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Abstract—Sardana is a tool which optimizes the arith-
metic expressions present in source codes. The optimization
is done by synthesizing automatically new mathematically
equal expressions, given ranges of values for the variables.
In previous work, Sardana has been used to optimize
the numerical accuracy of floating-point expressions, by
minimizing the worst roundoff error on the result of the
evaluation. In this article, we show how our tool can be used
to synthesize arithmetic expressions optimized for the fixed-
point arithmetic. In this context, Sardana minimizes the
number of bits required to represent without overflow the
integer parts of the fixed-point numbers possibly occurring
at any stage of the evaluation of an expression. We present
experimental results showing how our tool optimizes the
implementation of digital filters commonly used in image
processing.

Index Terms—Code Synthesis, Fixed-Point Formats, Ab-
stract Interpretation, Compilers.

I. INTRODUCTION

Sardana [] is a tool which optimizes the arithmetic
expressions present in source codes. We consider that the
formulas written in programs are mathematically exact
and that we would obtain exact results if the computa-
tions were carried out with real numbers. Then Sardana
synthesizes automatically new expressions which are
mathematically equal to the original ones while being
better-suited to the computer arithmetic. In order to
obtain interesting gains, the synthesis is performed for
specific ranges of values of the variables. When Sardana
is used to optimize the numerical accuracy of IEEE754
floating-point computations [1], it generates a new ex-
pression which lowers the worst roundoff error, i.e. the

error on the result of the computation, in the worst case,
for inputs taken from the specified ranges. In previous
work, we have applied these techniques to optimize
the numerical accuracy of floating-point computations
occurring in critical avionic software [].

In this article, we show how Sardana can be used to
optimize fixed-point formats [2]. We aim at minimizing
the size of the integer parts of fixed-point numbers while
ensuring the absence of overflow. Sardana may optimize
either the maximal or the cumulated number of bits
needed to represent the integer parts of the intermediary
results, during the evaluation of an expression. In addi-
tion, the tool computes the roundoff error on the result
of the evaluation of the new expression, for a given size
of the fractional part of the numbers. To illustrate our
techniques, we have carried out several experimentations
concerning the optimization of the implementation of
digital filters commonly used in image processing.

In general, an arithmetic expression may be rewritten
in many ways using associativity, distributivity, etc. Our
approach is based on abstract interpretation [3], [4]. To
capture as many rewritings as possible while avoiding
any combinatorial explosion, we use a new intermediate
representation, called APEG, enabling to represent many
equivalent expressions in the same structure []. APEGs
are abstractions of the Equivalence Program Expression
Graphs introduced in [5], [6] for the phase ordering prob-
lem. The concretization of an APEG yields expressions
of very different shapes. Then, to synthesize expressions
from APEGs, we perform a profitability analysis which
consists of searching the expression which optimizes the



implementation, i.e. which minimizes the size of the
integer parts, among the set of expressions represented
in an APEG.

The most comparable work concerns the synthesis
of operators for the fixed-point arithmetic and the op-
timization of the size of the integer and fractionnal parts
of fixed-point numbers [7], [8], [9]. In comparison, our
method seems more general in the sense that it is not a
domain specific optimization. Instead, our method con-
sists of building a tractable representation of the set of
candidate optimized programs, for a given set of equiv-
alence rules, and then selecting a good candidate with
respect to a non-specific optimality criterium. Indeed our
techniques are also relevant for other arithmetics, like the
filoating-point arithmetic, as discussed in [].

This article is organized as follows. Section II deals
with the fixed-point arithmetic and our way of measuring
the quality of some implementation of an expression.
APEGs are introduced in Section III and Section IV
presents the profitability analysis. Experimental results
are described in Section V. Finally, Section VI con-
cludes.

II. FIXED-POINT ARITHMETIC

In this section, we briefly survey the aspects of fixed-
point arithmetic useful to the comprehension of the rest
of this article. We also define the measure that we aim
at optimizing when synthesising new expressions.

A. Fixed-Point Arithmetic

There is no general standard for fixed-point arithmetic
comparable to the IEEE754 Standard for floating-point
arithmetic [1]. Following [10], [11], we consider that a
number x is written:

x = s · (dm−1 . . . d0.d−1 . . . d−n) = s ·
m−1∑
i=−n

diβ
i (1)

In Equation (1), x is a number made of m + n + 1
digits. The m first digits represent the integer part while
the n last digits represent the fractional part (see Figure
1). s ∈ {−1, 1} is the sign of x. For the basis, we
always assume that β = 2. In addition, for the sake
of simplicity and without lost of generality, we do not
consider numbers encoded in the two’s complement
format which is also common in the implementations of
fixed-point arithmetic. As argued in the next paragraph,
we assume that no overflow arises and that, whenever
it is necessary, the results of elementary operations are
truncated (rounding mode towards zero).

Slightly different problems may be formulated con-
cerning the enhancement of the implementation of a

s dm-1 d0 d-1 d-n

sign integer part fractional part

Fig. 1. Representation of the fixed-point formats.

formula in fixed-point arithmetic. Following [10], [11],
in this article, we are interested in minimizing the m
parameter of Equation (1), that is in finding the minimal
size for the integer part of numbers such that no overflow
arise during the computation, for all the acceptable
inputs. So, we introduce the function

I(x) = min {m ∈ N : bxc ≤ βm} (2)

where bxc denotes the integer part of x. We consider
two cases: In the first case, in the final implementation,
all the values may be encoded in the same format (the
one for which we determine m). This is usually the
case when the program is targeted for a general purpose
processor: the designer wants to know, for example, if 16
bits are enough to perform the computation or if all the
data must be encoded in a 32 bits format. In this case,
Sardana computes the maximal size of the integer part
of the values possibly taken by the intermediary results,
during the evaluation of the expressions. The second case
concerns more specific processing units (e.g. FPGAs) for
which one may wish to minimize the size of the circuit
by using numbers of different formats (e.g. to use less
bits when the values are smaller). In this case, Sardana
computes the sum of the sizes of the integer parts of
all the intermediary results possibly obtained during the
evaluation of the expression, for any set of inputs taken
from the ranges specified by the user.

B. Optimized Implementation in Fixed-Point Arithmetic

We consider a simple semantics for the arithmetic
expressions whose syntax is given by:

e ::= v | e1 + e2 | e1 − e2 | e1 × e2 (3)

A value is a pair (x, µ) where x denotes the fixed-
point number, and µ measures the quality of the im-
plementation. More precisely, assuming that (x, µ) is
the result of the evaluation of some expression e, µ
denotes the maximal or cumulated number of digits
needed to encode the integer parts of the numbers during
the evaluation of e and x is the result of this evaluation.
In floating-point arithmetic, µ would be the distance
between a real number xR and the floating-point number
x corresponding to the roundoff of xR [].

In the rest of this article, we consider abstract values
(x], µ]) where x] is an interval. A value (x], µ]) ab-
stracts a set of concrete values {(xi, µi), i ∈ I}. The
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Fig. 2. Abstract semantics of the elementary operations for the fixed-point arithmetic.

interval x] abstracts all the values possibly arising during
the evaluation and µ] indicates the maximal number
of bits needed to encode a value somewhere in the
computation. We do not need an interval for µ] since
we only store the greatest value. So, in the fixed-point
abstract semantics µ] is an integer.

The abstract semantics of arithmetic operations is
given in Figure 2. In equations (4) to (6), to compute µ],
we take the maximum of the measures µ]

1 and µ]
2 on the

operands and of the measure I](x]) on the result x] of
an operation. The term I](x) denotes a safe abstraction
of I(x):

I]([x, x]) = max {I(x) : x ∈ [x, x]} . (10)

Equations (7) to (9) correspond to the second opti-
mization. They compute the cumulated number of digits
needed to represent the integer parts of the intermediary
results during the evaluation of the expression.

Let us conclude this section by considering the fol-
lowing example: Let

E = (a+ (b+ (c+ d)))× e (11)

and let us assume that the variables belong to the ranges:

a ∈ [−14,−13] b ∈ [−3,−2]
c ∈ [3, 3.5] d ∈ [12.5, 13.5] e = 2

(12)

Using the semantics of Figure 2, we obtain:

Emax =
(
[−3, 4], 5

)
Esum =

(
[−3, 4], 28

)
The term Emax is obtained using the semantics of
equations (4) to (6) while Esum corresponds to the
semantics of equations (7) to (9). Under the assumptions
of Equation (12), the result returned by the machine

always belongs to the interval [−3, 4]. In addition, Emax

states that 5 bits may be needed for the integer part,
somewhere in the computation, and Esum states that 28
bits are globally needed to represent the integer parts
of the intermediary results. Note that only 3 bits are
required for the integer part of the result. However, for
instance, if c= 3.5 and d= 13.5 then c+d= 17 and
I(17) = 5. Sardana automatically computes that we can
rewrite the expression E into

E′ = e× ((a+ d) + (b+ c)) (13)

and that:

E′max =
(
[−3, 4], 4

)
E′sum =

(
[−3, 4], 21

)
In E′, a and d are added first and the product is not
distributed. These choices make it possible to store all
the intermediate values on 4 bits only (in absolute value,
the greatest number arising during the computation is
14). In addition, 21 bits are enought to represent the
integer parts of all the intermediary results during the
evaluation of E′. In the next sections, we aim at showing
how Sardana synthesizes expressions like E′, given the
original expression E and ranges for the inputs, as done
in Equation (12).

III. EXPRESSION REPRESENTATION

A. Equilavence Program Expression Graphs

Compilers implement a lot of optimizations such as
loop unfolding, vectorization, dead code elimination, etc.
Most of these algorithms are easy to implement if the
compiler first transforms its intermediate representation
(IR) of the programs into one of the SSA forms [12].
In practice, the optimizations are applied in an order
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determined by the compiler and the order actually chosen
may not allow to perform the best optimizations on the
programs. Compilers being unable to take into account
future transformations of the code, the best sequential
order can only be found by solving a combinatorial
problem usually known as the phase ordering problem,
which is proven to be undecidable [13]. Obviously, a
SSA form can only represent one version of the code at
a time. If we would like to use a SSA form to represent
multiple versions of a program through different opti-
mizations, we would have to handle separated definition-
use chains and this would cause duplications of the code
and a significant growth of the IR. To cope with this
problem, a new intermediate representation has been
introduced in [5], called Equivalent-Program Expression
Graph (EPEG). This IR is designed to represent in a
single structure multiple versions of a program, each
version corresponding to a possible transformation of the
code.

EPEGs are based on Program Expression Graphs
(PEGs) which share similitudes with the gated SSA
representation in the sense that the value of an expression
depends only on the value of its sub-expressions, without
any side-effect. EPEGs are built by means of equality
reasoning. Equalities correspond to possible optimiza-
tions and introduce in the source IR, called PEG, new
nodes corresponding to new versions of the program,
without doubling the size of the representation at each
application of an equality. This is possible thanks to the
introduction of equivalence classes which record in the
same node of the PEG many semantically equivalent
ways to implement an expression (see Figure III-B).
Therefore, in a PEG, if two expressions are semantically
equal then the root nodes of both expressions are in the
same equivalence class, and we can select either of them
to synthesize an executable code. Whenever the PEG is
saturated, we refer to it as an EPEG.

A drawback of EPEGs is that, in some cases, the
saturation process may not terminate due to the infinite
application of some equalities. Then the user has to
set a threshold to ensure the termination of the pro-
cess. Even without the infinite development of some
equalities, EPEGs are not necessarily tractable on a
computer. For example, if we build an EPEG with
usual algebraic laws like associativity, commutativity,
distributivity and factorization, it is possible to generate
an exponential number of different expressions. For
example, if we consider all the polynomials defined by

Pn(x) =
∑n

k=0(−1)
k ×

(
n
k

)
× xk, which corresponds to

the developed form of the function (x − 1)n, assuming
that xn is written as the product

∏n
i=1 x, for n = 5 there

are 2.3 million distinct parsings, and for n = 6 there
are 1.3 billion parsings [14, §6.2.2]. Despite EPEGs are
able to merge common parts of expressions, there are
for example 2k!

(k+1)!×k! different shapes of expressions
that cannot be merged for a summation of k terms [15].

Once some EPEG is complete, the compiler has to
synthesize a final version of the program that satisfies
the requirements of the user (performance, accuracy,
parallelism [16], etc.) This step is referred to as the
profitability phase and is it performed with a global prof-
itability heuristic (relying on an efficient and tractable
cost model.The cost C(n) of a node n is defined as
basic cost(n)× kdepth(n), where basic cost(n) accounts
for how expensive is the node n itself, and kdepth(n)

for how often n is executed (depth represents the loop
nesting factor of the node n and k is a constant).
This cost model avoids a combinatorial explosion by
performing on each node a purely local evaluation,
without considering the possible choices for the other
nodes present in the equivalence classes below.

B. Abstract Program Expression Graphs

In this section, we present our new intermediate
representation of programs, called Abstract Program
Expansion Graph (APEG). We define the APEGs as an
intermediate structure between the initial PEGs and the
theoretical complete EPEGs which can be intractable
or infinite. The main objective of APEGs is to use
abstractions in order to remain polynomial in size
while still representing the largest number of equivalent
expressions. APEGs contain a compact representation
of many transformations of expressions in abstraction
boxes which allow one to represent very large sets
of expressions in polynomial size, despite that these
expressions are of very different shape. An abstraction
box is defined by a commutative binary operator, such as
+ or ×, and by a list of nodes which correspond to the
operands. These nodes can be either constants, variable
identifiers, sub-trees, equivalence classes or abstraction
boxes. An abstraction box stands for all the parsings of
the given leaves using the binary operator. For exam-
ple, +, (a, b, c, d) stands for all parsings of the sum

a + b + c + d. Also, +, (a, b, c, ×, (x1, x2, x3, x4) )
stands for all the possible summations of the sum
a + b + c + X , where X stands for any parsings of
the product x1 × x2 × x3 × x4. So, an abstraction box
is a very compact structure which is able to represent
up to (2n − 1)!! possible evaluation schemes according
to [14, §6.3], where n in the number of operands of the
abstraction box.
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Contrarily to EPEG construction, the APEG con-
struction do not rely on equality saturation. Instead,
we use several algorithms, each one being performed
independently of the others and in polynomial time.
We have designed two kinds of transformation algo-
rithms: the propagation algorithms, and the expansion
algorithms. Our approach consists of composing each
of these algorithms together in order to produce the
largest APEG, in the sense of the number of versions
of a program it represents, while staying polynomial.
We use the following propagation algorithms in order to
introduce various shapes of expressions into the APEG:
• We propagate subtractions into the concerned

operands. For example, from the expression a−(b+
(c − d)) we introduce the expressions a + (−b −
(c− d)) and a+ (−b+ (−c+ d)),

• We propagate products into their operands. For
example, from the expression a× ((b+ c) + d) we
introduces the expressions (a× (b+ c))+a×d and
(a× b+ a× c) + a× d,

• We factorize common factors. For example, from
the expression (a× b+ a× c)+ a we introduce the
expressions a× (b+ c) + a and a× ((b+ c) + 1).

Figure III-B illustrates how the propagation of the mi-
nus operator is applied to an APEG. The expansion
algorithms are not designed to introduce new shapes
of expressions. Instead, they only add abstraction boxes
into the APEG. These algorithms search recursively
in the APEG where a symmetric binary operator is
repeated (we referred at these parts as homogeneous
parts). As the propagation algorithms tend to generate
homogeneous parts, the expansion algorithms are meant
to be used after the propagation algorithms. When an
expansion algorithm founds an homogeneous part it
inserts a polynomial number of abstraction boxes into it,
each of these abstraction boxes representing alternative
versions of the homogeneous part. We have designed our
expansion algorithms in order to add abstraction boxes
which mainly represent new shapes of expressions. This
allow us to manipulate these shapes without having to
enumerate them. We have designed the two following
expansion algorithms:

a) Horizontal expansion: This algorithm splits re-
cursively an homogeneous part into a left sub-tree and a
right sub-tree and insert for each one an abstraction box
containing the other. On the example given in Figure
III-B our algorithm adds the following nodes to the
APEG:
• +, (a,b,c,d) + (e + f) and ((a + b) + (c + d)) +

+, (e,f) into equivalence class 1,

• (a + b) + +, (c,d) and +, (a,b) + (c + d) into

+

+

2.0

×

— +

— × ×

—

+

7.61 7.61

2.0 2.0

2.62
2.62

8.62
8.62

+—

——

——

—

[3.14 , 3.15] [3.14 , 3.15]

+,([3.14 , 3.15], 2.62, 8.62)

Fig. 3. Example of an APEG, gray nodes and gray rectangles are
the original PEG nodes, dashed circles are equivalence classes, the
rectangle with a double outline on the left is an abstraction box.
Except for the abstraction box present, this APEG illustrates how the
propagation of the minus operator is done.

+

+ +

+

+

c da b fe

1

2

Fig. 4. Example of an homogeneous APEG.

equivalence class 2.
The complexity of this algorithm is O(n) where n is the
number of leaves, as it only performs one walk through
the APEG to find the homogeneous sub-trees. It also
adds at most 2(n− 1) abstraction boxes as it only adds
at most 2 abstraction boxes at each equivalence class.

b) Vertical expansion: This algorithm recursively
identify the outer nodes of an homogenous sub-tree
and inserts an abstraction box containing them. On the
example given in Figure III-B, our algorithm adds the
following nodes into the equivalence class:
• (a+ b) + +, (c,d,e,f) and (c+ d) + +, (a,b,e,f) ,

• a + +, (b,c,d,e,f) , b + +, (a,c,d,e,f) , c +

+, (a,b,d,e,f) ,

d + +, (a,b,c,e,f) , e + +, (a,b,c,d,f) , f +

+, (a,b,c,d,e) .
This algorithm is implemented in O(n) where n is the
number of leaves, by performing a search of homoge-
neous sub-tree starting from the leaves. Then, when the
sub-tree stops to be homogeneous it walks through the
homogeneous sub-tree found to insert the abstraction
boxes. This algorithm adds at most 2(n− 1) abstraction
boxes as it adds (i) one node linking each leaf to an
abstraction box containing all the other leaves, and (ii) at
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most one node linking an abstraction box to each equiv-
alence class. Note that we could add new algorithms to
both propagation and expansion steps. The algorithms
we use currently form a minimal base to extract an
optimized program whose shape is significantly different
from the original one.

IV. PROFITABILITY ANALYSIS

In this section we give an overview of how our
profitability analysis works. Our cost model relies on
the number of bits required to encode the integer parts
of the numbers, as defined in Section II-B. We use the
semantics of Figure 2 to evaluate which expression in
an APEG requires the least number of bits to encode
the integer part (term µ] of the abstract values).

The main difficulty is that it is possible to extract an
exponential number of expressions from an APEG. For
example, let us consider an operator ∗(p1, p2) where p1
and p2 are equivalence classes p1 = 〈p′1, . . . p′n〉 and
p2 = 〈p′′1 , . . . p′′m〉. Then we have to consider all the
expressions ∗(p′i, p′′j ) for 1 ≤ i ≤ n and 1 ≤ j ≤ m. In
general, the sub-APEGs contained in p1 and p2 may be
operations whose operands are again equivalence classes.
To cope with this combinatorial explosion, we use a
limited depth search strategy. We select the way an
expression is evaluated by considering only the best way
to evaluate its sub-expressions. This corresponds to a
local choice. In our example, synthesizing an expression
for ∗(p1, p2) consists of searching the expression p′i ∗p′′j
whose error is minimal with respect to any p′i ∈ p1 and
any p′′j ∈ p2.

For a box B = ∗, (p1, . . . , pn) we use an heuristic
which synthesizes an expression limitating the number of
digits for the integer part (yet not always optimal). This
heuristic is defined as a greedy algorithm which searches
at each step the pair pi and pj such that the error term
carried out by the expression pi ∗ pj is minimal. Then
pi and pj are removed from the box and a new term
pij is added whose measure is equal to the measure of
pi∗pj defined by the equations of Figure 2. This process
is repeated until there is only one node left in the box.
This last node corresponds to the root of the expression
synthesized for the abstraction box.

V. EXPERIMENTAL RESULTS

In this section, we present some experimental results
obtained with Sardana and which concern the optimiza-
tion of commonly used digital filters. These filters are
widely used on embedded image processing as they are
easy to implement and can also be parallelized easily.
Sardana is used to reduce the number of digits required

to represent the integer part of the fixed-point number,
thus improving either the overall accuracy by allowing
the allocation of more digits for the fractional part
without any risk of overflow or by improving the size of
a circuit in an embedded component.

Our case study concerns the minimization of the num-
ber of digits of the integer part of fixed-point numbers
involved in the computation of the convolution product
corresponding to a digital filter. Most digital filters are
defined by a matrix K = (krl) with 1 ≤ r ≤ n and
1 ≤ l ≤ m, called the kernel. Formally, the output o
of a convolution matrix K of size n ×m applied to a
pixel at coordinates (i, j) of a 2-dimensional image I is
defined by the following equation.

o =

n∑
r=1

m∑
l=1

I(i+ r − 1, j + l − 1)× krl (14)

Sardana minimizes the number of digits required for
the integer parts of the numbers by changing the parsing
of the sums of products between the kernel values and
the pixels intensity of Equation (14). First, let us mention
that each filter outputs a value between 0 and 255,
therefor the integer part of the output value requires
8 bits. However the intermediary computations of the
convolution product does not necessarily require the
same sizes. For example, the value −2 requires 2 bits
for the integer part, the value 4 requires 3 bits, but the
sum of the two terms only requires 2 bits. Finally to
perform this operation we need 5 bits for the inputs, and
2 bits for the output, so 7 bits in total. In addition most
kernels of digital filter contain symmetries and some-
times opposite values, like the Sobel kernel presented in
Table II. Consequently, in order to optimize the number
of digits used for the integer part, Sardana may merge the
opposite terms sooner in the calculation. As discussed in
Section II-B, we denote Filtersum the global number
of digits needed to represent all the integer parts of the
intermediary results.

Table I presents the results obtained on many usual
digital filters. The first column is the type of the filter on
which we use the Sardana tool with two different sizes of
kernel: 3×3 and 5×5. The Filtersum column presents
the cumulated number of digits needed to represent the
integer part of the calculation defined by Equation (14)
for any values of the input pixels, i.e. when all the
intensity of the pixels are defined by the interval [0, 255].
Next, the Filteroptsum column is for the same filter but
with the optimized equation synthesized by Sardana.
Finally the %Gain column shows the difference between
Filtersum and Filteroptsum expressed as a percentage.
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size 3x3 size 5x5
Filter Filtersum Filteroptsum %Gain Avg-IP Filtersum Filteroptsum %Gain

Gaussian 183 176 3,8% ∼ 139 442 393 11%
Laplacian 1 204 180 11,7% ∼ 152 713 660 7,4%
Laplacian 2 248 246 0,8% ∼ 204 779 723 7,1%

Prewit 1 178 163 8,4% ∼ 133 638 569 10,8%
Prewit 2 184 169 8,1% ∼ 136 644 571 11,3%

Rehauss 1 259 253 2,3% ∼ 212 841 794 5,5%
Rehauss 2 249 242 2,8% ∼ 201 724 678 6,3%
Robert 1 263 233 11,4% ∼ 161 778 694 10,7%
Robert 2 266 233 12,4% ∼ 153 781 694 11,1%
Sobel 1 198 176 11,1% ∼ 145 769 678 11,8%
Sobel 2 194 176 9,2% ∼ 144 752 678 10,6%

TABLE I
RESULTS ON DIGITAL FILTERS OF SIZE 3X3 AND 5X5.

Our experiments show a significant improvement on
most filters by reducing by 10% the number of digits
needed for the integer part.

We have also used the optimized expression of each
filter on the image of Figure 5, in order to measure
precisely how many digits are required to perform the
calculation. Contrarily to the results described earlier,
we compute here, for each pixel, how many digits are
actually used given the optimized equation of a filter
and the precise values of intensity of the concerned
pixel and the one surrounding it. This corresponds to
analyzing the optimized equation of the filter knowing
the exact value of the terms I(i + r − 1, j + l − 1) of
Equation (14). Then we show in the Avg-IP column
the average value for the whole image of the actual
number of digits needed by each pixel. We found that
the average sum of sizes is usually 25% smaller than
the number required to avoid any overflow, for any
value of pixel intensity between 0 and 255. These results
raises two observations. Firstly, we have an estimation of
the loss of precision introduced by the abstraction (i.e.
the interval arithmetics). Secondly, these results could
point out that the cases where the digits of the integer
part are all needed all along the computation may be
pathological cases as they do not occur much on this
image. In this case, further optimization using Sardana
will depend on (i) the definition of the filter and (ii)
the knowledge of these pathological cases, in order to
describe more accurately the values of intensity of the
pixels. However it is important to note that when the
value of intensity of the pixels are close to zero their
integer part is necessarily smaller. In our first experiment
we consider that the pixel intensity are all between 0
and 255, but in Figure 5 the intensity are more close to
0 than 255 because the image is rather dark. This could
also explain why we have such difference between the
results in the Filteroptsum column and the Avg-IP column.

The results presented above show that Sardana is able
to lower the number of digits required for the integer
parts, for many convolution products. Nevertheless, the
issue of precision is also important and this problem is
also addressed by Sardana. For example, the kernel of a
Gaussian filter used for a blur effect contains values that
cannot be represented exactly neither in a floating-point
representation nor in fixed-point representation. Sardana
allows the user to set the size of the fractional parts
of numbers and then computes the roundoff error on the
results, in the worst case, assuming that the input belong
to the ranges specified by the user. For several sizes of
the fractional part of numbers, Sardana computes the
roundoff errors given in Table III for the Gaussian filter
mentioned earlier.

-1 0 1
-2 0 2
-1 0 1

-1 -2 -1
0 0 0
1 2 1

TABLE II
THE SOBEL OPERATORS USED FOR EDGE DETECTION.

Fig. 5. The image used to evaluate the optimized digital filters.
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Fractional part size Error bound generated
4 1.2 · 102
6 2.8 · 101
8 5.1

10 1.9
12 3.4 · 10−1

14 3.1 · 10−2

16 0.0

TABLE III
EVOLUTION OF THE ABSOLUTE BOUND OF ERROR OF A GAUSSIAN

KERNEL OF SIZE 3.

VI. CONCLUSION

In this article we have presented a novel approach
to minimize the size of the integer parts of fixed-point
numbers while ensuring the absence of overflow. This
approach is based on (i) a new representation of program
called APEG, which is a tractable abstraction of an
exponential number of programs which are all mathe-
matically equivalent to the original one, and (ii) a local
search heuristic able to synthesize a new version of the
program which requires less digits for the integer parts.
This approach has been concretize into a tool called
Sardana, which was originally designed to improve the
accuracy of floating-point expressions, and have been
recently extended to handle the fixed-point arithmetic.
The Sardana tool have been used to optimize many
digital filters which are commonly used in the image
processing field. For each one we have synthesized a new
expression of their convolution product that requires less
digits for the integer parts, independently of the image
on which it is applied to. Our results show that for most
filters we are able to reduce by 10% the number of digits
used. Also our tool provide informations concerning the
roundoff error introduced by each filter depending on the
size of the fractional part that have been set.

We are confident that our tool can be useful in many
other fields of application which rely on fixed-point
arithmetic. And on this matter we intend to improve
Sardana in order to perform multi criteria optimization,
such as minimizing the overall number of bits used by
the integer parts, while improving the accuracy or the
latency of the program.
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