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Abstract

(MSC=11D04) More than one century after its formulation by the Belgian mathe-
matician Eugene Catalan, Preda Mihailescu has solved the open problem. But, is
it all ? Mihailescu’s solution utilizes computation on machines, we propose here
not really a proof as it is entended classically, but a resolution of an equation like
the resolution of the polynomial equations of third and fourth degrees. This solu-
tion is totally algebraic and does not utilize, of course, computers or any kind of
calculation. Then, we generalize the proof to Pillai conjecture.

(Keywords : Diophantine equations ; Catalan equation; Pillai conjecture ; Al-
gebraic resolution)

Introduction

Catalan theorem has been proved in 2002 by Preda Mihailescu. In 2004, it became
officially Catalan-Mihailescu theorem. This theorem stipulates that there are not
consecutive pure powers. There do not exist integers stricly greater than 1, X > 1
and Y > 1, for which with exponants strictly greater than 1, p > 1and ¢ > 1,

YP=X%4+1
but for (X,Y,p,q) = (2,3,2,3). We can verify that
3¥=2"+1

Euler has proved that the equation X3+1 = Y2 has this only solution. We propose
in this study a general solution. The particular cases already solved concernp = 2,
solved by Ko Chao in 1965, and ¢ = 3 which has been solved in 2002. The case
¢ = 2 has been solved by Lebesgue in 1850. We solve here the equation for the
general case. We generalize the proof to Pillai conjecture

YP=X%4a

And prove that it has always a finite number of solutions for a fixed a.

The approach
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2

Letc = Xy";, c':%But(chc')Y% = XP-1+7-XP=6=Y2=_5
And XP = V% +1 = % +1 = 125 And X7 = Y7 — 1 = £ We have
(c+¢)Y?% =6 > 0Thus c+c > 0. AlsocYs = XP—1 > 0 Thus ¢ > 0. But X? > 4,

hencecY? = XP —1>7— XP=cY5shencec>cand7— XP =7 — 7ch-:ch’ = c(jf;,

If ¢ > 0 Thus X? < 7and X? = 4, it means that ¢ < 0 and (¢ + ¢)Y% =6 > 0

(c+)XP=Tc+d >0thusc+¢ >0and Y3 = C_EC, >3=c+d <2

main results What we must retain is
1)d <0

2)0<c+d <2

3)0<T7c+

And we will discuss two cases

e <1

INc: >1

case > <1 We have

72 —2(c+)? — (Te+)?
(c+c)?

2X9 X% =

_72-51¢2 —3¢? — 18 51(1 — ¢?) — 3¢ (c+ ) — 15¢c + 21 -
B (c+¢)? B (c+c)?

Thus 2X9 > X?? (1) So

2
Xl o — <1
¥ =
Thus
2p<q+1
We will give two proofs : for X > 2 X%(36 — (c + ¢/)?)?P~*1 > 322r~4x1 > 364

and
(36 X% — (c+)2XH1 361X

(C+C/)2q < (C+Cl)2q
(36 — (c+ )?)%—1
(c+ )8

xa(a—4) _

< X@r—4a —

Because X4 = (Zcircf;)ziq > (cj’fjf‘)zq Thus 2p+1 > g > 2p — 1. We have then g+ 1 =

2p. Another proof : ¢ < 1, 3m > 1 for which ¢? = mT_l thus 1 — ¢ = % < %
thus ¢2X > 1 and X211 = (7(6(::;/))22)( > fﬁﬁ%ﬁ > 36(13)62,)2 = X7 We deduce
Xt < X2

We have then
X1< X2p < xatl

As gisnoteven: g+ 1 = 2p Thus
0> (> —1)YP=X% _2XP - X7= X9 _2XP _X7>0
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we deduce ¢? = land thenc? -1 = XP(XP—2)— X% =0and XP 1 - X9 P1=2
This expression is an integer, hence X = 2 and 2°~! = 1 + 29771 In one side an
even number, in the other an odd one, it is possible if p = 2, thusg =p+1 =3
and Y = £3

Case ¢ > 1 We must retain here that

e >1
2)c+d <2
3)d <0
We have ) ) ) )
02 X1 _ X% — 72¢* — 2¢*(c+ )* — (Te+ )
(c+)?
. 72¢% — 49¢% — % — 1ded — 23 (2 + P + 2c¢d)
N (c+c)?
(23 =2(c+d)?) —d(c+)—13¢d 152 — d(c+ ) — 13cd 0
- (c+ )2 g (c+ ) g

Or2c2X7 > X% > 4XP = X9 > 2XP (5) And

36c2 — 2(c+ )2 — (Te+ )?

2 2
X9 _ X2 —
¢ (c+)?

~ (6c—Tc—)(6c+Tc+ ) —Elc+ ) —(c+)13c+ ) — e+ )? 0
B (c+)? B (c+)? <
We deduce $ X% < 2X9 < X% < X% (6) And X# 7> ¢> > 10r2p >
g+ 1 We have seen that 2¢2X%~1 > 2¢2X9 > X2, we deduce 2¢2 > X, but
Y+(c+d)2>Y >360rY? > (36— (c+)?)* And

321X2 320X20  321X* )
(36 — (c+ )?)?r Z Tyw (X7 +1)2 -
We deduce
ala+2) _ (36X2 — X2(c+ )9 320X%
- (C + C/)Qq > (C + C/)4p
(36 — (c+)?)% e
- (c+ )% -

Or ¢+ 2 > 2p > g+ 1 We can restrain the value of Y. for example : Y > 5 implies
Y3 > 36 and, by the same calculus ¢ +5 > 2p > ¢+ 1. As ¢ is odd, it leads to
g+1=2porqg+3=2p. Andif g+ 1 = 2p we have X9 = 2X» 1 < X% =
X > ¢ We pose XP > u,c?* With ug = 1 and u,, < 27, we have
2P Up — 2P

2p
XP —2Pc® = T XP — 9Pc? 4 (1 — ) XP >
Up, Unp, Up,

XP

And XP — u,c? = XP — 2Pc?P + (2P — u,,)c® > 0 Thus XP — 2Pc® > (u,, — 2P)c?P
We add

XP
2XP — (uy + 2P)c® > 2XP — 2P > (u, — 2P)(—— + )

Unp
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XP XP or+1
= (up — 2°)(c® — )+ 2(up, — 2°)— > (2 —
(un )(C w ) + (un ) w ( w

We deduce 2 XP > (u,, + 2P)c* Or

Un

)x7

Up (U + 2P) 9
Xp>%cp:un+1cp

With
Up(up +2P)  2P(2P 4 2P)

_ 9p
op+1 < op+1 =2

Unp+1 =

For all n : in the infinity lim,_, (u,) = L And L verifies recurrence relation

L= L(ng,ﬁp) = L = 2P Hence

XP > lim (up)c® =2°*
n—-~oo

We have 2¢2 > X > 2¢2So X = 2¢2 and

X?2p 5  2X%P —4XP 42
_= _= Cc =

X =
X4 X1+1

2
:>X—Xq+1+4X”:2=>1—Xq+4X”_1:Y
Thus X =2c2 =2andc® =1or (2? —1)2 =29+ 1 and
W_2=21P =Pl p_—92=2g=2p-1=3=Y =43

Another proof : Y? = X9 +1 = X%~1 41 > X% Hence Y2 > X3 Let us pose
Y2 = X3 +u> X3+ 11If we suppose p even

YyP _ X3P

w2 w3
1<u=Y X° = YP—2 4 Ypr—4X3 + ..+ Y2X3-6 4 X3p—3

X1 41— xOp
T YP 24 YPAX3 4.+ V2X% 64 X3
and it is impossible, it means that p is not greater than 2 thus p = 2 and ¢ =
2p—1=3and X =2and Y = +3. If pis odd and greater than 3, let p = 2k + 1

<0

Y2k+1_X3p _ (YQ—XB)(YQk_l+Y2k_3X3+...+Y3X3p_9+YX3p_6)+X3p_3Y—X3p
— (Y2 _ X3)(X3p73 + v?2 x3p—6 4.+ Y2k72X3 + Y2k) + Y2k+1 _ Y2k+2
1

= 5((}/’2 _ X3)(y2k71 + Y2k73X3 4.+ Y3X3p*9 + YX3p76)+

_{_%((Y2_X3)(X3p73+Y2X3p76_|_”‘_|_Y2k72X3_|_Y2k)+Y2k+1_X3p_y2k+2_|_X3p73y)
Hence
0> Y2]<:+1_X3 _ (YQ—X?))(YQk_l+...+YX3P_6—|—X3P_3+...+Y2k)—|—YX3p_3—Y2k+2

We deduce X373 < Y2+l — X2%~1 1 1 It is impossible : it means p = 3 and
q = 2p — 1 = 5, the equation becomes Y? = X° + 1 which does not have
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solution! And if ¢ + 3 = 2p, we have Y? = X3 11 > X% + 1 it implies
p = 2 or p = 3 and, respectively ¢ = 1 (impossible) or ¢ = 3 (also impossible!).

Generalization to Pillai equation

Pillai equation is Y? = X9 4 a. We will define Pillai numbers : we note them : b,
they depend of a and heve the same proprieties than b for a = 1. Thus, we write
1o + 7 = 8, and 7, — 1, = 6, : our goal is to follow the approach as we have
done for Catalan equation. Of course, we have 1, = a; et 0, = 0. The equation
becomes Y? = X9 +1,. Let us pose for p, ¢, X, Y, a integers stricly greater to 1. Let

_ _ P P
c:%, c’:%And(c+c’)Y2 =XP-1,+7,—XP=6,=Y2 :cﬁ_“c,

P / 36ala—1 /)2
So XP =cY2 41, = 205 +1, = Lol And X7 = YP - 1, = —(C+3(>C2+c)

Also (c +)Ys =6, > 0Thusc+¢ > 0. And ¢¥2 = XP — 1, > 0 So
¢ > 0.But XP > 4,, thencY? = XP -1, > 7,—XP = Y2 And ¢ > ¢

and 7, — X? = 7a—7“%i,“cl = cﬁi—cc/,lfc’ > 0 Then X? < 7, and we have

a finite number of solutions, we have ¢ < 0, with (¢ + ¢ )y% = 6, > 0 and

(c+)XP =T4c+1,d > 0withe+ > 0.And Y3 = ci‘lc, >3, =c+d <2<2,

Main results We retain

1)d <0

20<c+d <2,

3)0 < Tac+ 1,¢

And we will discuss two cases

e < 1,

INc > 1,

We have to not forget that X — 1, > 0and 7, — X? < 0.
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case ¢ <1, Let

7241414 — 2,14(c+ )% — (Tac+ 1,)?

2. X7 — X% =
@ (c+ )2
L T21010 — 1,(49, 4 25)¢? — 1a(1a + 24)¢% — 24(7q + 24)cc
o (c+c)?
19,1010 +5110(1a — ) + 2,14(10 — ) — (2010 + 1410) (¢ + ) — 16414
N (c+)?

Thus 2, X9 — X? > 0502,X7 > X?? (7) And also

3641qc? — 1,c2(c+ )2 — (Tac + 14c)?

2 2
X4 _ X2 —
¢ (c+)?
_ (6gc = Toc = 14¢) (64 4 Ta + 14¢) — 1oc?(c+c)?
N (c+)?
—lglc+ )34+ 1,) — 1,¢%(c + )?
= <0
(c+c)?

So ?X7 < X% (8) But X* 91 < 2 < 1Thus 2p < ¢+ 1 We will give two
proofs : for X > 2, X%4(36,1, — (c + )?)?~* > (32,1,)?P~4 X4 > (36,1,)? and

(3641, X% — (c+)2X 49 (36414)7X 4

xa(a—4) _
(c+ )2 (c+ )

(2p—4)q _ (36a1a — (C + C/)Q)Qp_4

<X
(C+C/)4p_8

Because X4 = (7?2117)0222‘1 > %i?:j,;gj Thus 2p > ¢ > 2p— 1. We have then

g + 1 = 2p. Another proof : But ¢? < 1,, 3m > 1, for which ¢? = 1aZ=da thys
2 _ 1, 1aX—1 2 2p+1 _ (Tact1a¢)?2X 36a1ac?X
lg —c* = ;2 < 225~ thus ¢°X > 1 and X" = L > (C+C‘f)2 >

736“1@;&6;0,)2 = X7 We deduce X9~! < X% We have then X9 < X% < X9t Asq

isnoteven: g+ 1 = 2p Thus

0> (2 —1,)YP = X% - 2,XP - X7 = X9 2, XP — X9>0

we deduce ¢ = 1, and then X? —2, = X977 >2and XP~! — X977~ = Z jsan
integer and there is a finite number of solutions.

Case ¢? > 1, We will retain
e > 1,

Ne+d <2,

3)d <0

As precendently :

72a1ac® — 2,2 (c+ )2 — (Tae + 1,d)?

262 X7 — X% =
¢ (c+)?

>0



=110 (144 4 1,) + 1,¢%(23, — 2(c + ¢)?)
N (c+c)?
And 2¢2X9 > X% (11) And 22 X9 > X2 > 4XP = 2X9 > 2XP  (11') Also

>0

36414c% — 1,c2(c+ )2 — (Tae + 14)?

2 2
X9 _ X% —
¢ (c+)?
- 36414c% — 50,1462 — 2,14 — 16414¢c + (141q — 14¢)(c + )2
(c+)?
_ —2a(Tac+ o) e+ )+ (c+ ) (1alg — 1,¢2) ~0
(c+)?

Thus $ X% < 2X7 < X% < 2X% (12) Or X%~9 > ¢ > 1, > 1 We have here
2p > ¢ + 1 We have seen that 2c2X?~1 > 2¢2X9 > X2, we deduce 2¢*> > X, but
Y+ (c+¢)? > Y > 36,1, Hence Y2 > (36,1, — (c + ¢)?)?? Or

32X | 218X 32415X%
ER R R € R I CRRRE
We deduce
yatar2) _ (36a1oX? = X2(c 4+ )2)T 3214 X
(C + c/)2q (C + C/)4p
(36ala — (¢ +)°)* _ 1oy
(c+ )%

Andg+2>2p>q¢+1Andg+1=2pbut?X?=c2XP 1 < X% = X > 2 We
pose
XP > u,c?P
With ug = 1 and u,, < 2P, we have
op P _9p
XP P = T xp _ope (1 Zyxp s U
Un Un, Un

XP

And XP — u,c? = XP — 2Pc?P + (2P — u,)c®P > 0 Thus XP — 2Pc?P > (u, — 2P)c?P
We add

XP
2XP — (uy + 2P)c® > 2XP — 2P > (u, — 2P)(—— + )

Un
XP XP op+1
= (up — 2°)(¢® — —) +2(u, — 2P)— > (2 — X
We deduce %Xp > (up + 2P)c® Or XP > %cm’ = Up 16 With u, 1 =
Un, (Un+2P) 2P(2P42P) o | s e pe . . B
T < it — = or all n : in the infinity lim,,, (u,) = L And L ve-
L(L+2P) op

rifies recurrence relation L = =55 = L = 2P Hence X? > lim, o (un)c® =
2P¢2” We have 2¢2 > X > 2¢2 So X = 2¢2 and

L 2XT —4,XP 42,1,

X =272
¢ Xa+1,

=1, X — X 44, XP=2,1,=>1, — X +4,XP ! =

ala

X




We deduce a finite number of solutions.

Xy 2X® —4XP 42
D X7+1

2
:>X—Xq+1+4Xp:2:>1—Xq+4XP—1:E
Thus X =2c2 =2andc® =1or (2» —1)2 =29+ 1 and
W_2=91"P =Pl p_92g=2p-1=3=Y =+3

Another proof : Y? = X9 + 1, = X¥~1 +1, > X7 Hence Y2 > X3 We pose
Y2 =X3%+u> X3+ 1, If we suppose p even

3 YyP — X3P

_v2 -
l,<u=Y"-X°= YP—2 ;f YPr—4X3 4 ..+ Y2X36 4 x3p-3

X141, — X3
Yy Axs 4. VX% 64 X8
and it is impossible, it means that p is not greater than 2 thus p = 2 and ¢ =
2p—1=3and X =2and Y = £3. In all cases, Pillai equation has a finite number

of solutions, it is the formulation of the conjecture. Thus, we have proved it.

Conclusion

Catalan equation is solved, an original solution exists! We have generalized the
approach to Pillai equation and proved that it always has a finite number of solu-
tions. It is the proof of Pillai conjecture. It seems that many problems of number
theory can be solved like this.

Références

[1] P. MIHAILESCU A class number free criterion for catalan’s conjecture, Jour-
nal of Number theory , 99 (2003).



