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A proof of Pillai’s conjecture
Jamel Ghanouchi

jamel.ghanouchi@topnet.tn

Abstract

( MSC=11D04) More than one century after its formulation by the Belgian mathe-
matician Eugene Catalan, Preda Mihailescu has solved the open problem. But, is
it all ? Mihailescu’s solution utilizes computation on machines, we propose here
not really a proof as it is entended classically, but a resolution of an equation like
the resolution of the polynomial equations of third and fourth degrees. This solu-
tion is totally algebraic and does not utilize, of course, computers or any kind of
calculation. Then, we generalize the proof to Pillai conjecture.

(Keywords : Diophantine equations ; Catalan equation ; Pillai conjecture ; Al-
gebraic resolution)

Introduction

Catalan theorem has been proved in 2002 by Preda Mihailescu. In 2004, it became
officially Catalan-Mihailescu theorem. This theorem stipulates that there are not
consecutive pure powers. There do not exist integers stricly greater than 1, X > 1
and Y > 1, for which with exponants strictly greater than 1, p > 1 and q > 1,

Y p = Xq + 1

but for (X,Y, p, q) = (2, 3, 2, 3). We can verify that

32 = 23 + 1

Euler has proved that the equation X3+1 = Y 2 has this only solution. We propose
in this study a general solution. The particular cases already solved concern p = 2,
solved by Ko Chao in 1965, and q = 3 which has been solved in 2002. The case
q = 2 has been solved by Lebesgue in 1850. We solve here the equation for the
general case. We generalize the proof to Pillai conjecture

Y p = Xq + a

And prove that it has always a finite number of solutions for a fixed a.

The approach
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Let c = Xp
−1

Y
p

2

, c′ = 7−Xp

Y
p

2

But (c + c′)Y
p

2 = Xp − 1 + 7 − Xp = 6 ⇒ Y
p

2 = 6
c+c′

And Xp = cY
p

2 + 1 = 6c
c+c′

+ 1 = 7c+c′

c+c′
And Xq = Y p − 1 = 36−(c+c′)2

(c+c′)2
We have

(c+c′)Y
p

2 = 6 > 0 Thus c+c′ > 0. Also cY
p

2 = Xp−1 > 0 Thus c > 0. But Xp ≥ 4,
hence cY

p

2 = Xp − 1 ≥ 7−Xp = c′Y
p

2 hence c ≥ c′ and 7−Xp = 7− 7c+c′

c+c′
= 6c′

c+c′

If c′ > 0 Thus Xp < 7 and Xp = 4, it means that c′ < 0 and (c + c′)Y
p

2 = 6 > 0
(c+ c′)Xp = 7c+ c′ > 0 thus c+ c′ > 0 and Y

p

2 = 6
c+c′

≥ 3 ⇒ c+ c′ ≤ 2

main results What we must retain is
1)c′ < 0
2)0 < c+ c′ < 2
3)0 < 7c+ c′

And we will discuss two cases
I)c2 < 1
II)c2 ≥ 1

case c
2
< 1 We have

2Xq
−X2p =

72− 2(c+ c′)2 − (7c + c′)2

(c+ c′)2

=
72− 51c2 − 3c′2 − 18cc′

(c+ c′)2
=

51(1 − c2)− 3c′(c+ c′)− 15cc′ + 21

(c+ c′)2
> 0

Thus 2Xq > X2p (1) So

X2p−q−1 <
2

X
≤ 1

Thus
2p ≤ q + 1

We will give two proofs : for X > 2 X4q(36 − (c + c′)2)2p−4 > 322p−4X4q > 36q

and

Xq(q−4) =
(36X−4 − (c+ c′)2X−4)q

(c+ c′)2q
<

36qX−4q

(c+ c′)2q

< X(2p−4)q =
(36 − (c+ c′)2)2p−4

(c+ c′)4p−8

Because X2pq = (7c+c′)2q

(c+c′)2q > 36q

(c+c′)2q Thus 2p+1 > q ≥ 2p− 1. We have then q+1 =

2p. Another proof : c2 < 1, ∃m > 1 for which c2 = m−1
m

thus 1 − c2 = 1
m

< X−1
X

thus c2X > 1 and X2p+1 = (7c+c′)2X
(c+c′)2

> 36c2X
(c+c′)2

>
36−(c+c′)2

(c+c′)2
= Xq We deduce

Xq−1 < X2p

We have then
Xq

≤ X2p
≤ Xq+1

As q is not even : q + 1 = 2p Thus

0 > (c2 − 1)Y p = X2p − 2Xp −Xq = Xq+1 − 2Xp −Xq > 0
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we deduce c2 = 1 and then c2−1 = Xp(Xp−2)−Xq = 0 and Xp−1−Xq−p−1 = 2
X

This expression is an integer, hence X = 2 and 2p−1 = 1 + 2q−p−1 In one side an
even number, in the other an odd one, it is possible if p = 2, thus q = p + 1 = 3
and Y = ±3

Case c ≥ 1 We must retain here that
1)c2 > 1
2)c+ c′ < 2
3)c′ < 0
We have

2c2Xq −X2p =
72c2 − 2c2(c+ c′)2 − (7c + c′)2

(c+ c′)2

=
72c2 − 49c2 − c′2 − 14cc′ − 2c2(c2 + c′2 + 2cc′)

(c+ c′)2

=
c2(23 − 2(c+ c′)2)− c′(c+ c′)− 13cc′

(c+ c′)2
>

15c2 − c′(c+ c′)− 13cc′

(c+ c′)2
> 0

Or 2c2Xq > X2p > 4Xp ⇒ c2Xq > 2Xp (5) And

c2Xq
−X2p =

36c2 − c2(c+ c′)2 − (7c+ c′)2

(c+ c′)2

=
(6c− 7c− c′)(6c + 7c+ c′)− c2(c+ c′)2

(c+ c′)2
=

−(c+ c′)(13c + c′)− c2(c+ c′)2

(c+ c′)2
< 0

We deduce 1
2X

2p < c2Xq < X2p < c2X2p (6) And X2p−q > c2 > 1 Or 2p ≥

q + 1 We have seen that 2c2X2p−1 ≥ 2c2Xq > X2p, we deduce 2c2 > X, but
Y + (c+ c′)2 > Y > 36 or Y 2p > (36− (c+ c′)2)2p And

32qX2q

(36 − (c+ c′)2)2p
>

32qX2q

Y 2p
=

32qX2q

(Xq + 1)2
> 1

We deduce

Xq(q+2) =
(36X2 −X2(c+ c′)2)q

(c+ c′)2q
>

32qX2q

(c+ c′)4p

>
(36 − (c+ c′)2)2p

(c+ c′)4p
= X2pq

Or q + 2 > 2p ≥ q + 1 We can restrain the value of Y . for example : Y ≥ 5 implies

Y
5

2 > 36 and, by the same calculus q + 5 > 2p ≥ q + 1. As q is odd, it leads to
q + 1 = 2p or q + 3 = 2p. And if q + 1 = 2p we have c2Xq = c2X2p−1 < X2p ⇒

X > c2 We pose Xp > unc
2p With u0 = 1 and un < 2p, we have

Xp − 2pc2p =
2p

un
Xp − 2pc2p + (1−

2p

un
)Xp >

un − 2p

un
Xp

And Xp − unc
2p = Xp − 2pc2p + (2p − un)c

2p > 0 Thus Xp − 2pc2p > (un − 2p)c2p

We add

2Xp
− (un + 2p)c2p > 2Xp

− 2p+1c2p > (un − 2p)(
Xp

un
+ c2p)
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= (un − 2p)(c2p −
Xp

un
) + 2(un − 2p)

Xp

un
> (2−

2p+1

un
)Xp

We deduce 2p+1

un
Xp > (un + 2p)c2p Or

Xp >
un(un + 2p)

2p+1
c2p = un+1c

2p

With

un+1 =
un(un + 2p)

2p+1
<

2p(2p + 2p)

2p+1
= 2p

For all n : in the infinity limn−→∞ (un) = L And L verifies recurrence relation

L = L(L+2p)
2p+1 ⇒ L = 2p Hence

Xp > lim
n−→∞

(un)c
2p = 2pc2

p

We have 2c2 > X > 2c2 So X = 2c2 and

X =
X2p

Xq
= 2c2 =

2X2p − 4Xp + 2

Xq + 1

⇒ X −Xq+1 + 4Xp = 2 ⇒ 1−Xq + 4Xp−1 =
2

X

Thus X = 2c2 = 2 and c2 = 1 or (2p − 1)2 = 2q + 1 and

2p − 2 = 2q−p = 2p−1
⇒ p = 2 ⇒ q = 2p− 1 = 3 ⇒ Y = ±3

Another proof : Y p = Xq + 1 = X2p−1 + 1 > X
3p

2 Hence Y 2 > X3 Let us pose
Y 2 = X3 + u ≥ X3 + 1 If we suppose p even

1 ≤ u = Y 2
−X3 =

Y p −X3p

Y p−2 + Y p−4X3 + ...+ Y 2X3p−6 +X3p−3

=
X2p−1 + 1−X3p

Y p−2 + Y p−4X3 + ...+ Y 2X3p−6 +X3p−3
< 0

and it is impossible, it means that p is not greater than 2 thus p = 2 and q =
2p− 1 = 3 and X = 2 and Y = ±3. If p is odd and greater than 3, let p = 2k + 1

Y 2k+1−X3p = (Y 2−X3)(Y 2k−1+Y 2k−3X3+...+Y 3X3p−9+Y X3p−6)+X3p−3Y−X3p

= (Y 2 −X3)(X3p−3 + Y 2X3p−6 + ...+ Y 2k−2X3 + Y 2k) + Y 2k+1 − Y 2k+2

=
1

2
((Y 2

−X3)(Y 2k−1 + Y 2k−3X3 + ...+ Y 3X3p−9 + Y X3p−6)+

+
1

2
((Y 2

−X3)(X3p−3+Y 2X3p−6+...+Y 2k−2X3+Y 2k)+Y 2k+1
−X3p

−y2k+2+X3p−3Y )

Hence

0 > Y 2k+1−X3 = (Y 2−X3)(Y 2k−1+...+Y X3p−6+X3p−3+...+Y 2k)+Y X3p−3−Y 2k+2

We deduce X3p−3) < Y 2k+1 = X2p−1 + 1 It is impossible : it means p = 3 and
q = 2p − 1 = 5, the equation becomes Y 3 = X5 + 1 which does not have
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solution ! And if q + 3 = 2p, we have Y p = X2p−3 + 1 ≥ X
3p

2 + 1 it implies
p = 2 or p = 3 and, respectively q = 1 (impossible) or q = 3 (also impossible !).

Generalization to Pillai equation

Pillai equation is Y p = Xq + a. We will define Pillai numbers : we note them : ba
they depend of a and heve the same proprieties than b for a = 1. Thus, we write
1a + 7a = 8a and 7a − 1a = 6a : our goal is to follow the approach as we have
done for Catalan equation. Of course, we have 1a = a1 et 0a = 0. The equation
becomes Y p = Xq+1a. Let us pose for p, q,X, Y, a integers stricly greater to 1. Let

c = Xp
−1a

Y
p

2

, c′ = 7a−Xp

Y
p

2

And (c+ c′)Y
p

2 = Xp − 1a + 7a −Xp = 6a ⇒ Y
p

2 = 6a
c+c′

So Xp = cY
p

2 + 1a = 6ac
c+c′

+ 1a = 7ac+1ac′

c+c′
And Xq = Y p − 1a = 36a1a−1a(c+c′)2

(c+c′)2

Also (c + c′)Y
p

2 = 6a > 0 Thus c + c′ > 0. And cY
p

2 = Xp − 1a > 0 So
c > 0. But Xp ≥ 4a, then cY

p

2 = Xp − 1a ≥ 7a −Xp = c′Y
p

2 And c ≥ c′

and 7a − Xp = 7a − 7ac+1ac′

c+c′
= 6ac′

c+c′
If c′ > 0 Then Xp < 7a and we have

a finite number of solutions, we have c′ < 0, with (c + c′)Y
p

2 = 6a > 0 and
(c+ c′)Xp = 7ac+1ac

′ > 0 with c+ c′ > 0. And Y
p

2 = 6a
c+c′

≥ 3a ⇒ c+ c′ ≤ 2 < 2a

Main results We retain
1)c′ < 0
2)0 < c+ c′ < 2a
3)0 < 7ac+ 1ac

′

And we will discuss two cases
I)c2 < 1a
II)c2 ≥ 1a
We have to not forget that Xp − 1a > 0 and 7a −Xp < 0.
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case c
2
< 1a Let

2aX
q
−X2p =

72a1a1a − 2a1a(c+ c′)2 − (7ac+ 1ac
′)2

(c+ c′)2

=
72a1a1a − 1a(49a + 2a)c

2 − 1a(1a + 2a)c
′2 − 2a(7a + 2a)cc

′

(c+ c′)2

=
19a1a1a + 51a1a(1a − c2) + 2a1a(1a − c2)− (2a1a + 1a1a)c

′(c+ c′)− 16a1acc
′

(c+ c′)2
> 0

Thus 2aX
q −Xp > 0 so 2aX

q > X2p (7) And also

c2Xq −X2p =
36a1ac

2 − 1ac
2(c+ c′)2 − (7ac+ 1ac

′)2

(c+ c′)2

=
(6ac− 7ac− 1ac

′)(6a + 7a + 1ac
′)− 1ac

2(c+ c′)2

(c+ c′)2

=
−1a(c+ c′)(13ac+ 1ac

′)− 1ac
2(c+ c′)2

(c+ c′)2
< 0

So c2Xq < X2p (8) But X2p−q−1 < 2
X

≤ 1 Thus 2p ≤ q + 1 We will give two
proofs : for X > 2a X

4q(36a1a − (c+ c′)2)2p−4 > (32a1a)
2p−4X4q > (36a1a)

q and

Xq(q−4) =
(36a1aX

−4 − (c+ c′)2X−4)q

(c+ c′)2q
<

(36a1a)
qX−4q

(c+ c′)4p

< X(2p−4)q =
(36a1a − (c+ c′)2)2p−4

(c+ c′)4p−8

Because X2pq = (7ac+1ac′)2q

(c+c′)2q
>

(36a1a)q

(c+c′)2q
Thus 2p > q ≥ 2p− 1. We have then

q + 1 = 2p. Another proof : But c2 < 1a, ∃m > 1a for which c2 = 1am−1a
m

thus

1a − c2 = 1a
m

< 1aX−1
X

thus c2X > 1 and X2p+1 = (7ac+1ac′)2X
(c+c′)2

> 36a1ac2X
(c+c′)2

>

36a1a−(c+c′)2

(c+c′)2 = Xq We deduce Xq−1 < X2p We have then Xq ≤ X2p ≤ Xq+1 As q

is not even : q + 1 = 2p Thus

0 > (c2 − 1a)Y
p = X2p − 2aX

p −Xq = Xq+1 − 2aX
p −Xq > 0

we deduce c2 = 1a and then Xp − 2a = Xq−p ≥ 2 and Xp−1 −Xq−p−1 = 2a
X

is an
integer and there is a finite number of solutions.

Case c
2 ≥ 1a We will retain

1)c2 > 1a
2)c+ c′ < 2a
3)c′ < 0
As precendently :

2c2Xq −X2p =
72a1ac

2 − 2ac
2(c+ c′)2 − (7ac+ 1ac

′)2

(c+ c′)2
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=
−1a1ac

′(14a + 1ac
′) + 1ac

2(23a − 2(c + c′)2)

(c+ c′)2
> 0

And 2c2Xq > X2p (11) And 2c2Xq > X2p > 4Xp ⇒ c2Xq > 2Xp (11′) Also

c2Xq −X2p =
36a1ac

2 − 1ac
2(c+ c′)2 − (7ac+ 1ac

′)2

(c+ c′)2

<
36a1ac

2 − 50a1ac
2 − 2a1ac

′2 − 16a1acc
′ + (1a1a − 1ac

2)(c + c′)2

(c+ c′)2

=
−2a(7ac+ 1ac

′)(c+ c′) + (c+ c′)2(1a1a − 1ac
2)

(c+ c′)2
< 0

Thus 1
2X

2p < c2Xq < X2p < c2X2p (12) Or X2p−q > c2 > 1a > 1 We have here
2p ≥ q + 1 We have seen that 2c2X2p−1 ≥ 2c2Xq > X2p, we deduce 2c2 > X, but
Y + (c+ c′)2 > Y > 36a1a Hence Y 2p > (36a1a − (c+ c′)2)2p Or

32qX2q

(36a1a − (c+ c′)2)2p
>

32qa1
q
aX

2q

Y 2p
=

32qa1
q
aX

2q

(Xq + 1a)2
> 1

We deduce

Xq(q+2) =
(36a1aX

2 −X2(c+ c′)2)q

(c+ c′)2q
>

32qa1
q
aX

2q

(c + c′)4p

>
(36a1a − (c+ c′)2)2p

(c+ c′)4p
= X2pq

And q +2 > 2p ≥ q + 1 And q+ 1 = 2p but c2Xq = c2X2p−1 < X2p ⇒ X > c2 We
pose

Xp > unc
2p

With u0 = 1 and un < 2p, we have

Xp − 2pc2p =
2p

un
Xp − 2pc2p + (1−

2p

un
)Xp >

un − 2p

un
Xp

And Xp − unc
2p = Xp − 2pc2p + (2p − un)c

2p > 0 Thus Xp − 2pc2p > (un − 2p)c2p

We add

2Xp
− (un + 2p)c2p > 2Xp

− 2p+1c2p > (un − 2p)(
Xp

un
+ c2p)

= (un − 2p)(c2p −
Xp

un
) + 2(un − 2p)

Xp

un
> (2−

2p+1

un
)Xp

We deduce 2p+1

un
Xp > (un + 2p)c2p Or Xp >

un(un+2p)
2p+1 c2p = un+1c

2p With un+1 =
un(un+2p)

2p+1 <
2p(2p+2p)

2p+1 = 2p For all n : in the infinity limn−→∞ (un) = L And L ve-

rifies recurrence relation L = L(L+2p)
2p+1 ⇒ L = 2p Hence Xp > limn−→∞ (un)c

2p =
2pc2

p

We have 2c2 > X > 2c2 So X = 2c2 and

X = 2c2 =
2X2p − 4aX

p + 2a1a
Xq + 1a

⇒ 1aX −Xq+1 + 4aX
p = 2a1a ⇒ 1a −Xq + 4aX

p−1 =
2a1a
X

7



We deduce a finite number of solutions.

X =
X2p

Xq
= 2c2 =

2X2p − 4Xp + 2

Xq + 1

⇒ X −Xq+1 + 4Xp = 2 ⇒ 1−Xq + 4Xp−1 =
2

X

Thus X = 2c2 = 2 and c2 = 1 or (2p − 1)2 = 2q + 1 and

2p − 2 = 2q−p = 2p−1
⇒ p = 2 ⇒ q = 2p− 1 = 3 ⇒ Y = ±3

Another proof : Y p = Xq + 1a = X2p−1 + 1a > X
3p

2 Hence Y 2 > X3 We pose
Y 2 = X3 + u ≥ X3 + 1a If we suppose p even

1a ≤ u = Y 2 −X3 =
Y p −X3p

Y p−2 + Y p−4X3 + ...+ Y 2X3p−6 +X3p−3

=
X2p−1 + 1a −X3p

Y p−2 + Y p−4X3 + ...+ Y 2X3p−6 +X3p−3
< 0

and it is impossible, it means that p is not greater than 2 thus p = 2 and q =
2p−1 = 3 and X = 2 and Y = ±3. In all cases, Pillai equation has a finite number
of solutions, it is the formulation of the conjecture. Thus, we have proved it.

Conclusion

Catalan equation is solved, an original solution exists ! We have generalized the
approach to Pillai equation and proved that it always has a finite number of solu-
tions. It is the proof of Pillai conjecture. It seems that many problems of number
theory can be solved like this.
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