and where the (m × n) real matrix [Φc] is such that [Φc] =

[Hc] [Φ] = [Φ] − [Φr]. It is proven in [1] that the family {φg
1, . . . ,φ

g
3nJ

,φℓ
1, . . . ,φ

ℓ
m−3nJ

} is a
basis of Rm. The mean reduced matrix model is obtained by the projection of U(ω) on the
family {φg

1, . . . ,φ
g
ng
,φℓ

1, . . . ,φ
ℓ
nℓ
} of real vectors associated with the ng first global displacements

eigenvectors such that ng ≤ 3nJ ≤ m and with the nℓ first local displacements eigenvectors
such that nℓ ≤ m. It should be noted that, if the double projection method is used, then we
must have ng ≤ n, nℓ ≤ n and nt ≤ n in which nt = ng+nℓ. Then, the approximation Ung,nℓ

(ω)
of U(ω) at order (ng, nℓ) is written as

Ung,nℓ
(ω) =

ng∑

α=1

qgα(ω)φ
g
α +

nℓ∑

β=1

qℓβ(ω)φ
ℓ
β . (11)

This decomposition is then used to construct the generalized mass, stiffness and damping
matrices which can be written in a block representation as

[M] =

(
Mgg Mgl

M lg M ll

)
, [D] =

(
Dgg Dgl

Dlg Dll

)
, [K] =

(
Kgg Kgl

K lg K ll

)
. (12)

2.4 Mean reduced model
The aim of this work is to construct a reduced-order model adapted to the low-frequency
range in which the synthesis of the frequency responses can be obtained using only the global
displacements eigenvectors. So the new approximation Ung

(ω) of U(ω) at order ng is written
as

Ung
(ω) =

ng∑

α=1

qgα(ω)φ
g
α . (13)
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The corresponding reduced-order matrix equation is than written as

(−ω2[Mgg] + iω[Dgg] + [Kgg])gg = Fg . (14)

Since a part of the mechanical energy is transferred from the global eigenvectors to the local
eigenvectors and induced an apparent damping, we propose to replace the damping matrix [Dgg]
by a modified damping matrix [Dgg

mod] which is calculated by minimizing the distance between
the frequency responses computed with the proposed reduced-order model and the frequency
responses given by the reference model.

2.5 Probabilistic model of uncertainties
A probabilistic model of uncertainties is introduced in the reduced-order computational model
in order to take into account the system-parameter uncertainties and the model uncertainties
induced by modeling errors in the reference model from which the reduced-order model has
been deduced. We also have to take into account uncertainties induced by the irreducible errors
introduced by neglecting the contribution of the local displacements in the constructed reduced-
order model. To take into account all these sources of uncertainties, we use the nonparametric
probabilistic approach (see [4]) which consists in replacing, in the reduced-order computational
model, the deterministic generalized mass, damping and stiffness matrices by random matrices.
In this work, the uncertainties are not taken into account on the modified generalized damping
matrix (it has previously been proven that the random frequency responses are not sensitive
to the statistical fluctuations of the damping matrix in the framework of the nonparametric
probabilistic approach). Therefore the matrices [Mgg] and [Kgg] are replaced by the random
matrices [Mgg] and [Kgg] for which the probability density functions (PDF) and the generator of
independent realizations are given in [4]. The probability density functions of these two random
matrices depend on two dispersion parameters (δMgg and δKgg) which have to be identified using
the random frequency response of the stochastic reference model and the maximum likelihood
method. Therefore, the random frequency response of the stochastic reduced-order model
(Ug(ω; δMgg ; δKgg)) is solution of the equation

Ug(ω; δMgg ; δKgg) =

ng∑

α=1

Qα(ω; δMgg ; δKgg)φα , (15)

(−ω2[Mgg(δMgg)] + iω[Dgg
mod] + [Kgg(δKgg)])Qg(ω; δMgg ; δKgg) = F g . (16)

3 CONSTRUCTION OF THE SUBDOMAINS

For the computational model of a complex structure such as an automotive vehicle, the de-
composition of the domain is not easy to be carried out because the geometry is very complex
and curved. The method we propose for this decomposition is based on the Fast Marching
Methods (FMM) introduced in [2] which gives a way to propagate a front (the notion of front
will be defined below) on connected parts from a starting point. In this section, the FMM is
summarized and then we explain how to construct the subdomains using the FMM.

3.1 Presentation of the Fast Marching Method (FMM)
Let x be the generic point in R

3 belonging to the complex geometry Ω. Let x0 be a fixed point
belonging to Ω. Let U(x) be a geodesic distance adapted to the geometry, between x and x0.
It should be noted that for a simple 3D volume domain, such a geodesic distance would be the
Euclidean distance ‖x − x0‖ in which ‖.‖ is the Euclidean norm. The front related to x0 is
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defined as the subset of all the x such that U(x) has a fixed value. The FMM [2] allows the
front to be propagated from starting point x0. We then have to calculate U(x) verifying the
following nonlinear Eikonal equation

‖∇U(x)‖ = F (x) , x ∈ Ω , (17)

with ∇ the gradient with respect to x, in which F (x) is a given arbitrary positive-valued
function and for which the boundary condition is written as U(x) = 0 on Γ0 which is a curved
line or a surface containing x0. Introducing the finite element mesh of Ω, Eq. (17) is discretized
using an upwind approximation (forward finite difference) for the gradient (see [2]). For the
particular case of a rectangular regular finite element mesh for which the mesh size is h and for
which the nodes are xij , we have to find Uij = U(xij) as the solution of the following equation

{max(Uij − Ui−1,j , Uij − Ui+1,j , 0)}
2

+ {max(Uij − Ui,j−1, Uij − Ui,j+1, 0)}
2 = h2F 2

ij .
(18)

Since the information in Eq. (18) propagates in a unique way, this equation allows the front to
be propagated from the starting point. The use of the word Fast in FMM is due to the fact
that the nodes associated with Uij and identified by Eq. (18) belong to a small domain which
is called the Narrow Band (NB).

In the FMM, the algorithm introduces three groups of nodes:
(1) alive nodes for which the value of Uij is fixed and does not change,
(2) trial nodes for which the value of Uij is given but has to be updated until they

become alive and these nodes constitute the Narrow Band,
(3) far nodes which have not been reached by the front and therefore are such that

Uij = +∞.

The front is propagated using the following algorithm:
Initialization

• Choose a starting node x0 rewritten as x0,0, which is alive and set U0,0 = U(x0,0) = 0.

• The 4 neighboring nodes of x0,0 become trial nodes and the associated value of U is set
to hFij.

• All the other nodes are far nodes with associated value of U equal to infinity.

Loop

• Search among trial nodes, the node xij with the smallest value of U .

• Remove xij from trial nodes and add xij to alive nodes.

• For each neighboring node of xij, there are two possible cases:

– if the neighboring node is a far node, add it to the trial nodes and its value of U is
set to Uij + hFij .

– if the neighboring node is a trial node, its value of U is updated solving Eq. (18).

The loop is repeated until all the node are alive. For triangular meshes, the algorithm described
above is unchanged but Eq. (18) must be adapted (see [3]).
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3.2 Construction of the subdomains
The subdomains {Ωj , j = 1, . . . , nJ} of Ω are constructed using the FMM. This construction
has two steps. The first one consists in choosing the centers of the subdomains. The second
one consists in generating the subdomains using these centers as starting points.

(i) Selection of the subdomains centers
The subdomains centers are chosen on the stiff parts of the computational model and are uni-
formly distributed on the stiff parts.

(ii)Computation of the subdomains
To construct the subdomains {Ωj, j = 1, . . . , nJ} for which the subdomains centers have pre-
viously been chosen, we simultaneously propagate a front starting from each center until all
the nodes become alive nodes with respect to one of the front. Then, the boundaries of the
subdomains correspond to the meeting lines of the fronts.

4 APPLICATION

In this section, we present an application of the methodology presented in the previous sections
for a complex real automotive model.

4.1 Presentation
The application is done for a computational model (Finite Element Model) of an automotive
vehicle. Such a FE model has 250 000 nodes and contains various types of finite elements such
as volume finite elements, surface finite elements and beam elements. The frequency band of
analysis is B =]0 , 120]Hz. The structure has 1, 462, 698 DOF.

Fig. 1: The Finite Element model of an automotive vehicule

4.1.1 Decompostion of the domain
The FMM method presented in Section 3 is applied to the mesh of the structure of the auto-
motive model. The centers of the subdomains and the subdomains obtained from these centers
are represented in Fig. 2.

4.1.2 Elastic modes, global and local displacements eigenvectors
In a first step, the elastic modes are calculated with the finite element model. There are 160
eigenfrequencies in the frequency band of analysis B. In a second step, the global and local

7



Fig. 2: Centers of the subdomains (left) and subdomains (right)

displacements eigenvectors are constructed using the double projection method. In frequency
band ]0 , 120] Hz, there are ng = 36 global displacements eigenvectors and nℓ = 124 local
displacements eigenvectors. To see the good separation obtained between the global displace-
ments eigenvectors and the local displacements eigenvectors, Fig. 3 displays the eleventh elastic
mode (right figure) for which there are local displacements and the corresponding fourth global
displacements eigenvector (left figure) for which the local displacements have been filtered.

Fig. 3: Fourth global displacements eigenvector (left) and corresponding eleventh elastic
mode (right).

4.2 Frequency response functions
For all ω ∈ B, the structure is subjected to an external point load equal to 1 N applied to
two nodes, Exc1 and Exc2, located in the stiff part of the structure. The frequency response
is calculated at one observation point, Obs1, which is located in the stiff part (see Fig. 1).
The frequency responses are calculated for different projections associated with the different
bases: for the elastic modes (n = 160), for global displacements eigenvectors (ng = 36 and
nℓ = 0) and finally, for global displacements eigenvectors with the modification of the damping
matrix (ng = 36 and nℓ = 0) and for global and local displacements eigenvectors (ng = 36
and nℓ = 124). The modulus, in log scale, of the frequency response function is displayed
in Fig. 4. It can be seen that the responses calculated using global and local displacements
eigenvectors are exactly the same that the response calculated using the elastic modes. In the
Fig. 4, we can see that the response calculate with the global displacement eigenvector gives a
good approximation of the response calculate with the elastic modes. Moreover, the response
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Fig. 4: Modulus, in log scale, of the frequency response function for Obs1. Compar-
isons between different projection bases: elastic modes (solid line), global displacements
eigenvectors only (dashed line), global displacements eigenvectors with modification of
the damping matrix (mixed line), global and local displacements eigenvectors (superim-
posed to the solid line).

calculated with the modified damping matrix gives a better result.

4.3 Random frequency response
In this section, we calculate the stochastic reduced model. We use 1000 simulations for the
Monte Carlo simulation method. The confidence regions corresponding to a probability level
Pc = 0.95 is plotted in Fig.5. The region of confidence of the reference model (calculate with
the elastic modes) is included in the region of confidence calculate with the stochastic reduced
order model.

5 CONCLUSION

In this work, we have applied a new methodology allowing a reduced-order computational dy-
namical model to be constructed for the low-frequency domain in which there are simultaneously
global and local elastic modes which cannot easily be separated with usual methods. Moreover,
we have used the Fast Marching Method which is adapted to complex geometry for constructing
the subdomains and the adapted reduced-order computational model. An associated stochastic
reduced-order model has then been introduced to take into account uncertainties in the adapted
reduced-order model. The results obtained are good with respect to the objectives fixed in this
work consisting in constructing a reduced-order model with a very low dimension, which has
the capability to predict the frequency responses in the low-frequency range.
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