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Abstract: The focus of this paper is on the assessment of nonlinear reduced order models 

(ROM) for the accurate prediction of the geometrically nonlinear response of some curved 

structures. Earlier difficulties in obtaining accurate reduced order models are clarified and a 

revised identification procedure of the ROM parameters is proposed. The validation of the 

methodology to a curved beam and a cylindrical shell, in full 3-D displacements, are 

presented. The excellent matching between full finite element and ROM predicted responses 

demonstrate the value of the approach. 

1 INTRODUCTION

Modal models have long been recognized as the computationally efficient analysis method 

of complex linear structural dynamic systems, yielding a large reduction in computational 

cost but also allowing a convenient coupling with other physics code, e.g. with 

aerodynamics/CFD codes for aeroelastic analyses. Further, these modal models are easily 

derived from a finite element model of the structure considered and thus can be obtained 

even for complex geometries and boundary conditions. However, a growing number of 

applications require the consideration of geometric nonlinearity owing to the large structural 

displacements. For example, panels of supersonic/hypersonic vehicles have often in the past 

been treated in this manner because of the large acoustic loading they are subjected to as 

well as possible thermal effects. Novel, very flexible air vehicles have provided another, 

more recent class of situations in which geometric nonlinearity must be included. 

For such problems, it would be very desirable to have the equivalent of the modal methods 

exhibiting: (i) high computational efficiency, (ii) an ease of coupling to other physics codes, 

and (iii) generality with respect to the structure considered and its boundary conditions. To 

this end, nonlinear reduced order modeling techniques have been proposed and validated in 

the last decade [1-13]. Although several variants exist, their construction share the same 

aspects. First, they involve a parametric form of the model, i.e. one in which the 

nonlinearity is only on the “stiffness” and includes linear, quadratic, and cubic terms of the 

displacement field generalized coordinates (see section below). Second, they rely on an 

identification strategy of the parameters of the model, i.e. the linear, quadratic, and cubic 

stiffness coefficients, from a finite element model of the structure for a particular set of 

“modes” or basis functions. Differences between the existing methods center in particular on 

the way the linear and nonlinear stiffness coefficients are estimated from a finite element 

 1 



IFASD-2011-185

model and on the extent and specificity of the basis functions, i.e. modeling of only the 

displacements transverse to the structure or all of them. 

As may be expected, the first validations of these reduced order models focused on flat 

structures, beams and plates, and an excellent match between responses predicted by the 

reduced order models and their full finite element counterparts have been demonstrated. 

Curved structures, curved beam most notably, have also been investigated in the last few 

years and a very good match of reduced order model and full finite element results was 

obtained. Yet, the construction of the reduced order model was not as straightforward in this 

case as it had been in flat structures, instabilities of the model were sometime obtained. 

The issue of constructing stable and accurate nonlinear reduced order models for curved 

structures is revisited here and an extension of the displacement-based (STEP) identification 

procedure [14,8] is first proposed. Then, its applications to a curved beam model and to a 

cylindrical shell undergoing multi directional loading are demonstrated, and shown to lead 

to an excellent matching between reduced order model and full finite element predictions. 

2 PARAMETRIC FORM OF NONLINEAR REDUCED ORDER MODELS 

The reduced order models considered here are representations of the response of elastic  

geometrically nonlinear structures in the form 

! " ! " ! "#
$

%$
M

n

n
ini XtqtXu

1

)(
,  , i = 1, 2, 3,                                    (1)

where ! tXui , "  denotes the displacement components at a point X of the structure and at 

time t. Further, ! "X
n

i
)(%  are specified, constant basis functions and  are the time 

dependent generalized coordinates. 

! "tqn

A general derivation of linear modal models is classically carried out from linear 

(infinitesimal) elasticity and it is thus desired here to proceed similarly but with finite 

deformation elasticity to include the full nonlinear geometric effects. Then, the first issue to 

be addressed is in what configuration, deformed or undeformed, the governing equations 

ought to be written. In this regard, note that the basis functions ! "X
n

i
)(%  are expected to (a) 

be independent of time and (b) satisfy the boundary conditions (at least the geometric or 

Dirichlet ones). These two conditions are not compatible if the basis functions are expressed 

in the deformed configuration as the locations at which the boundaries are will vary with the 

level of deformations or implicitly with time. However, these conditions are compatible if 

one proceeds in the undeformed configuration and thus X in Eq. (1), will denote the 

coordinates of a point in the undeformed configuration. 

Accordingly, the equations of motion of an infinitesimal element can be expressed as 

(e.g. see [15,16], summation over repeated indices assumed) 

             ! " iijkij
k
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X

!!0
0

0 &$&'
(

(
for 0)*X ,       (2)

 2 



IFASD-2011-185

where S denotes the second Piola-Kirchhoff stress tensor, 0& is the density in the reference 

configuration, and 0b  is the vector of body forces, all of which are assumed to depend on 

the coordinates . Further, in Eq. (2), the deformation gradient tensor F is defined by its 

components  as 

iX

ijF

                   

j

i
ij

j

i
ij

X

u

X

x
F
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(
'+$

(

(
$ ,                                       (3)

where  denotes the Kronecker symbol and the displacement vector is ij+ u = x - X, x being 

the position vector in the deformed configuration. Finally, 0)  denotes the domain occupied 

by the structure in the undeformed configuration. It has a boundary 0)(  composed of two 

parts:  on which the tractions t
0)( 0t  are given and  on which the displacements are 

specified (assumed zero here). Thus, the boundary conditions associated to Eq. (2) are 

u
0)(

                    for 00
ikjkij tnSF $ tX 0)(* ,            (4) 

        u = 0  for uX 0)(* .                            (5) 

Note in Eqs (2) and (4) that the vectors 0b  and 0t  correspond to the transport (“pull back”) 

of the body forces and tractions applied on the deformed configuration, i.e. b and t, back to 

the reference configuration (see [15,16]). 

To complete the formulation of the elastodynamic problem, it remains to specify the 

constitutive behavior of the material. In this regard, it will be assumed here that the second 

Piola-Kirchhoff stress tensors S is linearly related to the Green strain tensor E defined as 

! "ijkjkiij FFE +,$
2

1
.                 (6) 

That is, 

            klijklij ECS $  ,                                      (7) 

where  denotes the fourth order elasticity tensor. ijklC

Introducing the assumed displacement field of Eq. (1) in Eqs (2)-(7) and proceeding with a 

Galerkin approach leads, after some manipulations, to the desired governing equations, i.e. 

    (8) ipljijlpljijljijjijjij FqqqKqqKqKqDqM $''''
)3()2()1(

!!!

in which  are mass components, , , and  are the linear, quadratic, and 

cubic stiffness coefficients, and  are the modal forces. Note that the damping term 

has been added in Eq. (8) to collectively represent various dissipation mechanisms. Further, 

ijM
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the symmetrical role of j and l in the quadratic terms and j, l, and p in the cubic ones 

indicates that the summations over those indices can be restricted to p - l - j.

Once the generalized coordinates ! "tq j  have been determined from Eq. (8), the stress field 

can also be evaluated from Eqs. (3), (6), and (7). Specifically, it is found that every 

component of the second Piola-Kirchhoff stress tensor can be expressed as 

           ## ''$

nm

nm
nm

ij
m

m
m

ijijij qqSqSSS

,

),()( ~ˆ ,       (9) 

where the coefficients ijS , , and 
)(ˆ m

ijS
),(~ nm

ijS  depend only on the point X considered. 

3 IDENTIFICATION OF THE REDUCED ORDER MODEL PARAMETERS 

One of the key component of the present as well as related nonlinear reduced order 

modeling approaches (see introduction) is the identification of the parameters of Eqs (8) and 

(9) from a finite element model of the structure considered in a standard (e.g. Nastran, 

Abaqus, Ansys) software. The reliance of such commercial codes gives access to a broad 

database of elements, boundary conditions, numerical algorithms, etc. but is a challenge 

from the standpoint of the determination of the parameters of Eqs (8) and (9) as one has only 

limited access to the detailed element information and matrices. 

In a finite element format, the displacement field of components ! "tXui ,  is replaced by its 

discretized counterpart, the vector ! "tu , represented as 

! " ! "#
$

%$
M

n

n
n tqtu

1

)(
                                  (10)

where )(n%  are the discretized basis functions. The estimation of the mass components 

and modal forces  is achieved as in linear modal models, i.e.  

ijM

iF

)()( j
FE

Ti
ij MM %%$ ! "tFF Ti

i
)(%$             (11a), (11b) 

where FEM  is the finite element mass matrix and F(t) is the excitation vector on the 

structure.

Next is the determination of the stiffness coefficients , , and . In this regard, 

note first that the linear coefficients  could be determined as in linear modal models, 

i.e.

)1(
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K
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where  is the finite element linear stiffness matrix. Another approach must be adopted 

however for  and  as nonlinear stiffness matrices are typically not available. Two 

approaches have been proposed to identify these parameters (and potentially the linear ones 

as well) from a series of static finite element solutions. The first one relies on prescribing a 

series of load cases and projecting the induced responses on the basis functions 

)1(
FEK

)2(
ijl

K
)3(

ijlp
K

)(n%  to 

obtain the corresponding generalized coordinates values , p being the index of the load 

cases. Then, introducing these values into Eq. (8) for each load case yields 

)( p
jq

, i = 1, ..., M . (13) 
)()()()()3()()()2()()1( p

i
p

r
p

l
p

jijlr
p

l
p

jijl
p

jij FqqqKqqKqK $''

Proceeding similarly for P load cases yields a set of linear algebraic equations for the 

coefficients  and , and possibly the linear stiffness coefficients  as well, 

which can be solved in a least squares format to complete the identification of the stiffness 

parameters. 

)2(
ijl

K
)3(

ijlp
K

)1(
ijK

An alternate strategy has also been proposed (e.g. see [14]) in which the displacements are 

prescribed and the required force distributions are obtained from the finite element code. 

The corresponding modal forces are then evaluated from Eq. (11b) and a set of equations of 

the form of Eq. (13) is again obtained. Appropriately selecting the displacement fields to be 

imposed can lead to a particularly convenient identification of the stiffness coefficients. 

Specifically, the imposition of displacements proportional to the basis function )(n%  only, 

i.e.

                     )(n
nqu %$ )(ˆˆ n

nqu %$ )(~~ n
nqu %$               (14) 

leads to the 3 sets of equations 

 (no sum on n)ininnnninnnin FqKqKqK $'' 3)3(2)2()1(

 (no sum on n)ininnnninnnin FqKqKqK ˆˆˆˆ 3)3(2)2()1(
$''

ininnnninnnin FqKqKqK
~~~~ 3)3(2)2()1(

$''   (no sum on n)  (15) 

in which no sum over the index n is to be understood and for i = 1, ..., M. In fact, these 3 sets 

of equations permit the direct evaluation of the coefficients , , and  for all i.

Repeating this effort for n = 1, ..., M thus yields a first set of stiffness coefficients. 

)1(
inK

)2(
innK

)3(
innnK

Proceeding similarly but with combinations of two basis functions, i.e. 

             )()( m
m

n
n qqu %'%$ m - n                       (16) 
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and relying on the availability of the coefficients , ,  and , ,

 determined above, leads to equations involving the three coefficients , ,

and . Thus, imposing three sets of displacements of the form of Eq. (16) provides the 

equations needed to also identify , , and .

)1(
inK

)2(
innK

)3(
innnK

)1(
imK

)2(
immK

)3(
immmK

)2(
inmK

)3(
innmK

)3(
inmmK

)2(
inmK

)3(
innmK

)3(
inmmK

Finally, imposing displacement fields linear combination of three modes, i.e. 

                   )()()( r
r

m
m

n
n qqqu %'%'%$ r - m - n                     (17) 

permits the identification of the last coefficients, i.e. .
)3(

inmrK

The above approach, referred to as the STEP (STiffness Evaluation Procedure), has often 

been used and has generally led to the reliable identification of the reduced order model 

parameters, especially in connection with flat structures, with values of the generalized 

coordinates  of the order of, or small than, the thickness. However, in some curved 

structures, e.g. the curved beam of [11], several of the models identified by the STEP 

process were found to be unstable, i.e. a finite static solution could not be obtained with a 

time marching algorithm, when the applied load magnitude exceeded a certain threshold. 

This problem occurred most notably for loads inducing a snap-through of the curved beam. 

sq

In studying this problem, it was observed that the magnitude of some of the terms ,

, and/or  computed at a large amplitude (of the order of 10 

thicknesses say) snap-through solution were much larger (2 orders of magnitude was 

routinely observed) than the driving . Accordingly, the balance of the terms on the left-

hand-side of Eq. (8) must be accomplished quite accurately or, equivalently, a very good 

accuracy is required on the stiffness coefficients, to have a good match of the full finite 

element solution in such cases. A sensitivity analysis of the stiffness coefficients identified 

by the above approach in the curved beam case (see description below) suggested that the 

accuracy requirements were right at the limit of what could be expected and thus another 

identification procedure was sought. 

jij qK
)1(

ljijl
qqK

)2(
rljijlr qqqK

)3(

)( p
iF

The perceived weakness of the procedure based on Eqs (14)-(17) is that the identification is 

conducted near the undeformed configuration for which the linear terms are much larger 

than the quadratic ones, themselves much larger than the cubic terms. That is, in conditions 

in which the critical balance of the terms on the left-hand-side does not take place. In this 

light, it was proposed to shift the baseline point around which the identification is achieved 

from the undeformed state to one in or near the expected difficult conditions, e.g. in a snap-

through configuration for the curved beam. This baseline solution admits the representation 

         #
$

%$
M

n

n
nqu

1

)(
0,0 .                                   (18)

Then, the test displacement fields imposed for identification are 
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            )(
0

n
nquu %'$                              (19) 

             )()(
0

m
m

n
n qquu %'%'$ m - n                       (20) 

                     )()()(
0

r
r

m
m

n
n qqquu %'%'%'$ r - m - n .               (21) 

More specifically, for each value of n = 1, ..., M, three cases of the form of Eq. (19) were 

considered with = +q, -q, and q/2 as before with q typically smaller than the thickness. 

The four cases corresponding to positive and negative values of  and  in Eq. (20) were 

also included for each n and m - n. Finally, all eight cases associated with positive and 

negative values of , , and 

nq

nq mq

nq mq rq  for r - m - n  and all n were used. 

The displacement fields of Eqs (19)-(21) include generalized coordinates along all basis 

functions and thus no simplification of Eq. (13) takes place as in Eq. (15). Accordingly, the 

stiffness coefficients were obtained by a least squares solution of Eq. (13) with the complete 

set of displacement fields imposed by Eq. (19)-(21). Note that the linear, quadratic, and 

cubic stiffness coefficients are often of very different magnitudes and thus an appropriate 

scaling of the terms is recommended to keep low the condition number of the least squares 

matrix. It was also found beneficial to include the equations corresponding to two different 

baseline displacement fields 0u .

4 BASIS SELECTION 

The two previous sections have focused on the derivation of the parametric form of the 

reduced order model governing equations, Eqs (8) and (13), and on the estimation of the 

parameters from a set of well chosen finite element solutions. The last key aspect of the 

construction of reduced order models is the selection of the basis functions )(n% . In this 

regard, the expected features of the reduced order model are that (i) it leads to an accurate 

representation of the full finite element results and (ii) it includes a “reasonably” small 

number of basis functions. To satisfy these requirements, these functions should closely 

capture the expected physics of the structural response and recent research efforts have 

focused on this issue [8,12,13]. In particular, it was proposed in [8] to complement the basis 

functions that would be used in a linear analysis by functions, referred to as the dual modes, 

that would capture the nonlinear interactions in the structure.

While the construction of the dual modes is applicable to any structural modeling, it is most 

easily described in the context of an isotropic flat structure, e.g. beam or plate, subjected to a 

transverse loading. Selecting an appropriate basis for the transverse displacements follows 

the same steps as in a linear analysis in which no further modeling is necessary. When the 

response level is large enough for nonlinear geometric effects to be significant, small in-

plane displacements appear in the full solution which are associated with the “membrane 

stretching” effect. While small, these in-plane motions induce a significant softening of the 

stiffening nonlinearity associated with pure transverse motions. 

One approach to construct a full basis, i.e. modeling both transverse and in-plane 

displacements, appropriate for the modeling of the nonlinear response is to focus specifically 

on capturing the membrane stretching effects. The key idea in this approach is thus to 
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subject the structure to a series of “representative” static loadings, determine the 

corresponding nonlinear displacement fields, and extract from them additional basis 

functions, referred to as the “dual modes” that will be appended to the linear basis, i.e. the 

modes that would be used in the linear case. 

In this regard, note that the membrane stretching effect is induced by the nonlinear 

interaction of the transverse and in-plane displacements, not by an external loading. Thus, 

the dual modes can be viewed as associated (the adjective “companion” would have been a 

better description than “dual”) with the transverse displacements described by the linear 

basis. The representative static loadings should then be selected to excite primarily the linear 

basis functions and, in fact, in the absence of geometric nonlinearity (i.e. for a linear 

analysis) should only excite these “modes”. This situation occurs when the applied load 

vectors on the structural finite element model are of the form 

# %.$

i

i
FE

m
i

m KF )()1()()(      (22) 

where  are coefficients to be chosen with m denoting the load case number. A detailed 

discussion of the linear combinations to be used is presented in [8] but, in all validations 

carried out, it has been sufficient to consider the cases 

)(m
i.

           )()1()()( i
FE

m
i

m
i KF %.$ i = dominant mode          (23) 

and

/ )()1()()1(
)(

)(

2

j
FE

i
FE

m
im

ij KKF %%
.

$ 0 i = dominant mode, ij 1  (24) 

where a “dominant” mode is loosely defined as one providing a large component of the 

response. The ensemble of loading cases considered is formed by selecting several values of 

 for each dominant mode in Eq. (23) and also for each mode 
)(m

i. ij 1  in Eq. (24). Note 

further that both positive and negative values of  are suggested and that their 

magnitudes should be such that the corresponding displacement fields 

)(m
i.

)(m
iu  and 

)(m
iju  range 

from near linear cases to some exhibiting a strong nonlinearity. 

The next step of the basis construction is the extraction of the nonlinear effects in the 

obtained displacement fields which is achieved by removing from the displacements fields 

their projections on the linear basis, i.e. by forming the vectors 

/ 0
s

s

m
i

T
s

m
i

m
i uMuv %%,$ # )()()(

    and      / 0
s

s

m
ij

T
s

m
ij

m
ij uMuv %%,$ # )()()(

  (25) 

assuming that the finite element mass matrix serves for the orthonormalization of the basis 

functions )(n%  (including the linear basis functions and any dual mode already selected). 

 8 



IFASD-2011-185

A proper orthogonal decomposition of each set of “nonlinear responses” 
)(m

iv  and 
)(m

ijv  is 

then sequentially carried out to extract the dominant features of these responses which are 

then selected as dual modes. The POD eigenvectors 
r
2  selected as dual modes should not 

only be associated with a large eigenvalue but should also induce a large strain energy, as 

measured by 
rFE

T
r

K 22
)1(

, since the membrane stretching that the dual modes are expected 

to model is a stiff deformation mode. 

To exemplify the above process, a flat aluminum beam (see [17] for details), cantilevered on 

both ends was considered and the duals corresponding to the first four symmetric transverse 

modes are shown in Fig. 1. Note that these duals are all antisymmetric as expected from the 

symmetry of the transverse motions assumed. To obtain a better sense of the appropriateness 

of these functions, a POD analysis of an ensemble of nonlinear responses was carried out 

and also shown on Fig 1 are the mass normalized POD eigenvectors found for the in-plane 

displacements. In fact, two such analyses were conducted, one using a series of static 

responses and the other using snapshots obtained during a dynamic run. It is seen from these 

results that the dual modes proposed in [8] are in fact very close to the POD eigenvectors 

obtained from the dynamic snapshots. The difference between POD eigenvectors obtained in 

static and dynamic conditions can be attributed to the difference in conditions used for their 

determination. 
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Figure 1. Comparison of dual modes and POD eigenvectors of static and dynamic responses, 

clamped-clamped flat beam. 
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5 CURVED BEAM VALIDATION CASE 

The first validation case for the identification strategy based on Eqs (19)-(21) is the 

clamped-clamped curved beam of [4,5,11], see Fig. 2. The beam has an elastic modulus of 

10.6×10
6
 psi, shear modulus of 4.0×10

6
 psi, and density of 2.588×10

-4
 lbf-sec

2
/in

4
. A 

Nastran finite element model with 144 CBEAM elements was developed to first construct 

the reduced order model and then assess its predictive capabilities. The reduced order model 

development aimed at the dynamic response to a pressure uniform in space but varying in 

time. The present discussion focuses solely on the static response to such a loading, i.e. F(t)
= P constant, and shown in Fig. 3 is the vertical displacement induced at the middle of the 

beam as a function of P. Note that the beam exhibits a snap-through at P = 1.89 lb/in and 

that the magnitude of the snap-through deformation is quite large, of the order of 10 

thicknesses. If the beam is unloaded from this point, it will go back to the neighborhood of 

the undeformed position, i.e. on the left branch, at a small load of approximately 0.45 lb/in. 

t = 0.09 in

w = 1.0 in

t = 0.09 in

w = 1.0 in

Figure 2. Curved beam geometry. 
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Figure 3. Relation between applied static pressure and vertical displacement of the beam 

middle, curved beam. 

In selecting the basis for the reduced order model, it was recognized that the vertical/normal 

displacements of the beam to the applied loads are of constant signs, similar in shape to 

those that would be induced on a flat beam. However, the modes of the curved beam, even 

the first one, exhibit nodes and thus have variable signs along the beam. This observation 

suggested in [11] not to use the linear modes of the curved beam, but rather those of the 
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corresponding straight beam, as the linear basis (see previous section for discussion). These 

modes were assumed to define the displacement in the locally normal direction to the beam. 

As in [11], the first 6 such symmetric modes were retained here. The antisymmetric modes 

do not contribute to the static response and thus are not included here. They are however 

important for the occurrence of snap-throughs dynamically and are thus considered in 

dynamic computations (see [17]). 

The next step of the reduced order model construction focused on the modeling of the 

locally tangent displacements which was achieved using the dual modes of section 5 with 

the first basis function (first mode of the flat beam) dominant. Since the first 6 basis 

functions included only normal components, the 6 dual modes were made purely tangential 

by stripping their normal components. This process led for the present static computations to 

a 12 mode model similar to the one considered in [11], see [17] for additional models and 

results.

The construction of the reduced order model according to the STEP procedure of Eqs (14)-

(17) led to the same difficulties as those encountered in [11] and described in section 3, i.e. 

difficulty in obtaining a static solution by a time marching integration of the reduced order 

equations of Eq. (8). Even when a solution could be found, it led to a poor matching of the 

finite element results. This issue was resolved in [11] by a detailed study of coefficients and 

a zeroing out of those that drove the instability; a model matching well the full finite 

element results was then obtained. 

The present effort relied instead on the revised identification procedure, i.e. Eqs (18)-(22). 

Specifically, two baseline solutions were considered that correspond to the projection of the 

full finite element results at P = 1.7lb/in on the left branch, i.e. below the snap-through limit, 

and at P = 2lb/in, i.e. above the snap-through transition. No instability of the model was 

found in any of the computations carried out thereby suggesting that this phenomenon was 

indeed related to the near cancelation of terms and further demonstrating the benefit of the 

revised identification of Eqs (18)-(22). 
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Figure 4. Comparison of static responses predicted by Nastran and by the reduced order 

model, curved beam, P = 1.7 lb/in. (a) Normal and (b) tangential displacements. 

The assessment of the reduced model in matching the full finite element results was carried 

out in two phases corresponding to the two branches, left and right, of the response curve of 

Fig. 3. Shown in  Fig. 4  are  the normal and tangential displacements obtained at the load of 
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Figure 5. Comparison of static responses predicted by Nastran and by the reduced order 

model, curved beam, (a), (b) P = 3 lb/in, (c), (d) P = 1 lb/in (right branch), 

(e), (f) P = 10 lb/in. (a),(c),(e) Normal and (b),(d),(f) tangential displacements. 

P = 1.7lb/in which are typical of the left branch. An excellent match between Nastran and 

reduced order model results is obtained. A similar analysis was conducted with loading 

conditions on the right branch and shown in Fig. 5(a) and 5(b) are the normal and tangential 

displacements obtained for P = 3 lb/in. Both Nastran and reduced order models were then 

unloaded to P = 1 lb/in, see Fig. 5(c) and 5(d). Finally, a load of P = 10 lb/in was also 

considered and the responses are shown in Fig. 5(e) and 5(f). In all of these cases, an 

excellent match is obtained between the full finite element model results and the reduced 

order model predictions. Additional comparisons, in particular with other good reduced 

order models, are presented in [17]. Clearly, the identification algorithm based on Eqs (18)-

(22) has led to very reliable reduced order models. 
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6 CYLINDRICAL SHELL VALIDATION CASE 

The second validation example considered is a thin-walled cylindrical shell of thickness  

h=0.28mm and radius 0.125m, as shown in Fig. 6. It has a main body of length 0.144m and 

a fret of length 0.019m. The fret (Young’s modulus 200000MPa) is slightly stiffer than the 

main body (Young’s modulus 180000MPa), and they have the same Poisson’s ratio of 0.3.  

Figure 6. Finite element model of the shell. 

The shell is clamped at the end of the main-body side and free to slide at the end of the fret 

side (free translational degrees of freedom and fixed rotational degrees of freedom). It is 

subjected to a longitudinal tension and a transverse force in the negative Y-direction along 

the junction circle of the main body and the fret. In the present study, the longitudinal 

tension is fixed at 41$zF N, while the transverse force varies from 0$yF  to .N50,

A finite element model of the shell was generated using MSC/Patran. This model has 10800 

CQUAD4 elements and 11000 nodes. The nonlinear static responses of the shell to the 

aforementioned loads are computed using MSC/Nastran. 

Figure 7. Displacement vs. load curve for the shell, node 51 Y displacement. 

A typical force-displacement curve is shown in Fig. 7, in which the displacement in the Y-

direction at node 51 against the negative is plotted. The displacement is scaled by the yF
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thickness of the shell. As shown in Fig. 6, node 51 is located on the Y-axis of the junction 

circle. Since the force is applied in the Y-direction across this plane, node 51 is a 

representative point for one to observe the response. 

From Fig. 7, it can be seen that the response is linear up to NFy 30,$ . The deformed 

shape of the shell at  is shown in Fig. 8. In this figure and the following figures 

showing the deformed shapes, the deformation is magnified by 10 times to demonstrate the 

feature of the response clearly. One can see the response already shows a wrinkling behavior 

in the area in parallel to the Y-axis.  

NFy 30,$

Figure 8. Deformation of the shell, .NFy 30,$

As  is increased, the wrinkling range of the response gradually extends and the 

magnitude becomes larger. This can be seen from the deformed shapes at  and 

 as shown in Fig. 9.

yF

NFy 40,$

N45,

(a) (b)

Figure 9. Deformation of the shell, (a) ,(b) .NFy 40,$ NFy 45,$

When is further increased from yF N45,  to N47, , the deformed shape undergoes a 

significant change. As seen from Fig. 10, which shows the deformed shape at ,

the range of wrinkling is almost extended to the entire shell, and the magnitude is much 

larger than in previous figures. This can also be seen in the Y-displacement of node 51 as 

NFy 47,$
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shown in Fig. 7, which actually increases from 1.35h at  to 4.93h at 

.

NFy 45,$

NFy 47,$

Figure 10. Deformation of the shell, NFy 47,$

Considering the complexity of the wrinkling behavior, this first investigation focuses solely 

on the development of a reduced order model that captures the shell behavior for forces 

up to .yF N45,

The basis of linear modes used in the modeling of the curved beam may not be efficient for 

the shell model, Therefore, the technique of proper orthogonal decomposition (POD) is used 

to extract the basis functions for the reduced order modeling of the shell, e.g. see [18] for a 

review. The set of nonlinear static responses for  varying from  to 

( = 0.05, 0.5, 10, 20, 30, 35, 37, 38, 39, 40, 41, 42, 43, 44, 45N) are taken as the set of 

data for the POD analysis. Prior to the analysis, the responses are scaled such that the 

maximum component of each response is unity. In this way, the contributions of the 

responses to the basis of POD modes are equally weighted at the low and the high force 

levels. The POD analysis is implemented using the MATLAB function “svd” for singular 

value decomposition. From the analysis, the first 6 POD modes are found to be able to 

represent the responses well, thus are chosen as the basis functions of the reduced order 

model.

yF N05.0, N45,

yF,

The next step is the identification of the nonlinear stiffness coefficients and this will be 

accomplished by relying on Eqs (18)-(22) with two baseline solutions, corresponding to the 

projection of the full finite element results for  and .NFy 42,$ NFy 45,$

The developed reduced order model is validated against the MSC/Nastran results for a 

series of  values. Included in those are three “blind”  values, that is, ,

 and , which were not used in the database for the POD analysis. In the 

validation, the displacements in the Y- and Z- directions of two nodes, node 51 and node 

5550, are presented. The displacement in the X-direction is generally small and thus not 

discussed here. As shown in Fig. 7, nodes 51 and 5550 are located on the Y- and the X- axis 

of the junction circle, respectively.

yF yF NFy 15,$

N36, N5.42,
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Figure 11. Displacement vs. load curve for the shell obtained with Nastran and with the 

reduced order model. (a) Node 51 Y displacement, (b) Node 5550 Y displacement, 

(c) Node 51 Y displacement, zoomed. 

Shown in Fig. 11 are comparisons of the Y-displacements of the two nodes for the reduced 

order model (ROM 6POD) and the MSC/Nastran. The results at the three “blind” points are 

marked in particular. It can be seen that an excellent matching is obtained for up to 

. It should be noted that the comparison is also made for beyond , and the 

current model does not capture correctly the response. This is expected since the basis of the 

current model is derived from the data below , and it does not represent the 

response beyond this value well. Yet, until that threshold the agreement between the Nastran 

and ROM predictions is excellent, see in particular Fig. 7(c). 

yF

N45, yF N45,

NFy 45,$

(a) (b)

Figure 12. Displacement vs. load curve for the shell obtained with Nastran and with the 

reduced order model. (a) Node 51 Z displacement, (b) Node 5550 Z displacement, 
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A comparison of the Z-displacements of the two nodes predicted by the reduced order model 

and Nastran is shown in Fig. 12 and a similar matching of these results is observed.  

A final assessment of the reduced order model is carried out in Figs 13 and 14 which show 

the deformed shapes predicted by both the reduced order model and Nastran at two “blind” 

force values,  and . The wrinkling behavior of the shell is very similar 

in both cases supporting further the accuracy of the reduced order model. 

NFy 36,$ N5.42,

Figure 13. Deformation of the shell, .NFy 36,$

Figure 14. Deformation of the shell, .NFy 5.42,$

7 SUMMARY

The present investigation focused on a revisit and extension of existing approaches for the 

reduced order modeling of the geometrically nonlinear response of structures. Difficulties, 

i.e. instability of the reduced order model, encountered in the past in connection with a 

curved beam were first analyzed. This effort then served as the basis for the formulation of a 

revised identification procedure of the parameters of the reduced order model, see Eqs (18)-

(22). The application of this procedure to the previous curved beam model removed the 

instability issue and led to an excellent matching of reduced order model and finite element 

predictions for a broad range of external loading. On this basis, a complex structural model 

of a shell subjected to bi-directional loading and exhibiting a wrinkling deformation was 

considered and its reduced order modeling was undertaken. An excellent match of the 

nonlinear finite element response was achieved with the reduced order model until the 

wrinkling extends to the entire structure. The present results extend previous validation 
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studies in demonstrating the worth of reduced order modeling of nonlinear geometric 

structures.
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