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Abstract

This paper presents a methodology to build representative railway track geometries
thanks to a stochastic modelling. This modelling, which hasto integrate the statisti-
cal and spatial variabilities and dependencies, is a key issue when using simulation
for conception, maintenance or certification purposes, as the dynamic behaviour of
the trains is mainly induced by the track geometry. The stochastic process theory is
used, combining Karhunen-Loève and polynomial expansions. Through a practical
example, this paper finally shows to what extent this methodology gives rise to new
promising opportunities for the track geometry maintenance.

Keywords: stochastic modelling, track geometry, random process, polynomial chaos
expansion.

1 Introduction

The dynamic behaviour of the trains is mainly induced by the track geometry.

Made up of straight lines and curves at its construction, thetrack geometry is grad-
ually damaged and regularly subjected to maintenance operations during its lifecycle.
The appearing irregularities may be different from one track to an other, from one
country to an other, depending on the physical properties ofthe track substructures,
on the traffic conditions (number, type of trains) and on the geographical locations
(which can be correlated with weather conditions).

Hence, the train may be confronted to very different runningconditions. In security
or certification prospects, the dynamic behaviour has therefore to be analysed not only
on a few track portions but on this whole realm of possibilities.
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In reply to this concern, the measurement train IRIS 320 has been running con-
tinuously since 2007 over the French railway network, measuring and recording the
track geometry of the main national lines. This measurementof the railway network
quality and variability may then be implemented as an input in classical railway soft-
wares to characterise the dynamic behaviour of each train that runs on the considered
network. However it would be too time-consuming to simulateruns on the whole rail-
way network, and it is difficult to find a portion of track that is representative of the
network.

The work presented here therefore aims at building representative track geometries
thanks to a stochastic modelling.

In this paper a parameterisation of the track geometry is presented at first. The for-
mulation of the stochastic modelling is then described. Theirregularity vector (gath-
ering the four types of irregularity) is considered as a random field. According to
the Karhunen-Loève expansion theory, the irregularity vector is then projected on a
determinist orthonormal basis. At last, the projection coefficients, which are random
values, are expanded on a polynomial basis.

Finally, the track stochastic modelling, which integratesthe statistical and spatial
variabilities and dependencies, allows to generate numerically, from a set of track
measurements, as many realistic and representative portions of track as needed. These
latter can be used in any determinist railway dynamic code tocharacterise the dynamic
behaviour of the train. It could thus bring innovative technical answer to introduce
numerical methods and treatments in the maintenance and certification processes.

2 Track irregularities modelling

In this part is formulated the track irregularities modelling.

2.1 Parameterising the track geometry

LetR0 = (O,X0,Y0,Z0) be the inertial reference frame. A railway trackT is built up
of two rails, which can be modelled as two parallel curvesRl = {M l(s), s ∈ [0, S]}
andRr = {M r(s), s ∈ [0, S]}, wheres is the curvilinear abscissa of the track of
lengthS:

T = Rl × Rr. (1)

Let’s callE the rail gauge, andCm = {Om(s), s ∈ [0, S]} the track mean line so
that:

∀s ∈ [0, S] , M rOm(s) =
1

2
M rM l(s). (2)

The Frenet frame(Om(s),T(s),N(s),B(s)) is also introduced as:
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T (s) =
dOOm

ds
(s), (3)

N(s) =
M rM l

‖M rM l‖
, (4)

B(s) = T (s) ∧N(s). (5)

The curvilinear inclination angleθ(s) is therefore defined as the angle between
N(s) and the horizontal plane(X0,Y 0).

The irregularities appearing during the track lifecycle are of four types: vertical and
horizontal alignment irregularities on the one hand, gaugeand cross level irregularities
on the other hand. These irregularities are characterised by a short wavelength evolu-
tion (between 3 and 150 meters) whereas the geometry of new tracks is characterised
by long wavelengths.

Hence, a curvilinear parameterisation which suits this double scale property is pro-
posed in this paper. The geometry of new tracks is characterised by the horizontal and
vertical curvaturescH(s) andcV (s) and the cross levelcL(s), which only depends on
s, whereas four curvilinear fields are defined to represent theformer described four
track irregularities:

• α(s) andβ(s) for the horizontal and vertical alignment irregularities;

• δ(s) andǫ(s) for the cross level and gauge irregularities.

It can be deduced that:

OM l = OOm +∆(s)N (θ(s)) , (6)

OM r = OOm −∆(s)N (θ(s)) , (7)

∆(s) =
E + ǫ(s)

2
, (8)

sin (θ(s)) =
cL(s) + δ(s)

E + ǫ(s)
, (9)

OOm(s) = OONT (s) + α(s)N (θ(s)) + β(s)B (θ(s)) , (10)

OONT (s) = F (cH , cV , s) , (11)
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Figure 1: Parameterisation of the track irregularities
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Figure 2: Long wavelengths track parameterisation (left),short wavelengths track param-
eterisation (right)

whereOONT (s) is the mean line description of the new track, without any irregular-
ities. In Figure 1 is represented the chosen parameterisation of the track, whereas in
Figure 2 are plotted experimental measurements of this parameterisation.

2.2 Definition of the stochastic model

As it has been presented in introduction, a trackT of lengthS contains several sources
of uncertainty, that we decide to gather in an unknown randomvectorΞ. Conse-
quently,T , which depends onΞ, may be seen as a random field.

The goal of this paper is therefore to model the specific link betweenΞ andT as:

M : Ξ 7→ T = M (Ξ) . (12)

The lengthS can be seen as a description window of the model, and must therefore
be chosen carefully. Indeed, it has to be large enough to takeinto account all the track
irregularities wavelengths and correlations, without involving too many computational
costs. The lengthS is thus derived from experimental measures analysis.
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Let’s be aware that two kinds of dependencies have to be takeninto account in the
modelM:

• the spatial dependencies, which characterise how two irregularities at two dif-
ferent abscissa of the same track are related;

• the statistical dependencies, which describe the link between two irregularities
of two different tracks at the same abscissa.

The following methodology allows to well-distinguish these two kinds of depen-
dencies, and therefore to facilitate the interpretation ofthe physics of the geometry.

2.3 Theoretical frame of the modelling

2.3.1 Notations

Let (Θ, A, P ) be a probability space. LetL2
P (Θ,R4) be the space of all the second-

order random variables defined on(Θ, A, P ) with values inR4, equipped with the
inner product〈., .〉:

〈U ,V 〉 =
∫

Θ

UT (θ)V (θ)dP (θ) = E
(

UTV
)

, ∀U ,V ∈ L2
P

(

Θ,R4
)

, (13)

whereE (.) is the mathematical expectation.

We consider track irregularities modelled by a second-order R4-valued stochastic
processX = (α, β, δ, ǫ), indexed bys ∈ Ω = [0, S], whose realisations are almost
surely in the Hilbert spaceL2(Ω,R4) equipped with the inner product(., .):

(u, v) =

∫

Ω

uT (s)v(s)ds, ∀u, v ∈ L2(Ω,R4). (14)

It is assumed thatX is mean-square continuous.

It has to be noticed that gathering all the irregularities inthe same vector, and
adopting a vectorial approach certifies that the inner dependencies between different
irregularity fields are accurately taken into account.

2.3.2 Karhunen-Loève expansion

Let [RXX ] be the autocorrelation matrix of the random fieldX:

[RXX ] : (s, s′) ∈ Ω2 7→ [RXX(s, s′)] = E
(

X(s)XT (s′)
)

. (15)

Under the asumptions above,[RXX ] is continuous onΩ×Ω and can be written as:
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[RXX(s, s′)] =
∑

k≥1

λku
k(s) uk T

(s′), (16)

where
(

λk,u
k
)

is an orthonormal basis ofL2(Ω,R4) solution of the Fredholm equa-
tion (see [1] for further details):

∀k ≥ 1,

∫

Ω

[RXX(s, s′)]uk(s′)ds′ = λku
k(s). (17)

The eigenvaluesλk are non-negative, and can be arranged in decreasing order:

λ1 ≥ λ2 ≥ · · · → 0. (18)

The Karhunen-Loève expansion of the stochastic processX is then:

X(s) =
∑

k≥1

√

λku
k(s)ηk, (19)

with:

ηk =
1√
λk

(

X,uk
)

. (20)

Equations (15), (16), (19) imply:

E (ηkηl) = δkl. (21)

Based on the eigenvalues decrease,X can thus be approximated as:

X(s) ≈
Nx
∑

k=1

√

λku
k(s)ηk, (22)

whereNx is related to a chosen value of the normalized mean-square error:

ǫ2KL =

∑

k>Nx
λk

∑

k≥1 λk
. (23)

Under a matricial form,X can be rewritten as:

X(s) = [Q(s)]η, (24)

with:

η = (η1, ..., ηNx
) , (25)

[Q(s)] = [u(s)][λ1/2], (26)
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[u] =
[

u1 u2 · · · uNx
]

, (27)

[λ1/2] =









√
λ1 0 · · · 0
0

√
λ2 · · · 0

· · · · · · · · · 0

0 · · · 0
√

λNx









. (28)

The condition (21) can then be rewritten as:

E
(

ηηT
)

= [INx
] , (29)

where[INx
] is theNx-dimension unitary matrix.

Let’s note that the more correlated the process is, the smaller the needed number of
terms to achieve a given error is. Moreover, thanks to the Karhunen-Loève expansion,
spatial and statistical correlation are clearly separated. Whereas[u] emphasizes the
predominant track irregularity spatial shapes,η gathers all the statistical variability.
In order to fully describeM, the statistical content ofη, and more specially its joint
probability density function (PDF)pη has to be focused on.

2.4 Computation of the joint PDF ofη

2.4.1 Gathering ofνexp realisations ofη

As it has been showed in introduction, the measurement trainIRIS 320 has recently
given access to huge data bases, and motivated statistical analysis of the network. In
the following, it is considered that all the measurements ata given period can be seen
as a setSexp of νexp track portions of same lengthS:

Sexp =
{

T exp,i, 1 ≤ i ≤ νexp
}

. (30)

In reference to the stochastic description given in section2.2, each elementT exp,i

in Sexp is then regarded as an independent realisation of the randomprocessT . More
precisely, the corresponding setX exp = {xexp,i, 1 ≤ i ≤ νexp} is defined such that
xexp,i refers to the measured track irregularities ofT exp,i, and is such thatxexp,1,...,xexp,νexp

areνexp independant realisations of random fieldX.

Consequently, the autocorrelation matrix as well asνexp realisations{ηexp,i, 1 ≤ i ≤ νexp}
of random vectorη can be assessed as:

[RXX(s, s′)] ≈ 1

νexp

νexp
∑

i=1

xexp,i(s)xexp,i(s′)T , (31)
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∀1 ≤ i ≤ νexp, ∀1 ≤ k ≤ Nx, η
exp,i
k =

(

xexp,i,uk
)

√
λk

. (32)

2.4.2 Polynomial chaos expansion of random vectorη

From equation (21), random variablesη1,...,ηNx
are orthogonal, but are generally not

independent. Hence, the joint PDFpη is difficult to characterise in high dimension (Nx

large) using non-parametric statistical estimators fromνexp realisations of the vector
η. The maximum entropy principle, discussed in [2], has been introduced to build
a priori stochastic model, by focusing on the only usable and available information.
Very relevant when dealing with small dimension problems with even small avaiblable
data, this method is limited in high dimension. More recently, polynomial chaos ex-
pansion methods have underlined very promising results in high-dimension (see [3]).
Based on the projections of the considered random vectorη on known and chosen
orthonormal polynomial basis{ψα, α ∈ Ap}, these methods aim at building a chaos
representation that makes explicit the link between the vector of interest and an other
random vectorξ of known dimension and joint PDF:

η ≈ ηchaos(N) =
∑

α∈Ap

y(α)ψα(ξ), (33)

ξ 7→ ψα(ξ) = Hα1
(ξ1)⊗ ...⊗HαNg

(ξNg
), (34)

Ap =

{

α =
(

α1, ..., αNg

)

| |α| =
Ng
∑

i=1

αi ≤ p

}

, (35)

whereξ is aNg-dimensional normalized gaussian random vector,N = (Ng + p)!/ (Ng!p!)
is the dimension ofAp, andx 7→ Hαp

(x) is the normalized Hermite polynomial of
degreeαp. By carrying out a different index ordering, equation (33) can be rewritten
as:

η ≈
N
∑

j=1

yjψj(ξ) = [y]Ψ(ξ), (36)

in which:

[y] =
[

y1 · · · yN
]

. (37)

It can be noticed that condition (21) now implies that:

[y] ∈ Õ =
{

[b] ∈ MNx,N(R) | [b][b]T = [INx
]
}

. (38)
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2.4.3 Identification of the polynomial chaos expansion coefficients

Based on the maximum likelihood principle, and theνexp independant realisations
{ηexp,i, 1 ≤ i ≤ νexp} of η, the optimal polynomial chaos expansion coefficients gath-
ered in matrix[yopt] may be found as the result of a maximization problem (see [4] for
further details):

[yopt] = argmax
[y]∈Õ

L ([y]) , (39)

whereL is the log-likelihood:

L ([y]) =

νexp
∑

i=1

ln pηchaos(N)

(

ηexp,i, [y]
)

. (40)

Using the kernel estimation method, the PDFpηchaos(N) of ηchaos(N) can be esti-
mated fromνchaos independent realisations

{

ξ(θp), 1 ≤ p ≤ νchaos
}

of ξ for any [y]
in Õ andx in R

Nx:

pηchaos(N) (x, [y]) ≈
1

(2π)Nx/2 νchaos
∏Nx

k=1 hk

νchaos
∑

p=1

exp

(

−1

2

Nx
∑

k=1

(

xk − ηchaosk (N, θp)

hk

)2
)

,

(41)

ηchaos(N, θp) = [y]Ψ (ξ(θp)) , (42)

whereh = (h1, · · · , hNx
) is the optimal bandwith vector with respect to the AMISE

criteria (see [5]) of the Kernel smoothing estimation ofpηchaos(N). Equations (40) and
(41) yield:

L ([y]) ≈ L̂ ([y]) = L̂C + L̂V , (43)

L̂C = −νexp ln
(

(2π)Nx/2 νchaos
Nx
∏

k=1

hk

)

, (44)

L̂V =
νexp
∑

i=1

ln





νchaos
∑

p=1

exp



−1

2

Nx
∑

k=1

(

ηexp,ik − ηchaosk (N, θp)

hk

)2






 . (45)

As L̂ is non concave, random maximization algorithms are used to estimate[yopt].

9



2.5 Post-processing of the track modelling

Finally, once[yopt] has been computed, it can be deduced from equations (24) and
(36):

∀ (s, θ) ∈ Ω×Θ, X(s, θ) = [Q(s)][yopt]Ψ (ξ(θ)) . (46)

By focusing only on the track irregularities, and by identifying respectivelyT and
Ξ to X andξ, the stochastic modelM of equation (12) becomes:

M : ξ 7→ T = M (ξ) = [Q][yopt]Ψ (ξ) . (47)

The parametersNg andp being chosen thanks to convergence studies,[Q] and[yopt]
being computed, any independant realisation ofξ leads to a representative and realistic
realisation of the irregularity vector of a potential trackportion of lengthS. Hence,
any statistical post-treatment can be carried out on the stochastic modelM.

3 Application

In this part, the previously described methodology is applied step by step to the com-
putation of realistic track portions, whose irregularities are representative of the global
quality of the network. In a certification prospect, these representative tracks could be
used to numerically homologate a train.

This study being confidential, very few normalized values are presented.

3.1 Step 1: computation of the matrix-valued autocorrelation func-
tion [RXX ]

For this study, track irregularity measurements on aroundνexp = 1850 portions of
same lengthS have been gathered.

From equation (31),[RXX ] was evaluated. As an illustration, in Figure 3 is repre-
sented[RXX(s, s′)]11.

3.2 Step 2: Karhunen-Lòeve expansion

The solutions(u, λ) of the Fredholm equation (17) were then computed thanks to
a Finite Element approach. Indeed, we defineΩh = {s1 = 0, s2, ..., sNS

= S} and
eigenvectorsu are projected on linear shape functions:

u(s) =

NS
∑

n=1

bnhn(s) = [H ]d(s), (48)
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Figure 3: Representation of(s, s′) 7→ [RXX(s, s′)]11

d(s) =
(

b11, b
2
1, ..., b

NS

1 , b12, ..., b
NS

4

)

, (49)

[H ] =









h1 . . . hNS
0 . . . . . . . . . . . . . . . . . . . . . . . .

0 . . . 0 h1 . . . hNS
0 . . . . . . . . . . . . . . .

0 . . . . . . . . . . . . 0 h1 . . . hNS
0 . . . . . .

0 . . . . . . . . . . . . . . . . . . . . . 0 h1 . . . hNS









, (50)

where{s 7→ hn(s), 1 ≤ n ≤ NS} are unidimensional linear shape functions. Solu-
tions of (17) are finally looked for from the classical eigenvalue problem:

([K]− λ[M ])D = 0, (51)

where:

[K] =

∫

Ω

∫

Ω

[H(s)]T [RXX(s, s′)][H(s′)]ds′ds, (52)

[M ] =

∫

Ω

[H(s)]T [H(s)]ds. (53)
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Given acceptable values of truncation for the mean-square error ǫ2KL of equation
(23) (whose evolution is represented in Figure 4), the truncation parameterNx of
equation (22) is assessed:

• ǫ2KL = 0.1 ↔ Nx = 452;

• ǫ2KL = 0.05 ↔ Nx = 807;

• ǫ2KL = 0.01 ↔ Nx = 1423.

Nx can be directly compared to the truncation value4NS × 4NS due to the finite
element approximation. We verify the inequalityNx << 4NS × 4NS, which justifies
the importance of the Karhunen-Loève expansion in term of reduction efficiency.

From equation (32), theνexp realisations{ηexp,i, 1 ≤ i ≤ νexp} of η are computed.
The PDF ofη can thus be estimated and analysed. For instance, in Figure 5, kernel
smoothing estimations of the PDF ofη1, η2 andη3 are compared to the normal distri-
bution. Marginal distributions ofη being non-gaussian, the random processX is non
gaussian. The joint PDF ofη needs therefore to be properly characterised.

3.3 Step 3: polynomial chaos expansion

In agreement with the mathematical frame of section 2.4,η is expanded on a known
polynomial basis of parametersNg andp:

η ≈ ηchaos(Ng, p) =

(Ng+p)!/(Ng !p!)
∑

j=1

yj,optΨj

(

ξ1, ..., ξNg

)

= [yopt]Ψ
(

ξ1, ..., ξNg

)

.

(54)
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The values ofNg et p stems from convergence analysis. As described in [4], for
each componentηchaosk (Ng, p), theL1-log error functionerrk is introduced:

∀1 ≤ k ≤ Nx, errk(Ng, p) =

∫

BIk

|log10
(

pηexp
k

(x)
)

− log10

(

pηchaos
k

(x)
)

|dx, (55)

where:

• BIk is the bounded domain which is adapted to the values ofηexpk ;

• pηexp
k

andpηchaos
k

are the PDF ofηexpk andηchaosk respectively.

For instance, evolution oferr1(Ng, p) is represented in Figure 6. It can be no-
ticed that the choice of(Ng, p) is not easy: the higher the values of(Ng, p) are, the
more complex the polynomial basis is, the more accurate the projection should be, but
unfortunately the more difficult and less precise the identification is.

The multidimensional error functionerr(Ng, p) is deduced from the unidimen-
sionalL1-log error function to evaluate the finalNg andp:

err(Ng, p) =
Nx
∑

k=1

errk(Ng, p) (56)

3.4 Step 4: realisation of representative track irregularities

Once the polynomial projection matrix[yopt] of equation (54) has been computed,
equation (47) allows to generate a representative track geometry from any realisation
of ξ =

(

ξ1, · · · , ξNg

)

. In Figure 7 are plotted two realisations of the stochastic process
X. In order to be clearer, the graphs of each component ofX, whose mean values are
equal to zero, have been translated.
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4 Conclusions and prospects

At a time when the numerical power and the mechanical simulation algorithms preci-
sion keep increasing, the introduction of the simulation inthe railway maintenance and
certification would represent an important progress. The numerical characterisation of
the track geometry is therefore bound to play a key role in this evolution.

From a sample of track measurements, a complete methodologyto generate realis-
tic and representative track geometries has been describedin this paper.

Coupled with any railway software without requiring an access to the sources
codes, these track geometries should allow to characterisethe dynamic behaviour
without simulating runs on the whole network.

At last, the influence of the evolution of the vertical and horizontal curvatures on
the track irregularities could enrich this study.
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