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Abstract. The aim of this paper is to use Bayesian statistics to update a probability density function (p.d.f.) related
to the tension parameter of the vocal folds, which is one of the main parameters responsible for the changing of the
fundamental frequency of a voice signal, generated by a mechanical/mathematical model for producing voiced sounds.
Three parameters are considered uncertain in the model used: the tension parameter, the neutral glottal area and the
subglottal pressure. Random variables are associated to the uncertain parameters and their corresponding p.d.f.’s are
constructed using the Maximum Entropy Principle. The Monte Carlo method is used to generate the voice signals, which
are the outputs of the model. For each voice signal, the corresponding fundamental frequency is calculated and a p.d.f.
for this random variable is constructed. Experimental values of the fundamental frequency are then used to update the
p.d.f. of the fundamental frequency and, consequently, of the tension parameter, through the Bayes’ method.
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1 INTRODUCTION

The production of voiced sounds (vowels are particular cases of voiced sounds) starts with the contraction-expansion
of the lungs causing an airflow (due to the difference of pressure between the lungs and the mouth), which will induce
the auto-oscillation of the vocal folds (located in the larynx). After passing through the glottis and due to the movement
of the vocal folds, the airflow is transformed into pulses of air which are generated (quasi)-periodically. The pressure
signal created is so called the glottal signal, which will further be filtered and amplified by the vocal tract to generate the
sound we hear. The fundamental frequency of the voice signal, which is the frequency of the vocal folds oscillation, is the
inverse of the period of the glottal signal. As the glottal signal is not exactly periodic, for each time interval corresponding
to a complete cycle of the vocal folds, a different fundamental frequency is associated. So, the voice signals constitute a
stochastic process and the fundamental frequency will be a random variable.

Some authors have modeled the vocal folds dynamics, mainly in a deterministic way (Koizumi et al., 1976; Lous et al.,
1998; Zhang et al., 2005). One of these models is the well-known model proposed by Ishizaka and Flanagan (1972) and it
will be used here because it has provided a simple and effective representation of the system for studying the underlying
dynamics of voice production.

2 BRIEF DESCRIPTION OF THE ISHIZAKA AND FLANAGAN MODEL

A diagram of the model is shown in Fig 1.

Figure 1: Two-mass model of the vocal folds.

The dynamics of the system is given by Eqs. (1) and (2) (Cataldo et. al., 2008, 2009):
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ψ1(w)u̇g +ψ2(w)|ug|ug +ψ3(w)ug +
1

c̃1

∫ t

0
(ug(τ)−u1(τ))dτ − y = 0 (1)

[M]ẅ+[C]ẇ+[K]w+h(w, ẇ,ug, u̇g) = 0 (2)

where w(t) = (x1(t),x2(t),u1(t),u2(t),ur(t))
t , the functions x1 and x2 are the displacements of the masses, u1 and u2

describe the air volume flow through the (two) tubes that model the vocal tract and ur is the air volume flow through the
mouth. The subglottal pressure is denoted by y and ug is the function that represent the glottal pulses signal. The function

output radiated pressure pr is given by pr(t) = ur(t)rr, in which rr = 128ρvc

9π3y2
2

, ρ is the air density, vc is the sound velocity,

and y2 is the radius of the second tube. The description of the other quantities that appear in the equation and a detailed
discussion of the model, including its implementation, can be found in (Cataldo et al., 2009).

The process to generate a voiced sound is complex and its modeling involves a lot of quantities which should be
controlled. The interest here is in the changing of the fundamental frequency. The three main parameters responsible for
these changings, as discussed in (Cataldo et al., 2008, 2009; Ishizaka and Flanagan, 1972) are described in the following:

ag0: the area at rest between the vocal folds, called the neutral glottal area.

y: the subglottal pressure.

q: the tension parameter which controls the fundamental frequency of the vocal-fold vibrations because vocal fold ab-
duction and tension are the main factors used by a speaker to control phonation. In order to control the fundamental

frequency of the vocal folds, parameters m1, k1, m2, k2, kc are written as m1 = m̂1/q, k1 = q k̂1, m2 = m̂2/q, k2 = q k̂2,

kc = q k̂c, in which m̂1, k̂1, m̂2, k̂2, k̂c are fixed values.

These three parameters will be considered as uncertain and random variables will be associated to them. It means
that for each realization of the three random variables a different voice signal is produced, characterizing that the voice
production process generates a stochastic process.

The probability density functions associated to the random variables corresponding to the chosen uncertain parameters
will be constructed by using the Maximum Entropy Principle (or better, the Jaynes’s Maximum Entropy Principle) (Jaynes,
1957a, 1957b).

The measure of uncertainty (entropy) used here was proposed by (Shannon, 1948) and it is given by Eq. (3):

S(pX ) = −
∫ +∞

−∞
pX (x)ln( pX (x))dx . (3)

in which pX is the p.d.f. of the random variable X .
The goal is to maximize the measure S(pX ), subject to the constraints given by Eq. (4):

∫ +∞

−∞
pX (x)dx = 1 and

∫ +∞

−∞
pX (x)gi(x)dx = ai , i = 1, . . . ,m (4)

in which ai are usable information related to the functions gi.
According to the first part of the principle, only probability distributions consistent with the constraints given should

be used. However, an infinity of probability distributions compatible with the constraints may exist. The second part of
the principle states the way to choose one among the many p.d.f.’s that satisfies the constraints, the (unique) probability
distribution that maximizes the entropy.

3 PRIOR PROBABILISTIC MODEL OF THE UNCERTAIN PARAMETERS

The three parameters ag0, y, and q are modeled by random variables Ag0, Y , and Q, respectively. Consequently,
parameters m1, k1, m2, k2, and kc become random variables denoted by M1, K1, M2, K2, and Kc given by M1 = m̂1/Q,

K1 = Qk̂1, M2 = m̂2/Q, K2 = Qk̂2, and Kc = Qk̂c. The probability models derived here are particular cases of those
described in (Soize, 2000, 2001). Since no information is available concerning cross statistical moments between random
variables Ag0, Y , Q, they will be considered independent. The details about the construction of the p.d.f.’s related to these
three random variables can be found in (Cataldo et al., 2009). The expressions of the p.d.f.’s will be described in the
following.

The p.d.f. for Ag0 is given by Eq. (5):

pAg0
(ag0) = 1]0,+∞[e

−λ0−λ1ag0
−λ2(ag0

)2

, (5)

where λ0, λ1 and λ2 are the solution of the three equations defined by Eqs. (6), (7) and (8):
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∫ +∞

−∞
pAg0

(ag0)dag0 = 1 , (6)

∫ +∞

−∞
ag0 pAg0

(ag0)dag0 = Ag0 , (7)

∫ +∞

−∞
a2

g0 pAg0
(ag0)dag0 = c, (8)

Since the constant c is unknown, a new parametrization expressing it as a function of the coefficient of variation δAg0

of the random variable Ag0 is given by c = Ag0
2
(

1+δ 2
Ag0

)
.

The p.d.f. for Y is given by Eq. (9):

pY (y) = 1]0,+∞[(y)
1

Y

(
1

δ 2
Y

) 1

δ2
Y × 1

Γ
(
1/δ 2

Y

)
(

y

Y

) 1

δ2
Y

−1

exp

(
− y

δ 2
Y Y

)
, (9)

in which δY = σY /Y is the coefficient of variation of the random variable Y such that 0 ≤ δY < 1/
√

2 and where σY is the

standard deviation of Y . In this equation α 7→ Γ(α) is the Gamma function defined by Γ(α) =
∫ +∞

0
tα−1e−tdt.

The p.d.f. for Q is given by Eq. (10):

pQ(q) = 1]0,+∞[(q)
1

Q

(
1

δ 2
Q

) 1

δ2
Q × 1

Γ

(
1/δ 2

Q

)
(

q

Q

) 1

δ2
Q

−1

exp

(
− q

δ 2
QQ

)
, (10)

in which the positive parameter δQ = σQ/Q is the coefficient of variation of the random variable Q such that δQ < 1/
√

2
and σQ is the standard deviation of Q.

4 STOCHASTIC SYSTEM WITH THE PRIOR PROBABILISTIC MODEL

As explained above, the stochastic system is deduced from the deterministic one substituting ag0, y, q by the random
variables Ag0, Y , Q. Consequently, the random variable associated to the fundamental frequency F0 is given by F0 =
M (Ag0,Y,Q). However, the nonlinear mapping M is not explicitly known and it is implicitly defined by Eqs. (1) and
(2) substituting ag0, y, q by random variables Ag0, Y , Q. The fundamental frequency associated to each realization of the
voice signal is calculated through the glottal signal, calculating the inverse of its period.

In order to validate the development presented here, voice signals produced by one person have been analyzed and
their statistics have been compared with simulations. A voice signal corresponding to a sustained vowel /a/ has been
recorded from one person and 1,800 frames were obtained from this signal, each one with 0.01s of length. For each
frame, the corresponding fundamental frequency was calculated. So, a corresponding p.d.f., the so-called experimental,
can be constructed. Figure 2 shows the p.d.f. of the fundamental frequency constructed from the experimental data.

Figure 2: Probability density function corresponding to experimental fundamental frequency

The problem to be solved to update the p.d.f. of Q, using Bayesian statistics, will be divided into two parts: at first,
an inverse problem will be solved in order to obtain, from simulations, a p.d.f. of the fundamental frequency near to the
experimental one. Then, at the second part, the p.d.f. obtained in the first part will be updated, using experimental data
and the Bayesian method. Consequently, the updated p.d.f. of Q will be obtained.
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4.1 Description of the first part

The idea is to identify the mean values Ag0, Y , Q, and also the coefficients of dispersion δAg0
, δY , δQ such that

the experimental mean value of the fundamental frequency mF0
= 117.0580 Hz and also the experimental coefficient of

dispersion of the fundamental frequency δF0
=

σF0

mF0

= 0.0084 can be achieved.

Step 1: Values of ag0
, y, and q are chosen, in the corresponding deterministic model, such that an output radiated pressure

signal with fundamental frequency f0 = 117.0580 Hz is obtained.

Step 2: The values of ag0
, y, and q found in Step 1 are used as the mean values Ag0

, Y , and Q in the corresponding
stochastic problem.

Step 3: With the mean values described in Step 2, values of δAg0
, δY , and δQ are chosen such that the value of δF0

=
σF0

mF0

= 0.0084.

Clearly, in order to identify the parameters as described, many tests were performed. If the number of cases is large, a
strategy to solve this inverse problem can be to create an adequate cost function. The values obtained in each step were:

Step 1: ag0 = 5×10−2 m2, y = 750Pa, and q = 0.63.

Step 2: Ag0 = 5×10−2 m2, Y = 750Pa, and Q = 0.63 which will be used in the corresponding stochastic problem.

Step 3: With the mean values described in Step 2, the mean value of the fundamental frequency obtained, considering
700 realizations and using the Monte Carlo method, was mF0

= 117.1603Hz. With the values of the coefficients of
dispersion δAg0

= 0.03, δY = 0.03, δQ = 0.006, the value obtained for the coefficient of dispersion of the fundamental

frequency was δF0
= 0.0077.

Figure 3 shows the probability density function constructed from experimental data and the probability density func-
tion constructed from simulations. The function ksdensity from MATLAB was used.

Figure 3: Probability density functions: experimental (continuous line) and simulated (dashed line).

4.2 Description of the second part

Let f
exp
0 (θ1), . . . , f

exp
0 (θνexp) be the νexp realizations of the random variable F

exp
0 , which correspond to values of

the fundamental frequency obtained experimentally (here, νexp = 1,800).

The posterior probability density function p
post
Q , related to the random variable Q, can be calculated using Bayesian

Statistics by Eq. 11:

p
post
Q (q) = Lbayes(q)p

prior
Q (q) (11)

in which p
prior
Q is the prior p.d.f., given by Eq. (10), and Lbayes is the likelihood function given by Eq. (12):

Lbayes(q) =

νexp

∏
ℓ=1

pF0|Q( f
exp,ℓ
0 |q)

EQ

{
νexp

∏
ℓ=1

pF0|Q( f
exp,ℓ
0 |Qprior)

} . (12)
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The posterior p.d.f. p
post
F0

, related to the fundamental frequency, is given by Eq. (13):

p
post
F0

( f0) =
∫

R

pF0|Q( f0|q)p
post
Q (q)dq . (13)

in which pF0|Q is the conditional p.d.f. of F0, given Q = q.
Using Eq. (11), Eq. (13) can be rewritten as Eq. (14) (Soize, 2010b):

p
post
F0

( f0) = E
{

Lbayes(Qprior pF0!Q( f0|Qprior)
}

. (14)

4.3 Computational aspects

Considering a number (ν) sufficiently large of the realizations of the random variable Qprior, for each frequency f0,

the value or P
post
F0

( f0) can be estimated by Eq. (15) (Soize, 2010b):

p
post
F0

( f0) ≃
1

ν

ν

∑
ℓ=1

Lbayes(Qprior(θℓ))pF0|Q( f0|Qprior(θℓ)) . (15)

For each realization Qprior(θℓ), the conditional probability density function pF0|Q is constructed and the corresponding

value pF0|Q( f0|Qprior(θℓ)) is then calculated.

4.3.1 Construction of pF0|Q
To construct the function pF0|Q, 100 deterministic values of q (from 0.6153 up to 0.6442) were considered and, for

each value of q, a p.d.f. of the fundamental frequency was obtained by simulation. The corresponding conditional p.d.f.’s
are shown in fig. 4.

Figure 4: Probability density functions pF0|Q (100 plots) and the probability density function of the fundamental frequency obtained
from experimental data (thick line).

So, corresponding values of pF0|Q( f0|q) can now be calculated, for giving values of f0 and q. Here, values of f0 were
considered from 109 Hz up to 125 Hz, with 0.1 Hz of spacing.

4.3.2 Evaluation of Lbayes

For a specific value of q, Lbayes(q) is calculated by Eq. 12, with the estimation given by Eq. 16:

EQ

{νexp

∏
ℓ=1

pF0|Q
(

f
exp,ℓ
0 |Qprior

)}
=

1

ν

ν

∑
n=1

νexp

∏
ℓ=1

pF0|Q
(

f
exp,ℓ
0 |Qprior(θn)

)
. (16)
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5 RESULTS

Let F
exp
0 be the random variable associated to the fundamental frequencies obtained experimentally and Fsim

0 the
random variable associated to the simulated fundamental frequencies. The aim is to update the probability density function

of Fsim
0 , using experimental values of the fundamental frequency, applying the Eq. 15. Fig. 5 shows the updated p.d.f.

(p
upd
F0

) of the fundamental frequency considering νexp = 1 , 10 , 100 , 800and1,800.

Figure 5: Updated p.d.f.’s of the fundamental frequency for different values of νexp.

Starting from νexp = 1000, the p.d.f. does not change anymore. It means that the same p.d.f. is obtained considering
ν = 1,000 or more. It should be observed that the p.d.f. obtained for νexp = 1,800 is almost the same of the p.d.f.
constructed with experimental values.

Let p
exp
F0

, psim
F0

and p
upd
F0

be the p.d.f.’s related to the fundamental frequencies obtained experimentally, related to the

fundamental frequencies simulated and updated, respectively. In order to compare the three p.d.f.’s, Fig. 6 shows the plots

of the functions | p
exp
F0

− psim
F0

| and | p
exp
F0

− p
upd
F0

|.

Figure 6: Functions | p
exp
F0

− psim
F0

| (dashed line) and | p
exp
F0

− p
upd
F0

| (continuous line).

Calculating the area under the plots of the Fig. 6, the values found were:

∫ +∞

−∞
| p

exp
F0

( f0)− psim
F0

( f0) | d f0 = 0.0258 and

∫ +∞

−∞
| p

exp
F0

( f0)− p
upd
F0

( f0) | d f0 = 0.0108.

Although the difference between the values is not so big, it can be noted that the p
upd
F0

is nearer o the p
exp
F0

then psim
F0

.
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Now, it is possible to obtain the p.d.f. of Q, using Eq. (11). Figure 7 shows the plots of the prior probability density
function of Q and the posterior probability density function of Q, obtained with νexp = 1 , 100 , and1,800.

Figure 7: Prior p.d.f. of Q and the corresponding updated p.d.f.’s.

The p.d.f. of Q is near a delta function located in Q = 0.633. With this value of the parameter q, and considering the
random variables Ag0 and Y , it is possible, using the model, to obtain the p.d.f. of the fundamental frequency constructed
with experimental values.

6 CONCLUSIONS

Using Bayesian statistics, the p.d.f. of the random variable Q related to an important parameter which takes part in a
mathematical model for producing voice, was updated after obtaining new experimental data. It should be observed that
the first prior p.d.f. for Q was obtained using the Maximum Entropy Principle, and there is difficulty to obtain real values
for this parameter, because it is related to a biological quantity. Using Bayes Theorem, the p.d.f. of the tension parameter
was updated, without getting values directly for this parameter, but from other observable quantity (the fundamental
frequency). From the posterior p.d.f. obtained for Q, it was possible to simulate voice signals and to construct a p.d.f. for
the fundamental frequency which is also the same of the p.d.f. constructed with experimental values.
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