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REDUCED ORDER MODELING FOR THE NONLINEAR GEOMETRIC RESPONSE OF SOME CURVED STRUCTURES
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The focus of this paper is on the assessment of nonlinear reduced order models (ROM) for the accurate prediction of the geometrically nonlinear response of some curved structures. Earlier difficulties in obtaining accurate reduced order models are clarified and a revised identification procedure of the ROM parameters is proposed. The validation of the methodology to a curved beam and a cylindrical shell, in full 3-D displacements, are presented. The excellent matching between full finite element and ROM predicted responses demonstrate the value of the approach.

INTRODUCTION

Modal models have long been recognized as the computationally efficient analysis method of complex linear structural dynamic systems, yielding a large reduction in computational cost but also allowing a convenient coupling with other physics code, e.g. with aerodynamics/CFD codes for aeroelastic analyses. Further, these modal models are easily derived from a finite element model of the structure considered and thus can be obtained even for complex geometries and boundary conditions. However, a growing number of applications require the consideration of geometric nonlinearity owing to the large structural displacements. For example, panels of supersonic/hypersonic vehicles have often in the past been treated in this manner because of the large acoustic loading they are subjected to as well as possible thermal effects. Novel, very flexible air vehicles have provided another, more recent class of situations in which geometric nonlinearity must be included.

For such problems, it would be very desirable to have the equivalent of the modal methods exhibiting: (i) high computational efficiency, (ii) an ease of coupling to other physics codes, and (iii) generality with respect to the structure considered and its boundary conditions. To this end, nonlinear reduced order modeling techniques have been proposed and validated in the last decade [START_REF] Mcewan | A combined modal/finite element analysis technique for the dynamic response of a nonlinear beam to harmonic excitation[END_REF][START_REF] Hollkamp | Nonlinear modal models for sonic fatigue response prediction: a comparison of methods[END_REF][START_REF] Radu | Prediction of the dynamic response and fatigue life of panels subjected to thermo-acoustic loading, 45 th Structures[END_REF][START_REF] Przekop | Nonlinear reduced order random response analysis of structures with shallow curvature[END_REF][START_REF] Gordon R | Reduced-order modeling of the random response of curved beams using implicit condensation, 47 th Structures[END_REF][START_REF] Spottswood | On the use of reduced-order models for a shallow curved beam under combined loading, 49 th Structures[END_REF][START_REF] Kim | Nonlinear reduced order modeling of flat cantilevered structures[END_REF][START_REF] Kim | Nonlinear reduced order modeling of functionally graded plates, 49 th Structures[END_REF][START_REF] Perez | Nonlinear reduced order models for thermoelastodynamic response of isotropic and FGM panels[END_REF][START_REF] Perez | Reduced order modeling for the nonlinear geometric response of cracked panels, 52 nd Structures[END_REF][START_REF] Spottswood | Nonlinear reduced order modeling of curved beams: a comparison of methods, 50 th Structures[END_REF][START_REF] Rizzi | System identification-guided basis selection for reducedorder nonlinear response analysis[END_REF][START_REF] Przekop | Nonlinear reduced-order analysis with time-varying spatial loading distributions[END_REF]. Although several variants exist, their construction share the same aspects. First, they involve a parametric form of the model, i.e. one in which the nonlinearity is only on the "stiffness" and includes linear, quadratic, and cubic terms of the displacement field generalized coordinates (see section below). Second, they rely on an identification strategy of the parameters of the model, i.e. the linear, quadratic, and cubic stiffness coefficients, from a finite element model of the structure for a particular set of "modes" or basis functions. Differences between the existing methods center in particular on the way the linear and nonlinear stiffness coefficients are estimated from a finite element IFASD-2011-185 model and on the extent and specificity of the basis functions, i.e. modeling of only the displacements transverse to the structure or all of them.

As may be expected, the first validations of these reduced order models focused on flat structures, beams and plates, and an excellent match between responses predicted by the reduced order models and their full finite element counterparts have been demonstrated. Curved structures, curved beam most notably, have also been investigated in the last few years and a very good match of reduced order model and full finite element results was obtained. Yet, the construction of the reduced order model was not as straightforward in this case as it had been in flat structures, instabilities of the model were sometime obtained.

The issue of constructing stable and accurate nonlinear reduced order models for curved structures is revisited here and an extension of the displacement-based (STEP) identification procedure [START_REF] Muravyov | Determination of nonlinear stiffness with application to random vibration of geometrically nonlinear structures[END_REF][START_REF] Kim | Nonlinear reduced order modeling of functionally graded plates, 49 th Structures[END_REF] is first proposed. Then, its applications to a curved beam model and to a cylindrical shell undergoing multi directional loading are demonstrated, and shown to lead to an excellent matching between reduced order model and full finite element predictions.

PARAMETRIC FORM OF NONLINEAR REDUCED ORDER MODELS

The reduced order models considered here are representations of the response of elastic geometrically nonlinear structures in the form
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where t X u i , denotes the displacement components at a point X of the structure and at time t. Further,
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are specified, constant basis functions and are the time dependent generalized coordinates.

t q n

A general derivation of linear modal models is classically carried out from linear (infinitesimal) elasticity and it is thus desired here to proceed similarly but with finite deformation elasticity to include the full nonlinear geometric effects. Then, the first issue to be addressed is in what configuration, deformed or undeformed, the governing equations ought to be written. In this regard, note that the basis functions

X n i ) ( \ are expected to (a)
be independent of time and (b) satisfy the boundary conditions (at least the geometric or Dirichlet ones). These two conditions are not compatible if the basis functions are expressed in the deformed configuration as the locations at which the boundaries are will vary with the level of deformations or implicitly with time. However, these conditions are compatible if one proceeds in the undeformed configuration and thus X in Eq. (1), will denote the coordinates of a point in the undeformed configuration.

Accordingly, the equations of motion of an infinitesimal element can be expressed as (e.g. see [START_REF] Fung | Classical and Computational Solid Mechanics[END_REF][START_REF] Bonet | Nonlinear Continuum Mechanics for Finite Element Analysis[END_REF], summation over repeated indices assumed)

i i jk ij k u b S F X 0 0 0 U U w w for 0 : X , ( 2 
)
where S denotes the second Piola-Kirchhoff stress tensor, 0 U is the density in the reference configuration, and 0 b is the vector of body forces, all of which are assumed to depend on the coordinates . Further, in Eq. ( 2), the deformation gradient tensor F is defined by its components as

i X ij F j i ij j i ij X u X x F w w G w w , (3) 
where denotes the Kronecker symbol and the displacement vector : w 0 t are given and on which the displacements are specified (assumed zero here). Thus, the boundary conditions associated to Eq. ( 2) are u 0 : w
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Note in Eqs ( 2) and ( 4) that the vectors 0 b and 0 t correspond to the transport ("pull back") of the body forces and tractions applied on the deformed configuration, i.e. b and t, back to the reference configuration (see [START_REF] Fung | Classical and Computational Solid Mechanics[END_REF][START_REF] Bonet | Nonlinear Continuum Mechanics for Finite Element Analysis[END_REF]).

To complete the formulation of the elastodynamic problem, it remains to specify the constitutive behavior of the material. In this regard, it will be assumed here that the second Piola-Kirchhoff stress tensors S is linearly related to the Green strain tensor E defined as
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That is,
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where denotes the fourth order elasticity tensor.
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Introducing the assumed displacement field of Eq. (1) in Eqs ( 2)-( 7) and proceeding with a Galerkin approach leads, after some manipulations, to the desired governing equations, i.e.

( 
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IFASD-2011-185 the symmetrical role of j and l in the quadratic terms and j, l, and p in the cubic ones indicates that the summations over those indices can be restricted to p t l t j.

Once the generalized coordinates t q j have been determined from Eq. ( 8), the stress field can also be evaluated from Eqs. (3), [START_REF] Spottswood | On the use of reduced-order models for a shallow curved beam under combined loading, 49 th Structures[END_REF], and [START_REF] Kim | Nonlinear reduced order modeling of flat cantilevered structures[END_REF]. Specifically, it is found that every component of the second Piola-Kirchhoff stress tensor can be expressed as
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where the coefficients ij S , , and
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depend only on the point X considered.

IDENTIFICATION OF THE REDUCED ORDER MODEL PARAMETERS

One of the key component of the present as well as related nonlinear reduced order modeling approaches (see introduction) is the identification of the parameters of Eqs ( 8) and ( 9) from a finite element model of the structure considered in a standard (e.g. Nastran, Abaqus, Ansys) software. The reliance of such commercial codes gives access to a broad database of elements, boundary conditions, numerical algorithms, etc. but is a challenge from the standpoint of the determination of the parameters of Eqs ( 8) and ( 9) as one has only limited access to the detailed element information and matrices.

In a finite element format, the displacement field of components t X u i , is replaced by its discretized counterpart, the vector t u , represented as
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are the discretized basis functions. The estimation of the mass components and modal forces is achieved as in linear modal models, i.e.
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where

FE M
is the finite element mass matrix and F(t) is the excitation vector on the structure.

Next is the determination of the stiffness coefficients , , and . In this regard, note first that the linear coefficients could be determined as in linear modal models, i.e.
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where is the finite element linear stiffness matrix. Another approach must be adopted however for and as nonlinear stiffness matrices are typically not available. Two approaches have been proposed to identify these parameters (and potentially the linear ones as well) from a series of static finite element solutions. The first one relies on prescribing a series of load cases and projecting the induced responses on the basis functions

) 1 ( FE K ) 2 ( ijl K ) 3 ( ijlp K ) (n \ to
obtain the corresponding generalized coordinates values , p being the index of the load cases. Then, introducing these values into Eq. ( 8) for each load case yields
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Proceeding similarly for P load cases yields a set of linear algebraic equations for the coefficients and , and possibly the linear stiffness coefficients as well, which can be solved in a least squares format to complete the identification of the stiffness parameters.
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An alternate strategy has also been proposed (e.g. see [START_REF] Muravyov | Determination of nonlinear stiffness with application to random vibration of geometrically nonlinear structures[END_REF]) in which the displacements are prescribed and the required force distributions are obtained from the finite element code. The corresponding modal forces are then evaluated from Eq. (11b) and a set of equations of the form of Eq. ( 13) is again obtained. Appropriately selecting the displacement fields to be imposed can lead to a particularly convenient identification of the stiffness coefficients.

Specifically, the imposition of displacements proportional to the basis function
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leads to the 3 sets of equations
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(no sum on n) [START_REF] Fung | Classical and Computational Solid Mechanics[END_REF] in which no sum over the index n is to be understood and for i = 1, ..., M. In fact, these 3 sets of equations permit the direct evaluation of the coefficients , , and for all i.

Repeating this effort for n = 1, ..., M thus yields a first set of stiffness coefficients.
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Proceeding similarly but with combinations of two basis functions, i.e.
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IFASD-2011-185 and relying on the availability of the coefficients , , and , , determined above, leads to equations involving the three coefficients , , and . Thus, imposing three sets of displacements of the form of Eq. ( 16) provides the equations needed to also identify , , and .
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Finally, imposing displacement fields linear combination of three modes, i.e.
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permits the identification of the last coefficients, i.e. . The above approach, referred to as the STEP (STiffness Evaluation Procedure), has often been used and has generally led to the reliable identification of the reduced order model parameters, especially in connection with flat structures, with values of the generalized coordinates of the order of, or small than, the thickness. However, in some curved structures, e.g. the curved beam of [START_REF] Spottswood | Nonlinear reduced order modeling of curved beams: a comparison of methods, 50 th Structures[END_REF], several of the models identified by the STEP process were found to be unstable, i.e. a finite static solution could not be obtained with a time marching algorithm, when the applied load magnitude exceeded a certain threshold. This problem occurred most notably for loads inducing a snap-through of the curved beam.

s q

In studying this problem, it was observed that the magnitude of some of the terms , , and/or computed at a large amplitude (of the order of 10 thicknesses say) snap-through solution were much larger (2 orders of magnitude was routinely observed) than the driving . Accordingly, the balance of the terms on the lefthand-side of Eq. ( 8) must be accomplished quite accurately or, equivalently, a very good accuracy is required on the stiffness coefficients, to have a good match of the full finite element solution in such cases. A sensitivity analysis of the stiffness coefficients identified by the above approach in the curved beam case (see description below) suggested that the accuracy requirements were right at the limit of what could be expected and thus another identification procedure was sought.
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The perceived weakness of the procedure based on Eqs ( 14)-( 17) is that the identification is conducted near the undeformed configuration for which the linear terms are much larger than the quadratic ones, themselves much larger than the cubic terms. That is, in conditions in which the critical balance of the terms on the left-hand-side does not take place. In this light, it was proposed to shift the baseline point around which the identification is achieved from the undeformed state to one in or near the expected difficult conditions, e.g. in a snapthrough configuration for the curved beam. This baseline solution admits the representation
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Then, the test displacement fields imposed for identification are IFASD-2011-185
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More specifically, for each value of n = 1, ..., M, three cases of the form of Eq. ( 19) were considered with = +q, -q, and q/2 as before with q typically smaller than the thickness.

The four cases corresponding to positive and negative values of and in Eq. (20) were also included for each n and m t n. Finally, all eight cases associated with positive and negative values of , , and n q n q m q n q m q r q for r t m t n and all n were used.

The displacement fields of Eqs ( 19)-( 21) include generalized coordinates along all basis functions and thus no simplification of Eq. ( 13) takes place as in Eq. ( 15). Accordingly, the stiffness coefficients were obtained by a least squares solution of Eq. ( 13) with the complete set of displacement fields imposed by Eq. ( 19)-( 21). Note that the linear, quadratic, and cubic stiffness coefficients are often of very different magnitudes and thus an appropriate scaling of the terms is recommended to keep low the condition number of the least squares matrix. It was also found beneficial to include the equations corresponding to two different baseline displacement fields 0 u .

BASIS SELECTION

The two previous sections have focused on the derivation of the parametric form of the reduced order model governing equations, Eqs (8) and ( 13), and on the estimation of the parameters from a set of well chosen finite element solutions. The last key aspect of the construction of reduced order models is the selection of the basis functions ) (n \ . In this regard, the expected features of the reduced order model are that (i) it leads to an accurate representation of the full finite element results and (ii) it includes a "reasonably" small number of basis functions. To satisfy these requirements, these functions should closely capture the expected physics of the structural response and recent research efforts have focused on this issue [START_REF] Kim | Nonlinear reduced order modeling of functionally graded plates, 49 th Structures[END_REF][START_REF] Rizzi | System identification-guided basis selection for reducedorder nonlinear response analysis[END_REF][START_REF] Przekop | Nonlinear reduced-order analysis with time-varying spatial loading distributions[END_REF]. In particular, it was proposed in [START_REF] Kim | Nonlinear reduced order modeling of functionally graded plates, 49 th Structures[END_REF] to complement the basis functions that would be used in a linear analysis by functions, referred to as the dual modes, that would capture the nonlinear interactions in the structure.

While the construction of the dual modes is applicable to any structural modeling, it is most easily described in the context of an isotropic flat structure, e.g. beam or plate, subjected to a transverse loading. Selecting an appropriate basis for the transverse displacements follows the same steps as in a linear analysis in which no further modeling is necessary. When the response level is large enough for nonlinear geometric effects to be significant, small inplane displacements appear in the full solution which are associated with the "membrane stretching" effect. While small, these in-plane motions induce a significant softening of the stiffening nonlinearity associated with pure transverse motions.

One approach to construct a full basis, i.e. modeling both transverse and in-plane displacements, appropriate for the modeling of the nonlinear response is to focus specifically on capturing the membrane stretching effects. The key idea in this approach is thus to IFASD-2011-185 subject the structure to a series of "representative" static loadings, determine the corresponding nonlinear displacement fields, and extract from them additional basis functions, referred to as the "dual modes" that will be appended to the linear basis, i.e. the modes that would be used in the linear case.

In this regard, note that the membrane stretching effect is induced by the nonlinear interaction of the transverse and in-plane displacements, not by an external loading. Thus, the dual modes can be viewed as associated (the adjective "companion" would have been a better description than "dual") with the transverse displacements described by the linear basis. The representative static loadings should then be selected to excite primarily the linear basis functions and, in fact, in the absence of geometric nonlinearity (i.e. for a linear analysis) should only excite these "modes". This situation occurs when the applied load vectors on the structural finite element model are of the form
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where are coefficients to be chosen with m denoting the load case number. A detailed discussion of the linear combinations to be used is presented in [START_REF] Kim | Nonlinear reduced order modeling of functionally graded plates, 49 th Structures[END_REF] but, in all validations carried out, it has been sufficient to consider the cases
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where a "dominant" mode is loosely defined as one providing a large component of the response. The ensemble of loading cases considered is formed by selecting several values of for each dominant mode in Eq. ( 23) and also for each mode ) (m i D i j z in Eq. (24). Note further that both positive and negative values of are suggested and that their magnitudes should be such that the corresponding displacement fields

) (m i D ) (m i u and ) (m ij u range
from near linear cases to some exhibiting a strong nonlinearity.

The next step of the basis construction is the extraction of the nonlinear effects in the obtained displacement fields which is achieved by removing from the displacements fields their projections on the linear basis, i.e. by forming the vectors
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assuming that the finite element mass matrix serves for the orthonormalization of the basis functions ) (n
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(including the linear basis functions and any dual mode already selected).

IFASD-2011-185

A proper orthogonal decomposition of each set of "nonlinear responses"

) (m i v and ) (m ij v is
then sequentially carried out to extract the dominant features of these responses which are then selected as dual modes. The POD eigenvectors r I selected as dual modes should not only be associated with a large eigenvalue but should also induce a large strain energy, as measured by

r FE T r K I I ) 1 (
, since the membrane stretching that the dual modes are expected to model is a stiff deformation mode.

To exemplify the above process, a flat aluminum beam (see [START_REF] Chang | Reduced Order Modeling for the Nonlinear Geometric Response of a Curved Beam[END_REF] for details), cantilevered on both ends was considered and the duals corresponding to the first four symmetric transverse modes are shown in Fig. 1. Note that these duals are all antisymmetric as expected from the symmetry of the transverse motions assumed. To obtain a better sense of the appropriateness of these functions, a POD analysis of an ensemble of nonlinear responses was carried out and also shown on Fig 1 are the mass normalized POD eigenvectors found for the in-plane displacements. In fact, two such analyses were conducted, one using a series of static responses and the other using snapshots obtained during a dynamic run. It is seen from these results that the dual modes proposed in [START_REF] Kim | Nonlinear reduced order modeling of functionally graded plates, 49 th Structures[END_REF] are in fact very close to the POD eigenvectors obtained from the dynamic snapshots. The difference between POD eigenvectors obtained in static and dynamic conditions can be attributed to the difference in conditions used for their determination. IFASD-2011-185

CURVED BEAM VALIDATION CASE

The first validation case for the identification strategy based on Eqs (19)-( 21) is the clamped-clamped curved beam of [START_REF] Przekop | Nonlinear reduced order random response analysis of structures with shallow curvature[END_REF][START_REF] Gordon R | Reduced-order modeling of the random response of curved beams using implicit condensation, 47 th Structures[END_REF][START_REF] Spottswood | Nonlinear reduced order modeling of curved beams: a comparison of methods, 50 th Structures[END_REF], see Fig. 2. The beam has an elastic modulus of 10.6×10 6 psi, shear modulus of 4.0×10 6 psi, and density of 2.588×10 -4 lbf-sec 2 /in 4 . A Nastran finite element model with 144 CBEAM elements was developed to first construct the reduced order model and then assess its predictive capabilities. The reduced order model development aimed at the dynamic response to a pressure uniform in space but varying in time. The present discussion focuses solely on the static response to such a loading, i.e. F(t) = P constant, and shown in Fig. 3 is the vertical displacement induced at the middle of the beam as a function of P. Note that the beam exhibits a snap-through at P = 1.89 lb/in and that the magnitude of the snap-through deformation is quite large, of the order of thicknesses. If the beam is unloaded from this point, it will go back to the neighborhood of the undeformed position, i.e. on the left branch, at a small load of approximately 0.45 lb/in. In selecting the basis for the reduced order model, it was recognized that the vertical/normal displacements of the beam to the applied loads are of constant signs, similar in shape to those that would be induced on a flat beam. However, the modes of the curved beam, even the first one, exhibit nodes and thus have variable signs along the beam. This observation suggested in [START_REF] Spottswood | Nonlinear reduced order modeling of curved beams: a comparison of methods, 50 th Structures[END_REF] not to use the linear modes of the curved beam, but rather those of the IFASD-2011-185 corresponding straight beam, as the linear basis (see previous section for discussion). These modes were assumed to define the displacement in the locally normal direction to the beam.

As in [START_REF] Spottswood | Nonlinear reduced order modeling of curved beams: a comparison of methods, 50 th Structures[END_REF], the first 6 such symmetric modes were retained here. The antisymmetric modes do not contribute to the static response and thus are not included here. They are however important for the occurrence of snap-throughs dynamically and are thus considered in dynamic computations (see [START_REF] Chang | Reduced Order Modeling for the Nonlinear Geometric Response of a Curved Beam[END_REF]).

The next step of the reduced order model construction focused on the modeling of the locally tangent displacements which was achieved using the dual modes of section 5 with the first basis function (first mode of the flat beam) dominant. Since the first 6 basis functions included only normal components, the 6 dual modes were made purely tangential by stripping their normal components. This process led for the present static computations to a 12 mode model similar to the one considered in [START_REF] Spottswood | Nonlinear reduced order modeling of curved beams: a comparison of methods, 50 th Structures[END_REF], see [START_REF] Chang | Reduced Order Modeling for the Nonlinear Geometric Response of a Curved Beam[END_REF] for additional models and results.

The construction of the reduced order model according to the STEP procedure of Eqs ( 14)-( 17) led to the same difficulties as those encountered in [START_REF] Spottswood | Nonlinear reduced order modeling of curved beams: a comparison of methods, 50 th Structures[END_REF] and described in section 3, i.e. difficulty in obtaining a static solution by a time marching integration of the reduced order equations of Eq. ( 8). Even when a solution could be found, it led to a poor matching of the finite element results. This issue was resolved in [START_REF] Spottswood | Nonlinear reduced order modeling of curved beams: a comparison of methods, 50 th Structures[END_REF] by a detailed study of coefficients and a zeroing out of those that drove the instability; a model matching well the full finite element results was then obtained.

The present effort relied instead on the revised identification procedure, i.e. Eqs ( 18)-( 22). Specifically, two baseline solutions were considered that correspond to the projection of the full finite element results at P = 1.7lb/in on the left branch, i.e. below the snap-through limit, and at P = 2lb/in, i.e. above the snap-through transition. No instability of the model was found in any of the computations carried out thereby suggesting that this phenomenon was indeed related to the near cancelation of terms and further demonstrating the benefit of the revised identification of Eqs ( 18)-(22). P = 1.7lb/in which are typical of the left branch. An excellent match between Nastran and reduced order model results is obtained. A similar analysis was conducted with loading conditions on the right branch and shown in Fig. 5(a) and 5(b) are the normal and tangential displacements obtained for P = 3 lb/in. Both Nastran and reduced order models were then unloaded to P = 1 lb/in, see Fig. 5(c) and 5(d). Finally, a load of P = 10 lb/in was also considered and the responses are shown in Fig. 5(e) and 5(f). In all of these cases, an excellent match is obtained between the full finite element model results and the reduced order model predictions. Additional comparisons, in particular with other good reduced order models, are presented in [START_REF] Chang | Reduced Order Modeling for the Nonlinear Geometric Response of a Curved Beam[END_REF]. Clearly, the identification algorithm based on Eqs ( 18)-( 22) has led to very reliable reduced order models.

CYLINDRICAL SHELL VALIDATION CASE

The second validation example considered is a thin-walled cylindrical shell of thickness h=0.28mm and radius 0.125m, as shown in Fig. 6. It has a main body of length 0.144m and a fret of length 0.019m. The fret (Young's modulus 200000MPa) is slightly stiffer than the main body (Young's modulus 180000MPa), and they have the same Poisson's ratio of 0.3. 

SUMMARY

The present investigation focused on a revisit and extension of existing approaches for the reduced order modeling of the geometrically nonlinear response of structures. Difficulties, i.e. instability of the reduced order model, encountered in the past in connection with a curved beam were first analyzed. This effort then served as the basis for the formulation of a revised identification procedure of the parameters of the reduced order model, see Eqs ( 18)-( 22). The application of this procedure to the previous curved beam model removed the instability issue and led to an excellent matching of reduced order model and finite element predictions for a broad range of external loading. On this basis, a complex structural model of a shell subjected to bi-directional loading and exhibiting a wrinkling deformation was considered and its reduced order modeling was undertaken. An excellent match of the nonlinear finite element response was achieved with the reduced order model until the wrinkling extends to the entire structure. The present results extend previous validation IFASD-2011-185 studies in demonstrating the worth of reduced order modeling of nonlinear geometric structures.
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IFASD-2011-185 thickness of the shell. As shown in Fig. 6, node 51 is located on the Y-axis of the junction circle. Since the force is applied in the Y-direction across this plane, node 51 is a representative point for one to observe the response.

From Fig. 7, it can be seen that the response is linear up to As is increased, the wrinkling range of the response gradually extends and the magnitude becomes larger. This can be seen from the deformed shapes at and as shown in Fig. 9. The basis of linear modes used in the modeling of the curved beam may not be efficient for the shell model, Therefore, the technique of proper orthogonal decomposition (POD) is used to extract the basis functions for the reduced order modeling of the shell, e.g. see [START_REF] Kerschen | The method of proper orthogonal decomposition for dynamical characterization and order reduction of mechanical systems: an overview[END_REF] for a review. The set of nonlinear static responses for varying from to ( = 0.05, 0.5, 10, 20, 30, 35, 37, 38, 39, 40, 41, 42, 43, 44, 45N) are taken as the set of data for the POD analysis. Prior to the analysis, the responses are scaled such that the maximum component of each response is unity. In this way, the contributions of the responses to the basis of POD modes are equally weighted at the low and the high force levels. The POD analysis is implemented using the MATLAB function "svd" for singular value decomposition. From the analysis, the first 6 POD modes are found to be able to represent the responses well, thus are chosen as the basis functions of the reduced order model. The developed reduced order model is validated against the MSC/Nastran results for a series of values. Included in those are three "blind" values, that is, , and , which were not used in the database for the POD analysis. In the validation, the displacements in the Y-and Z-directions of two nodes, node 51 and node 5550, are presented. The displacement in the X-direction is generally small and thus not discussed here. As shown in Fig. 7, nodes 51 and 5550 are located on the Y-and the X-axis of the junction circle, respectively.