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Abstract. The problem considered here concerns the construction of a stochastic reduced-order model for dynamical
structures having a high modal density in the low frequency range. The classical methods used for the low-frequency
range to construct a reduced-order model are not adapted in this case. We then use a recently proposed method which
consists in constructing a basis of the global displacements and a basis of the local displacements by solving two separate
eigenvalue problems. We then construct a stochastic reduced-order model using the basis of the global displacements and
the contribution of the local displacements is taken into account using a probabilistic approach. The theory is presented
and is applied to tube bundles structures which is are quasi-periodic structures for which the dynamical response is
characterized by ensemble (global) displacements and more local displacements.
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1 INTRODUCTION

This paper is devoted to the construction of a stochastic reduced-order model for dynamical structures having a high
modal density in the low frequency range. In general, dynamical structures exhibit well separated resonances in the
low-frequency range. This low modal density allows classical methods (such as modal analysis) to be completed. This
low-frequency range can clearly be separated from the medium-frequency range (for which the modal density is larger
but not uniform in frequency). In some cases, in the low-frequency, a dynamical structure can exhibit both the global
elastic modes (which characterize this low-frequency range) and numerous local elastic modes. This situation appears
for complex heterogeneous structures presenting stiff parts which support global displacements and flexible parts which
support local displacements. The presence of these flexible parts induces numerous local reasonance in the low frequency
range. Furthermore, in this case, the elastic modes cannot be separated into global elastic modes and local elastic modes.
Indeed, due to the coupling between global elastic modes and local elastic modes, the deformation of some global elastic
modes have local contributions and the deformation of some local elastic modes have global contributions. Then there
are no efficient sorting method which could be used to select the elastic modes as global elastic modes or as local elastic
modes. In addition, although the reduced-order model must be constructed with respect to the global elastic modes, this
reduced-order model must have the capability to predict the amplitudes of the responses of the structure in this low-
frequency range. Since there are local elastic modes in the frequency band, a part of the mechanical energy is transferred
from the global elastic modes to the local elastic modes which store this energy and then induces an apparent damping at
the resonances associated with the global elastic modes.

The objective of this paper is double: (1) The first one is to contruct a basis of global displacements and a basis of local
displacements by solving two generalized eigenvalue problems. The elements of theses two bases will not be classical
elastic modes (2) The second one is to construct a reduced-order model with the basis of the global displacements but in
taking into account the effects of the local displacements, in order to correctly predict the frequency response functions in
the low-frequency range.

These two objectives are achieved using the method developed in [1]. This method is based on a kinematic reduction
of the kinetic energy. Then, this reduced kinetic energy is used to construct a new global eigenvalue problem for which
the solutions form a basis of global displacements. This basis can be completed with a basis of local displacements
which is obtained by introducing a complementary kinetic energy, and then a local eigenvalue problem. A classical
method to construct a reduced-order model for quasi-periodic beam structures consists in modeling these structures by
simplified models using homogenisation methods ([2],[3] or equivalent beams [4]). Such a simplified model provides
quite a good approximation of the global contributions of the displacements but can clearly not take into account the local
contributions. Furthermore, the construction of an acurate simplified model cannot be carried out automatically and a
procedure of validation of the simplified model is always needed.

In this paper we first develop the details of the methodology presented in [1]. Then, we present the application of this
methodology to the dynamical structures we are interested in.
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2 REFERENCE REDUCED MATRIX MODEL

We are interested in predicting the frequency response functions of a three dimensional linear damped structure,
occupying a bounded domain Ω, in the frequency band of analysis B = [ωmin,ωmax] with 0< ωmin. The complex vector
U(ω) of the m DOF of the computational model constructed by the finite element method is solution of the following
complex matrix equation,

(−ω2[M]+ iω [D]+ [K])U(ω) = F(ω) , (1)

in which [M], [D] and [K] are respectively the (m×m) positive-definite symmetric real mass, damping and stiffness

matrices and where F(ω) is relative to the discretization of the external forces. The eigenfrequencies and the elastic
modes of the associated conservative dynamical system consists in finding λ and ϕϕϕ in Rm such that

[K]ϕϕϕ = λ [M]ϕϕϕ . (2)

Using the modal method, the approximationUn(ω) at order n of U(ω) is written as

Un(ω) =
n

∑
α=1

qα(ω)ϕϕϕα = [Φ]qqq , (3)

in which qqq= (q1, . . . ,qn) is the complex vector of the n generalized coordinates and where [Φ] = [ϕϕϕ1 . . .ϕϕϕn] is the (m×n)

real matrix of the elastic modes associated with the n first eigenvalues.

3 DECOMPOSITION OF THE MASS MATRIX

The details of the methodology for the discrete and the continuous cases are presented in [1]. The domain Ω is
partitioned into nJ subdomains Ω j such that, for j and k in {1, . . . ,nJ},

Ω =
nJ⋃

j=1

Ω j , Ω j ∩Ωk = /0 . (4)

Let uuu 7→ hr(uuu) be the linear operator defined by

{hr(uuu)}(xxx) =
nJ

∑
j=1

1lΩ j
(xxx)

1

m j

∫

Ω j

ρ(xxx)uuu(xxx)dxxx , (5)

in which xxx 7→ 1lΩ j
(xxx) = 1 if xxx is in Ω j and = 0 otherwise. The local mass m j is defined, for all j in {1, . . . ,nJ}, by

m j =
∫

Ω j
ρ(xxx)dxxx, where xxx 7→ ρ(xxx) is the mass density. Let uuu 7→ hc(uuu) be the linear operator defined by

hc(uuu) = uuu− hr(uuu) . (6)

Function hr(uuu) will also be denoted by uuur and function hc(uuu) by uuuc. We then have uuu = hr(uuu) + hc(uuu) that is to say,

uuu = uuur + uuuc. Let [Hr] be the (m×m) matrix relative to the finite element discretization of the projection operator hr

defined by Eq. (5). Therefore, the finite element discretization U of uuu can be written as U = Ur +Uc, in which Ur =
[Hr]U and U

c = [Hc]U = U−U
r which shows that [Hc] = [Im]− [Hr]. Then, the (m×m) reduced mass matrix [Mr] is

constructed such that [Mr] = [M][Hr] = [Hr]T [M] = [Hr]T [M][Hr] and where the (m×m) complementary mass matrix
[Mc] is constructed such that [Mc] = [M]− [Mr].

4 BASIS OF GLOBAL DISPLACEMENTS AND BASIS OF LOCAL DISPLACEMENTS

The basis of global displacements and the basis of local displacements are calculated using the decomposition of the
mass matrix [M]. The basis of global displacements is made up of the solutions φφφg in Rm of the generalized eigenvalue
problem

[K]φφφg = λ g[Mr]φφφg . (7)

This generalized eigenvalue problem admits an increasing sequence of 3nJ positive global eigenvalues 0 < λ g1 ≤ . . . ≤
λ g3nJ , associated with the finite family of algebraically independent global eigenvectors {φφφg1, . . . ,φφφ

g
3nJ

}. The family

{φφφg1, . . . ,φφφ
g
3nJ

} is defined as the basis of the global displacements. In general, this family is not made up elastic modes.

The basis of the local displacements is made up of the solutions φφφ ℓ in Rm of the generalized eigenvalue problem

[K]φφφ ℓ = λ ℓ[Mc]φφφ ℓ . (8)
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This generalized eigenvalue problem admits an increasing sequence of positive local eigenvalues 0 < λ ℓ
1 ≤ . . .≤ λ ℓ

m−3nJ
,

associated with the infinite family of local eigenvectors {φφφ ℓ
1, . . . ,φφφ

ℓ
m−3nJ

}. The family {φφφ ℓ
1, . . . ,φφφ

ℓ
m−3nJ

} is defined as the
basis of local displacements. In general, this family is not made up of elastic modes.

In practice, the basis of global displacements and the basis of local displacements are calculated by using a double
projection method which is less intrusive with respect to the commercial software and less time-consuming than the
direct method. The solutions of the generalized eigenvalue problems defined by Eqs. (7) and (8) are then written, for n
sufficiently large, as

φφφ g = [Φ] φ̃φφ
g

, φφφ ℓ = [Φ] φ̃φφ
ℓ
. (9)

The global eigenvectors are the solutions of the generalized eigenvalue problem

[K̃] φ̃φφ
g
= λ g [M̃r] φ̃φφ

g
, (10)

in which [M̃r] = [Φr]T [M] [Φr] and [K̃] = [Φ]T [K] [Φ], and where the (m×n) real matrix [Φr] is such that [Φr] = [Hr] [Φ].

The local eigenvectors are the solutions of the generalized eigenvalue problem

[K̃] φ̃φφ
ℓ
= λ ℓ[M̃c] φ̃φφ

ℓ
, (11)

in which [M̃c] = [Φc]T [M] [Φc] and where the (m× n) real matrix [Φc] is such that [Φc] = [Hc] [Φ] = [Φ]− [Φr].

5 MEAN REDUCED MATRIX MODEL

It is proven in [1] that the family {φφφg1, . . . ,φφφ
g
3nJ

,φφφ ℓ
1, . . . ,φφφ

ℓ
m−3nJ

} is a basis of Rm. The mean reduced matrix model

is obtained using the projection of U(ω) on the subspace of Cm spanned by the family {φφφg1, . . . ,φφφ
g
ng
,φφφ ℓ

1, . . . ,φφφ
ℓ
nℓ
} of real

vectors associated with the ng first global elastic modes such that ng ≤ 3nJ ≤ m and with the nℓ first local elastic modes
such that nℓ ≤ m. Then, the approximationUng,nℓ(ω) of U(ω) at order (ng,nℓ) is written as

Ung,nℓ(ω) =
ng

∑
α=1

q
g
α(ω)φφφ gα +

nℓ

∑
β=1

qℓβ (ω)φφφ ℓ
β . (12)

Let qqq(ω) = (qqqg(ω) ,qqqℓ(ω)) be the vector in Cnt of all the generalized coordinates such that qqqg(ω) = (qg1(ω), . . . ,qgng(ω))

and qqqℓ(ω) = (qℓ1(ω), . . . ,qℓnℓ(ω)). Consequently, vector qqq(ω) is solution of the following mean reduced matrix equation
such that

(−ω2[M]+ iω [D]+ [K])qqq(ω) = F (ω) , (13)

where [M], [D] and [K] are the (nt × nt) mean generalized mass, damping and stiffness matrices defined by blocks as

[M] =

[
Mgg Mgℓ

(Mgℓ)T Mℓℓ

]
, [D] =

[
Dgg Dgℓ

(Dgℓ)T Dℓℓ

]
, [K] =

[
Kgg Kgℓ

(Kgℓ)T Kℓℓ

]
. (14)

Let A (or A) be denotingM, D or K (orM, D or K). Therefore, the block matrices are defined by

[A]ggαβ = (φφφgα)
T [A]φφφgβ , [A]

gℓ
αβ = (φφφ gα)

T [A]φφφ ℓ
β , [A]

ℓℓ
αβ = (φφφ ℓ

α)
T [A]φφφ ℓ

β , (15)

which can be rewritten, using Eq. (9),

[A]
gg

αβ = (φ̃φφ
g

α)
T [Ã]φ̃φφ

g

β , [A]
gℓ
αβ = (φ̃φφ

g

α)
T [Ã]φ̃φφ

ℓ

β , [A]
ℓℓ
αβ = (φ̃φφ

ℓ

α)
T [Ã]φ̃φφ

ℓ

β , (16)

in which the [Ã] is the (n× n) matrix defined by [Ã] = [Φ]T [A][Φ]. The matrices [K]gg and [K]ℓℓ are diagonal. The

generalized force is a vector in Cnt which is written as F (ω) = (F g(ω) ,F ℓ(ω)) in which F
g
α(ω) = (φφφgα)

T F(ω) and

F
ℓ
α(ω) = (φφφ ℓ

α)
T F(ω). Then, for all ω fixed in B, the generalized coordinates are calculated by inverting Eq. (13) and

the response Ung,nℓ(ω) is calculated using Eq. (12).

6 PROBABILISTIC MODEL FOR THE LOCAL CONTRIBUTIONS

In the low-frequency range, the global displacements are not really sensitive to uncertainties introduced in the com-
putational model. Nevertheless, we have assumed that the structure under consideration had also local contributions in
the same low-frequency band. It is well known that the modal density of such local modes increases rapidly with the
frequency and that, in addition, the local modes are sensitive both to the system parameters uncertainties and to the
model errors which induce model uncertainties. In order to improve the predictability of the computational model, the
nonparametric probabilistic approach (see [5]) is used to take into account uncertainties for the local contributions.
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6.1 Random reduced matrix model

The nonparametric probabilistic approach consists in replacing the matrices of the reduced mean matrix model by
random matrices for which the probability distributions are constructed by using the maximum entropy principle with the

constraints defined by the available information. We introduce the random matrices [M̃MM], [D̃DD] and [K̃KK] with values in the

set of all the positive-definite symmetric (n× n) real matrices, for which their mean values are such that E{[M̃MM]} = [M̃],

E{[D̃DD]}= [D̃] and E{[K̃KK]}= [K̃], and finally, verify the following inequalities E{‖[M̃MM]−1‖
2

F}<+∞ , E{‖[D̃DD]−1‖
2

F}<+∞

and E{‖[K̃KK]−1‖
2

F} < +∞ which assure that there exists a second-order random solution to the stochastic reduced-order

equation. The probability distribution of each random matrix [MMM], [DDD] or [KKK] depend on the mean value [M̃], [D̃] or [K̃]
and on a dispersion parameter δM , δD or δK defined by

δ 2
A =

E{‖[ÃAA]− [Ã]‖2F}

‖[Aℓℓ]‖2F
, (17)

in which Ã (or ÃAA) is M̃, D̃ or K̃ (or, M̃MM, D̃DD or K̃KK). The dispersion parameters allow the level of uncertainties to be

controlled. For Ã (or ÃAA) being M̃, D̃ or K̃ (or, M̃MM, D̃DD or K̃KK), we introduce the Cholesky factorization [ÃAA] = [LLLÃAA]
T [LLLÃAA] and

[Ã] = [LÃ]
T [LÃ]. Then, the random generalized mass, damping and stiffness matrices are written as

[MMM]=

[
Mgg MMMgℓ

(MMMgℓ)T MMMℓℓ

]
, [DDD]=

[
Dgg DDDgℓ

(DDDgℓ)T DDDℓℓ

]
, [KKK]=

[
Kgg KKKgℓ

(KKKgℓ)T KKKℓℓ

]
, (18)

in which the block matrices are defined for Ã (or ÃAA) being M̃, D̃ or K̃ (or, M̃MM, D̃DD or K̃KK) by

[A]ggαβ = (φ̃φφ
g

α)
T [Ã]φ̃φφ

g

β , [AAA]
gℓ
αβ = (φ̃φφ

g

α)
T [LÃ]

T [LLLÃAA]φ̃φφ
ℓ

β , [AAA]
ℓℓ
αβ = (φ̃φφ

ℓ

α)
T [ÃAA]φ̃φφ

ℓ

β . (19)

6.2 Random frequency responses

The random responseUUUng,nl (ω) is then written as

UUUng,nℓ(ω) =
ng

∑
α=1

Q
g
α(ω)φφφ gα +

nℓ

∑
β=1

Qℓ
β (ω)φφφ ℓ

β , (20)

in which the random vector QQQ(ω) = (QQQg(ω) ,QQQℓ(ω)) with values in Cnt of all the generalized coordinates is such that

QQQg(ω) = (Qg1(ω), . . . ,Qgng(ω)) and QQQℓ(ω) = (Qℓ
1(ω), . . . ,Qℓ

nℓ
(ω)). Consequently, vector QQQ(ω) is solution of the follow-

ing stochastic reduced matrix equation such that

(−ω2[MMM]+ iω [DDD]+ [KKK])QQQ(ω) = F (ω) . (21)

This equation is solved using the Monte Carlo simulation method.

7 APPLICATION TO A TUBE BUNDLE STRUCTURE

7.1 Mean Finite Element Model

The dynamical system is made up of 49 tubes linked each to the others by four grids. There are two types of tubes:

0 1 2 3 4 5 6 7 8

1

2

3

4

5

6

7

Figure 1: Geometry of the dynamical system. Right figure: 3D-Mesh. Left figure: Grid-view.

(1) the guid-tubes (Black tubes on Fig. 1) which are clamped at their ends and welded to the grids and (2) the plain-
tubes (Grey tubes on Fig. 1) which are free at their ends and linked to the grids by linear springs . Guid-tubes are
circular, homogeneous, isotropic beam with constant outer radius 6.0× 10−3 m, thickness 4.0× 10−4 m, length 2.25 m,
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mass density 6,526 kg/m3, Poisson ratio 0.3, Young modulus 9.84× 1010 N/m2. Plain-tubes are circular, homogeneous,

isotropic beam with constant outer radius 4.75× 10−3 m, thickness 5.7× 10−4 m, length 1.91 m, mass density 3.79×
104 kg/m3 (equivalentmass density), Poisson ratio 0.3, Youngmodulus 9.84×1010N/m2. The four grids are assemblages

of rectangular, homogeneous, isotropic beams with constant heigth 2.7× 10−2 m, thickness 4.8× 10−4 m, mass density
1.2× 104 kg/m3, Poisson ratio 0.3, Young modulus 9.84× 1010 N/m2. The guid-tube/grid springs have stiffness equal

to 5.0× 109 N/m for the three translations and 5.0× 106 N/m for the three rotations. The plain-tube/grid springs have

stiffness equal to 1.8× 105 N/m for the three translations and 92 N/m for the three rotations.
The frequency band of analysis isB =]0 ,120]Hz. The finite element model is made up of Timoshenko beam elements

and linear spring elements. The structure has m= 12,750 DOF.

7.2 Modal analysis, global and local elastic modes

In a first step, the elastic modes are calculated with the finite element model defined by Eq. (2). There are 447
eigenfrequencies in the frequency band of analysis B and n = 500 eigenfrequencies in the band ]0 ,147.3] Hz. The 4th

elastic mode φφφ 1 and the 10
th elastic mode φφφ 2 are displayed in Fig. 2. We can see that φφφ4 is a global elastic mode while

φφφ 10 is a local elastic mode. In a second step, the global eigenvectors and the local eigenvectors are constructed. In order

Figure 2: 4th elastic (left) and 10th elastic mode (right).

to construct the matrix [Hr], the domain is splitted into 49 subdomains which correspond to 49 longitudinal slices of the
structure. In the band ]0 ,147.3]Hz, there are ng = 23 global eigenvectors and nℓ = 477 local eigenvectors. Fig. 3 displays
the distribution of the number of eigenfrequencies for the global eigenvectors and for the local eigenvectors. It can be
seen that there are numerous local eigenfrequencies intertwined with the global eigenfrequencies.

0 50 100 150
0

10

20

30

40

50

60

Figure 3: Distribution of the number of eigenfrequencies for the global eigenfrequencies (black histogram) and for the local
eigenfrequencies (grey histogram) as a function of the frequency in Hz.

7.3 Frequency responses calculated with the mean model

For all ω ∈ B, the structure is subjected to two external point loads equal to 1 N applied to a node which belongs to
the lowest grid (stiff part) and a node belonging to the plain-tube 3-3 (see Fig. 1) (flexible part) located between the two
lowest grids. The mean damping matrix is constructed using a modal damping corresponding to a damping rate ξ = 0.01.
The response is calculated at two observation points, the point Pobs1 located in the highest grid (stiff part) and the point
Pobs2 belonging to the plain-tube 3-3 (flexible part) located between the two highest grids. The response is calculated for
different projections associated with the different bases: for the initial elastic modes with Eq. (3) (n = 500), for global
eigenvectors with Eq. (12) (ng = 23 and nℓ = 0), for local eigenvectors with Eq. (12) (ng = 0 and nℓ = 477) and finally,
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for global and local eigenvectors with Eq. (12) (ng = 23 and nℓ = 477). The modulus in log scale of the responses are
displayed in Fig. 4. It can be seen that the responses calculated using global and local eigenvectors are exactly the same
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Figure 4: FRF for Pobs1 (left) and Pobs2 (right). Comparisons between different projection bases: initial elastic modes (solid thick
line), global eigenvectors (dashed line), local eigenvectors only (mixed line), global and local eigenvectors (solid thin line

superimposed to the solid thick line).

that the response calculated using the initial elastic modes. For point Pobs1 in the stiff part, the contribution of the global
eigenvectors is preponderant. For point Pobs2 in the flexible part, the contribution of the local eigenvectors is important
except for the two first resonances corresponding to the first global eigenvectors.

7.4 Random frequency responses calculated with the stochastic model

The random frequency responses is calculated as explained in Section 6. The dispersion parameters are chosen as
δM = 0.1, δD = 0.0 and δK = 0.1. TheMonte Carlo simulation method is carried out with 400 simulations. The confidence
regions corresponding to a probability level Pc = 0.98 are presented in Fig. 5. It can be seen that for observation points
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Figure 5: Random FRF for Pobs1 (left) and Pobs1 (right). Confidence region (lower and upper lines), mean response (solid middle
line), deterministic response calculated with the initial elastic modes (dashed line).

Pobs1 and Pobs2 the sensitivity of the resonances relative to the global eigenvectors with respect to uncertainties is low.
This variability increases at the frequencies for which the local contributions are not negligeable.

8 CONCLUSIONS

A general method has been developed and validated to construct a stochastic reduced-order model in low-frequency
dynamics in presence of numerous local elastic modes. The projection basis is made up of two families of vector bases:
the global eigenvectors and the local eigenvectors which are separately computed. This separation allows a probabilistic
model of uncertainties to be implemented only for the local eigenvectors wich are not robust with respect to uncertainties..
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