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Abstract
Many critical embedded systems perform floating-point computa-
tions yet their accuracy is difficult to assert and strongly depending
on how formulas are written in programs. In this article, we focus
on the synthesis of accurate formulas mathematically equal to the
original formulas occurring in source codes. In general, an expres-
sion may be rewritten in many ways using associativity, distributiv-
ity, etc. To consider as many rewritings as possible while avoiding
any combinatorial explosion, we use a new intermediate represen-
tation, called APEG, enabling to represent many equivalent expres-
sions in the same structure. In this article, we specifically address
the problem of selecting an accurate formula among all the expres-
sions of an APEG. This is necessary to synthesize an expression
which minimizes the roundoff errors in the worst case. To vali-
date our approach, we present experimental results showing how
APEGs, combined with profitability analysis, make it possible to
improve significantly the accuracy of floating-point computations.

Categories and Subject Descriptors D.2.4 [Software Engineer-
ing]: Program Verification—Validation; D.3.4 [Programming Lan-
guages]: Processors—Optimization; F.3.2 [Logics and Meaning
of Programs]: Semantics of Programming Languages—Program
Analysis; G.1.0 [Mathematics of Computing]: Numerical Analysis—
Computer Arithmetic

General Terms Algorithms, Languages, Theory, Verification

Keywords Program Transformation, Numerical Precision, Ab-
stract Interpretation, Compiler Optimizations, Floating-Point Num-
bers

1. Introduction
The most critical control systems of recent planes, spacial vehicules
or nuclear powerplants rely on floating-point computations [1] yet
this arithmetic is not intuitive [18, 21]. Indeed, it is very difficult
(and almost impossible) to predict by hand the accuracy of the eval-

[Copyright notice will appear here once ’preprint’ option is removed.]

uation of a formula, given certain ranges for the inputs. Recently,
static analysis techniques have been developed to infer safe error
bounds for the computations arising in critical programs written in
C [9–11]. However these techniques do not indicate how to im-
prove the accuracy if the infered error bounds are not satisfying.
Furthermore, given several mathematically equivalent expressions,
it is still a mess to guess which one is the most accurate for our
ranges of inputs.

Our work concerns the synthesis at compile-time of accurate
formulas, for given input ranges, to replace the expressions writ-
ten by the programmers in source codes [16, 17]. We consider that
a program would return an exact result if the computations were
carried out using real numbers. In practice, roundoff errors arise
during the execution and these errors are closely related to the
way formulas are written. Our approach is based on abstract in-
terpretation [6, 7]. We build Abstract Program Equivalence Graphs
(APEGs) to represent in polynomial size an exponential number
of mathematically equivalent expressions [].APEGs are abstrac-
tions of the Equivalence Program Expression Graphs introduced
in [24, 25]. The concretization of an APEG yields expressions of
very different shapes and accuracies. Then, to synthesize expres-
sions from APEGs, we perform a profitability analysis which con-
sists of searching the most accurate concrete expression among the
set of expressions represented in an APEG.

This article mainly focuses on our profitability analysis. An
APEG is an abstraction of an exponential number of expressions
and the profitability has to extract an accurate formula. We com-
pute safe error bounds using established static analysis techniques
for numerical accuracy [10, 15] and we use a limited depth search
algorithm with memoization to explore the APEG structure. In ad-
dition, APEGs contain abstraction boxes representing any parsing
of a sequence of operations defined by a set of operands and an
unique commutative operator (e.g. +(a1, . . . , an) denotes any
way to compute

∑n
i=1 ai). We define a way to synthesize an ac-

curate formula for an abstraction box.
For tractability reasons, we require our profitability analysis to

be polynomial in the size of the APEGs. The APEGs represent-
ing an exponential number of expressions, our profitability is then
a heuristic and we present experimental results to assert its effi-
ciency. Our techniques have been implemented in a tool, named
Sardana which takes as entry synchronous programs written in Lus-
tre [5, 12]. Inputs are represented by abstract streams which indi-
cate, at each instant, a range for the values of the variables and a
range for the roundoff errors on these variables. We present experi-
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mental results showing how our techniques improve the numerical
formulas arising in two avionic applications: the first one is an auto-
pilot open-source software, Paparazzi, developed by the DRONES
laboratory at the French civil aviation university (ENAC). The sec-
ond case study is a sequence of relevant pieces of codes extracted
from an industrial critical software coming from aeronautics.

To our knowledge, there is no other work which compares di-
rectly to ours, concerning the synthesis of numerically accurate
expressions for the floating-point arithmetic, at compile-time, for
specified input ranges. The most comparable work concerns the
synthesis of operators for the fixed-point arithmetic and the opti-
mization of the size of the integer and fractionnal parts of fixed-
point numbers [3, 22]. In comparison, our method seems more
general in the sense that it is not a domain specific optimization.
Instead our method consists of building a tractable representation
of the set of candidate optimized programs, for a given set of equiv-
alence rules, and then selecting a good candidate with respect to a
non-specific optimality criterium. Indeed our techniques are also
relevant for other arithmetics, like the fixed-point arithmetic as dis-
cussed in [].

The rest of this article is organized as follows. In Section 2,
we briefly recall elements of the floating-point arithmetic and
presents EPEGs [24]. Section 3 introduces our abstract representa-
tion, called APEG. Section 4 concerns the exploration of APEGs
in order to synthesize a new program which lowers the roundoff
errors. Sections 5 summarizes the experiments performed with our
tool Sardana. Finally, Section 6 concludes.

2. Background
This section briefly surveys the aspects of floating-point arithmetic
useful to the comprehension of the rest of this article. Then we
introduce PEGs [24, 25] which are a new kind of intermediate
representation for compilers. PEGs are compared to the SSA form.
Abstract PEGs are defined in Section 3.

2.1 Floating-Point Arithmetic
The IEEE754 Standard specifies the representation of numbers
and the semantics of the elementary operations for floating-point
arithmetic [1, 18, 21]. First of all, a floating-point number x in base
β is defined by

x = s · (d0.d1 . . . dp−1) · βe = s ·m · βe−p+1 (1)

where s ∈ {−1, 1} is the sign, m = d0d1 . . . dp−1 is the mantissa
with digits 0 ≤ di < β, 0 ≤ i ≤ p − 1, p is the precision and
e is the exponent, emin ≤ e ≤ emax. A floating-point number
x is normalized whenever d0 6= 0. Normalization avoids multiple
representations of the same number. IEEE754 Standard introduces
a few values for p, emin and emax. For example, single precision
numbers are defined by β = 2, p = 23, emin = −126 and
emax = +127. The IEEE754 Standard also specifies special values
(denormalized numbers, infinites and NaN) which are not used in
this article.

Let ↑◦ : R → F be the function which returns the roundoff
of a real number following the rounding mode ◦ ∈ {◦−∞, ◦+∞,
◦0, ◦∼} (towards ±∞, 0 or to the nearest). ↑◦ is fully specified
by the IEEE754 Standard which also requires, for any elementary
operation ♦, that:

x1 ♦F,◦ x2 = ↑◦ (x1 ♦R x2) (2)

Equation (2) states that the result of an operation between floating-
point numbers is the roundoff of the exact result of this operation.
In this article, we also use the function ↓◦: R → R which returns
the roundoff error. We have:

↓◦ (r) = r− ↑◦ (r) (3)

Enhancing the quality of the implementation of a formula f(x)
then consists of minimizing the roundoff error on the result. In other
words, using the notation of Equation (3), we aim at minimizing
↓◦ (f(x)), for all the possible vectors of inputs x.

2.2 EPEGs and Phase Ordering
Nowadays, most compilers implement a lot of optimizations such
as loop unfolding, vectorization, dead code elimination, etc. Most
of these algorithms are easily to implemented if the compiler first
transforms its intermediate representation (IR) of the programs
into one of the SSA forms [8]. However, the order of application
of these optimizations is often unclear, the user only deciding
which optimizations having to be applied by setting compiler flags.
In practice, the optimizations are applied in a sequential order
which is determined statically by some internal heuristics of the
compiler and the order actually chosen may not allow to perform
the best optimizations on the programs. Compilers being unable
to take into account future transformations of the code, the best
sequential order can only be found by solving a combinatorial
problem usually known as the phase ordering problem, which is
proven to be undecidable [26].
Obviously, a SSA form can only represent one version of the code
at a time. If we would like to use a SSA form to represent multiple
versions of a program through different optimizations, we would
have to handle separated definition-use chains and this would cause
duplications of the code and a significant growth of the IR. To
cope with this problem, a new intermediate representation has been
introduced in [24], called Equivalent-Program Expression Graph
(EPEG). This IR is designed to represent in a single structure
multiple versions of a program, each version corresponding to a
possible transformation of the code.

EPEGs are based on Program Expression Graphs (PEGs) which
share similitudes with the gated SSA representation in the sense
that the value of an expression depends only on the value of its
sub-expressions, without any side-effect. In the following, we will
show how EPEGs are defined and built directly from the control
flow graph. We will also show how EPEGs allow the compilers to
select a new version of a program while considering all its opti-
mizations together.

2.3 EPEG Construction
EPEGs are built by means of equality reasoning. Equalities cor-
respond to possible optimizations and introduce in the source IR,
called PEG, new nodes corresponding to new versions of the pro-
gram, without doubling the size of the representation at each ap-
plication of an equality. This is possible thanks to the introduction
of equivalence classes which record in the same node of the PEG
many semantically equivalent ways to implement an expression
(see Figure 1). Therefore, in a PEG, if two expressions are seman-
tically equal then the root nodes of both expressions are in the
same equivalence class, and we can select either of them to synthe-
size an executable code. Whenever it is impossible to use any of the
equalities, i.e. when the PEG is saturated, we refer to it as an EPEG.

A drawback of EPEGs is that, in some cases, the saturation
process may not terminate due to the infinite application of some
equalities. Then the user has to set a threshold to ensure the ter-
mination of the process. Even without the infinite development of
some equalities, EPEGs are not necessarily tractable on a com-
puter. For example, if we build an EPEG with usual algebraic laws
like associativity, commutativity, distributivity and factorization, it
is possible to generate an exponential number of different expres-
sions. For example, if we consider all the polynomials defined by
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Pn(x) =
∑n

k=0(−1)k ×
(
n
k

)
× xk, which corresponds to the de-

veloped form of the function (x− 1)n, assuming that xn is written
as the product

∏n
i=1 x, for n = 5 there are 2.3 million distinct

parsings, and for n = 6 there are 1.3 billion parsings [19, §6.2.2].
Despite EPEGs are able to merge common parts of expressions,
there are for example 2k!

(k+1)!×k!
different shapes of expressions that

cannot be merged for a summation of k terms [23].
To summarize, EPEGs are able to cope with the phase ordering

problem as they merge all optimizations, but they raise new issues
concerning tractability that our new IR, called APEG, addresses
(see Section 3).
Next, once some EPEG is complete, the compiler has to synthesize
a final version of the program that satisfies the requirements of the
user (performance, accuracy, parallelism [14], etc.) This step is re-
ferred to as the profitability phase and is it performed with a global
profitability heuristic. The profitability phase has two major issues:
(i) it must extract a well-formed program, and (ii) it must rely on an
efficient and tractable cost model to meet the user requirements. In
[24], the first issue is solved by associating to each node n and each
equivalence class a variable B(n) which takes only the value 0 (if
the node is not in the extracted program) or 1 (if the node belongs
to the extracted program). These variables encode the constraints
that must hold to ensure that the extracted program is well-formed.
For example, when the variable of a node is set to 1 then all the
variable of its child nodes must also be set to 1. The second issue
is addressed by the authors with the following cost model. The cost
C(n) of a node n is defined as basic cost(n) × kdepth(n), where
basic cost(n) accounts for how expensive is the node n itself, and
kdepth(n) for how often n is executed (depth represents the loop nest-
ing factor of the node n and k is a constant).
This cost model avoids a combinatorial explosion by performing on
each node a purely local evaluation, without considering the pos-
sible choices for the other nodes present in the equivalence classes
below. In this article, we present in Section 4 a completely dif-
ferent profitability that we use to improve the numerical accuracy
of programs. This profitability performs a limited depth search to
combine multiple equivalence classes in order to evaluate more pre-
cisely the worst accuracy of the expression starting at a given node.

3. APEG Construction
In this section, we present our new intermediate representation of
programs, called Abstract Program Expansion Graph (APEG). This
intermediate representation is inspired from the EPEGs introduced
in Section 2. However, as an EPEG is not necessarily complete,
we define the APEGs as an intermediate structure between the ini-
tial PEGs and the theoretical complete EPEGs which can be in-
tractable or infinite. The main objective of APEGs is to use ab-
stractions in order to remain polynomial in size while still repre-
senting the largest number of equivalent expressions. APEGs con-
tain a compact representation of many transformations of expres-
sions in abstraction boxes which allow one to represent very large
sets of expressions in polynomial size, despite that these expres-
sions are of very different shape. An abstraction box is defined by
a commutative binary operator, such as + or ×, and by a list of
nodes which correspond to the operands. These nodes can be ei-
ther constants, variable identifiers, sub-trees, equivalence classes
or abstraction boxes. An abstraction box stands for all the pars-
ings of the given leaves using the binary operator. For example,
+, (a, b, c, d) stands for all parsings of the sum a + b + c + d.

Also, +, (a, b, c, ×, (x1, x2, x3, x4) ) stands for all the possible

summations of the sum a + b + c + X , where X stands for any
parsings of the product x1×x2×x3×x4. So, an abstraction box is

+

+

2.0

×

— +

— × ×

—

+

7.61 7.61

2.0 2.0

2.62
2.62

8.62
8.62

+—

——

——

—

[3.14 , 3.15] [3.14 , 3.15]

+,([3.14 , 3.15], 2.62, 8.62)

Figure 1. Example of an APEG, gray nodes and gray rectangles
are the original PEG nodes, dashed circles are equivalence classes,
the rectangle with a double outline on the left is an abstraction box.
Except for the abstraction box present, this APEG illustrates how
the propagation of the minus operator is done.

a very compact structure which is able to represent up to (2n−1)!!
possible evaluation schemes according to [19, §6.3], where n in the
number of operands of the abstraction box.
Contrarily to EPEG construction, the APEG construction do not
rely on equality saturation. Instead, we use several algorithms, each
one being performed independently of the others and in polynomial
time. We have designed two kinds of transformation algorithms:
the propagation algorithms, and the expansion algorithms. Our ap-
proach consists of composing each of these algorithms together in
order to produce the largest APEG, in the sense of the number of
versions of a program it represents, while staying polynomial. We
use the following propagation algorithms in order to introduce var-
ious shapes of expressions into the APEG:

• We propagate subtractions into the concerned operands. For
example, from the expression a − (b + (c − d)) we introduce
the expressions a+ (−b− (c− d)) and a+ (−b+ (−c+ d)),

• We propagate products into their operands. For example, from
the expression a× ((b+ c) + d) we introduces the expressions
(a× (b+ c)) + a× d and (a× b+ a× c) + a× d,

• We factorize common factors. For example, from the expression
(a×b+a×c)+a we introduce the expressions a×(b+c)+a
and a× ((b+ c) + 1).

Figure 1 illustrates how the propagation of the minus operator is
applied to an APEG. The expansion algorithms are not designed
to introduce new shapes of expressions. Instead, they only add ab-
straction boxes into the APEG. These algorithms search recursively
in the APEG where a symmetric binary operator is repeated (we
referred at these parts as homogeneous parts). As the propagation
algorithms tend to generate homogeneous parts, the expansion al-
gorithms are meant to be used after the propagation algorithms.
When an expansion algorithm founds an homogeneous part it in-
serts a polynomial number of abstraction boxes into it, each of these
abstraction boxes representing alternative versions of the homoge-
neous part. We have designed our expansion algorithms in order to
add abstraction boxes which mainly represent new shapes of ex-
pressions. This allow us to manipulate these shapes without having
to enumerate them. We have designed the two following expansion
algorithms:

Horizontal expansion This algorithm splits recursively an homo-
geneous part into a left sub-tree and a right sub-tree and insert for
each one an abstraction box containing the other. On the example
given in Figure 2 our algorithm adds the following nodes into the
APEG :
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Figure 2. Example of an homogeneous APEG.

• +, (a,b,c,d) + (e+ f) and ((a+ b) + (c+d)) + +, (e,f) into
equivalence class 1,

• (a + b) + +, (c,d) and +, (a,b) + (c + d) into equivalence
class 2.

The complexity of this algorithm is O(n) where n is the number
of leaves, as it only performs one walk through the APEG to
find the homogeneous sub-trees. It also adds at most 2(n − 1)
abstraction boxes as it only adds at most 2 abstraction boxes at
each equivalence class.

Vertical expansion This algorithm recursively identify the outer
nodes of an homogenous sub-tree and inserts an abstraction box
containing them. On the example given in Figure 2, our algorithm
adds the following nodes into the equivalence class 1 :

• (a+ b) + +, (c,d,e,f) and (c+ d) + +, (a,b,e,f) ,

• a+ +, (b,c,d,e,f) , b+ +, (a,c,d,e,f) , c+ +, (a,b,d,e,f) ,

d+ +, (a,b,c,e,f) , e+ +, (a,b,c,d,f) , f + +, (a,b,c,d,e) .

This algorithm is implemented in O(n) where n is the number of
leaves, by performing a search of homogeneous sub-tree starting
from the leaves. Then, when the sub-tree stops to be homogeneous
it walks through the homogeneous sub-tree found to insert the
abstraction boxes. This algorithm adds at most 2(n−1) abstraction
boxes as it adds (i) one node linking each leaf to an abstraction box
containing all the other leaves, and (ii) at most one node linking an
abstraction box to each equivalence class.

Note that we could add new algorithms to both propagation and
expansion steps. The algorithms we use currently form a minimal
base to extract an optimized program whose shape is significantly
different from the original one.

4. Profitability Analysis
The profitability corresponds to the process of synthesizing a new
version of a program from an APEG. Our tool, Sardana, takes as
inputs a Lustre program together with ranges for the inputs and it
synthesizes a new program with better numerical accuracy. This
section is then organized as follows. Section 4.1 introduces how
we compute the propagatation of roundoff errors in floating-point
computations. Section 4.2 describes our abstract representation of
the streams of values manipulated by the Lustre programs. Finally,
in Section 4.3, we present our method to synthesize from an APEG
a new program whose accuracy is better than the original one.

4.1 Analysis of Floating-Point Computations
To compute safe bounds on the numerical accuracy of arithmetic
expressions, we use abstract values (x], µ]) ∈ E] where x] and
µ] are intervals whose bounds are floating-point numbers, and
where x] represents the interval of values of the input and µ]

represents the intervals of errors on the input [17]. A value (x], µ])
abstracts a set of concrete values {(xi, µi), i ∈ I} by intervals in
a component-wise way.

For an arithmetic expression, the propagation of roundoff errors
corresponds to the semantics of [15, 17] and is given in Figure 3.
The abstract function ↑]◦ corresponds to the concrete function ↑◦
introduced in Section 2.1. We have:

↑]◦ ([x, x]) = [↑−∞ (x), ↑+∞ (x)] (7)

The function ↓]◦ is a safe abstraction of ↓◦, i.e. ∀x ∈ [x, x], ↓◦
(x) ∈ ↓]◦ ([x, x]). For example, if the current rounding mode ◦ is
to the nearest, one may choose

↓]◦ ([x, x]) = [−y, y] with y =
1

2
ulp
(

max(|x|, |x|)
)

(8)

where the unit in the last place ulp(x) is the weight of the least
significant digit of the floating-point number x [20]. For an addi-
tion, the errors on the operands are added to the error due to the
roundoff of the result, as specified by Equation (2). For a sub-
traction, the errors on the operands are subtracted. Finally, the
semantics of the multiplication comes from the development of
(x]1 + µ]

1) × (x]2 + µ]
2). The semantics of other operations is de-

scribed in [15, 17]. We use the former arithmetic for the elemen-
tary operations between floating-point values. In Lustre, values are
streams and the operations have to be extended to streams, as de-
veloped in the following section.

4.2 Abstract Streams of Values
As a synchronous language, Lustre [5, 12] handles streams of
values recording the values of a program point at each time instant.
For example, let us consider the following program:

a = 1.0 / 3.0;
b = 1.0 -> a * pre(b);

A constant stream mapping each instant to the internal represen-
tation of 1

3
is associated to a. The stream b is the stream whose

value is b(0) = 1.0 at time 0 and whose value at time i is
b(i) = a(i)× b(i− 1).

Following the notations of [4], we denote s = 〈m, t0 : x0∧ t1 :
x1 ∧ . . . ∧ tN : xN 〉 the stream s such that, at each instant
i mod m, s(i) = xk if tk ≤ i mod m < tk+1 for some
k ∈ [0, N − 1] or s(i) = xN if tN ≤ i mod m < m. By
extension, we consider that if m = 0 then no modulo holds and
∀i ≥ tN , s(i) = xN . We also assume that always t0 = 0.

Our streams associate at each instant a value in the domain E
of intervals of floating-point numbers with errors introduced in
Section 4.1. Hence, a stream s ∈ S is a mapping s : N → E
where N denotes the set of non-negative integers. Coming back to
our former example, the stream associated to a is
〈0, 0 : ([3.33333333333325E − 1, 3.33333333333334E − 1],

[1.85037170770855E − 17, 1.85037170770861E − 17])〉

and the stream associated to b is
〈5, 0 : ([2.09075158128704E − 7, 1.0],

[−6.49870810424242E − 23, 3.89955157246792E − 22])∧
1 : [2.09075158128704E − 7, 3.33333333333334E − 1],

[−2.77556273678202E − 17, 4.62596578069798E − 17])∧
2 : [2.09075158128704E − 7, 1.11111111111112E − 1],

[−1.61907865481218E − 17, 2.85268996889166E − 17])∧
3 : [2.09075158128704E − 7, 3.70370370370373E − 2],

[−8.86638677409539E − 18, 1.50345826165255E − 17])∧
4 : [2.09075158128704E − 7, 1.23456790123458E − 2],

[−3.82282320444157E − 18, 6.56439316733447E − 18])

Elementary operations are applied at each instant, i.e if s =
〈m, 0 : x0 ∧ t1 : x1 ∧ . . . ∧ tN : xN 〉 and s′ = 〈m′, 0 : x′0 ∧ t′1 :
x′1 ∧ . . . ∧ t′N′ : x′N 〉 then, for an operation ∗ ∈ {+,−,×}, we
have (s ∗ s′)(i mod k) = s(i mod m) ∗ s′(i mod m′) where
k is the least common multiple of m and m′.

4 2012/5/18



(x]1, µ
]
1) + (x]2, µ

]
2) =

(
↑]◦ (x]1 + x]2), µ]

1 + µ]
2+ ↓]◦ (x]1 + x]2)

)
(4)

(x]1, µ
]
1)− (x]2, µ

]
2) =

(
↑]◦ (x]1 − x

]
2), µ]

1 − µ
]
2+ ↓]◦ (x]1 − x

]
2)
)

(5)

(x]1, µ
]
1)× (x]2, µ

]
2) =

(
↑]◦ (x]1 × x

]
2), x]1 × µ

]
2 + x]2 × µ

]
1 + µ]

1 × µ
]
2+ ↓]◦ (x]1 × x

]
2)
)

(6)

Figure 3. Abstract semantics of the elementary operations for the floating-point arithmetic.

The profitability has to search an expression which minimizes
the roundoff errors. Our values being streams of abstract floating-
point values with errors, we have to define in what sense we aim
at minimizing the errors. First, let us introduce some notations. For
a value v = (x], µ]) ∈ E, let E(v) = µ]. The function E gives
the error term of an abstract value. Next, if E(v) = µ] = [µ, µ],
then M+

E (v) = µ, M−E (v) = µ, and ME(v) = max(|µ|, |µ|).
In other words, M+

E (v), M−E (v) and ME(v) denote the upper and
lower bounds of the error and the maximal absolute error bound,
respectively. We consider several orders:

• Strict order: s ≺s s
′ if ∀i ∈ N, E(s(i)) ⊆ E(s′(i)). This order

requires that, if s ≺s s
′ then at any time the error bound on s

is less than the error bound on s′. The accuracy is improved at
each instant.

• Max order: s ≺m s′ if maxi∈NME(s(i)) ≤ ME(s
′(i)). This

order only considers the worst errors. We have s ≺m s′ if the
worst intensity of the error possibly associated to a value at a
given instant is always smaller in s than is s′,. Elsewhere, the
errors may be greater in s′ than in s.

• Integral order: s ≺i s
′ if
∑i=m−1

i=0 M+
E (s(i)) −M−E (s(i)) ≤∑i=m−1

i=0 M+
E (s′(i)) − M−E (s′(i)). This order compares the

integrals of the error functions E(s) and E(s′). We have s ≺i s
′

if the sums of the errors at each instant is smaller in s than in
s′. If s ≺i s

′ then at some instant i, the error s(i) may be
greater than the error s′(i). If m = 0 or m′ = 0, the integral is
computed up to max(m,m′) − 1. If m = 0 and m′ = 0, the
integral is computed up to max(tN , t

′
N′).

The Strict order ≺s would require to synthesize a program
which always improves the error bounds on the computed values.
We consider that this order is too restrictive and we do not use it in
practice. The Max order≺m may be interesting in certain applica-
tive contexts where the main objective is to lower the worst error
bound and where the average error is not relevant. The Integral or-
der≺i gives a measure of the average error. We consider this order
as the most interesting. In practice, our experiments confirm that
the integral order is the order for which me may optimize the most
the programs.

4.3 Profitability of APEGs
To synthesize an optimized program, the profitability has to be per-
formed on the APEGs as defined in Section 3. A main difficulty is
that, thanks to equivalence classes, an APEG may represent an ex-
ponential number of expressions whose accuracy should be individ-
ually evaluated. For example, let us consider an operator ∗(p1, p2)
where p1 and p2 are equivalence classes p1 = 〈p′1, . . . p′n〉 and
p2 = 〈p′′1 , . . . p′′m〉. Then we should consider all the expressions
∗(p′i, p′′j ) for 1 ≤ i ≤ n and 1 ≤ j ≤ m. In general, the sub-
APEGs contained in p1 and p2 may be equivalence classes again.
For example, we may have p′1 = ∗(q1, q2) with q1 = 〈q′1, . . . q′r〉
and q2 = 〈q′′1 , . . . q′′s 〉 and we should consider all the expressions
∗(∗(qu, qv), p′′j ) for 1 ≤ i ≤ n, 1 ≤ j ≤ m, 1 ≤ u ≤ r and

1 ≤ v ≤ s. Hence, for tractability reasons, we shall not require the
profitability to be exhaustive.

To cope with this combinatorial explosion, we use a limited
depth search strategy with memoization. We select the way an
expression is evaluated by considering only the best way to evaluate
its sub-expressions. This corresponds to a local choice. In our
former example, for a depth equal to 1, this consists of considering
only the optimal expression for p′1 (let us say ∗(q′3, q′′5 )) when
examining ∗(p1, p2). The other ways to evaluate p′1, i.e. ∗(q′1, q′′1 ),
∗(q′1, q′′2 ), . . . are no longer considered even if, once combined to
p2, they could yield a better result. At depth 2, we would consider
all the terms ∗(q′i, q′′j ) when synthesizing the expression ∗(p1, p2)
but not their sub-expressions.

Algorithm 4.3 illustrates how we perform the profitability when
the depth is set to 1. The operator :: appends a value to a list. Algo-
rithm 4.3 considers, for each node in the given equivalence class,
the cartesian product of the elements of the node. It uses the equiv-
alence classes of the node parameters and evaluates the roundoff
error generated by the operator using the semantics introduced in
Section 4.2. Then it returns the minimal roundoff error for the de-
sired order (≺s, ≺m or ≺i as discussed in Section 4.2) after mem-
oization of the accuracies of the expressions encountered.

For the sake of conciseness ,Algorithm 4.3 does not detail how
to snthesize the final expression once we have found the minimal
stream. This step is a simple propagation of the expressions along
with the streams.

The next point concerns the synthesis of an expression for an
abstraction boxB = ∗, (p1, . . . , pn) . In this case, the profitability
applies an heuristic which generates an accurate expression (yet
not always optimal). This heuristic is a greedy algorithm which
searches at each step the pair pi and pj such that ↓]◦ (pi ∗ pj) is
minimal. Once it founds pi and pj it replaces both terms in the box
by a new term pij whose accuracy is equal to ↓]◦ (pi ∗ pj). This
heuristic performs at most n2 pairing at each step, and is repeated
exactly n− 1 times. Thus it computes in O(n3) iterations.

5. Case studies
In this section we present experimental results obtained on several
cases studies with our tool, Sardana, which implements APEGs and
the profitability heuristic described in Section 4. We illustrate our
approach on Taylor series and two real case studies: the first one is
an altitude estimator from an open-source project called Paparazzi,
the second study concerns several pieces of code taken from a real
industrial avionic embedded systems.

5.1 Transformation of Taylor Series
In several contexts programmers approximate elementary functions
such as logarithms or trigonometric functions by polynomials ob-
tained by means of a Taylor series development. However the eval-
uation of a Taylor series in the floating-point arithmetic is subject to
accuracy losses around one of the roots of the approximant polyno-
mial [13] and because the exact coefficients cannot be represented
exactly in the floating-point arithmetic. Interestingly, if we evaluate
a Taylor series near a value that anneals the approximated function,
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Algorithm 1 Profitability of an equivalence class 〈p1, . . . , pn〉,
depth of search is set to to 1
E ← [ ]
for pi ∈ 〈p1, . . . , pn〉 do

if pi = 〈p′1, . . . , p′k〉 ∗ 〈q′′1 , . . . , q′′m〉 then
for each p′j ∈ 〈p′1, . . . , p′k〉 do

for each p′′k ∈ 〈q′′1 , . . . , q′′m〉 do
E ← (↓]◦ (p′j ∗ p′′k)) :: E

end for
end for

else if pi = l ∗ 〈q1, . . . , qm〉 or pi = 〈q1, . . . , qm〉 ∗ l then
for qj ∈ 〈q1, . . . , qm〉 do
E ← (↓]◦ (l ∗ qj)) :: E

end for
else

//pi = l1 ∗ l2
E ← (↓]◦ (l1 ∗ l2)) :: E

end if
end for
return Min(E)
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Figure 4. Results for the expansion in Taylor series of cosine (at
6th order), sine (at 7th order) and ln(2 + x) (at 5th order). Left
part is the initial error distributions, right part is for the optimized
schemes.

less numerical errors arise for a lower order expansion than for a
higher order one as, in the latter case, the polynomial resulting from
the Taylor expansion has a root closer to the value that anneals the
function. Therefore there is an implicit tradeoff between having a
better accuracy everywhere except near the roots or been more ac-
curate close to the roots.

We intend to show that our techniques are able to improve
the numerical accuracy close to the roots of the approximated
function even when the order of the expansion increases. We have
performed benchmarks on the expansion into Taylor series of the

following functions: cosine, sine1 and ln(2 + x)2 for a few orders
of expansion. All the experimental results presented in this section
have been achieved using the IEEE-754 binary 64 format. Our
benchmarks are done exhaustively, by generating all the possible
evaluation schemes for each Taylor expansion according to [19,
§6.2.2].

Figure 4 presents the error bounds found for the evaluation near
a root of the Taylor expansion of cosine at the 6th order (which
corresponds to 15.924 parsings), the Taylor expansion of sine at the
7th order (235.270 parsings) and the Taylor expansion of ln(2+x)
at the 5th order (323.810 parsings). For each of these functions,
Figure 4 summarizes on the left-hand-side both the initial error
bounds and, on the right-hand-side, the optimized error bounds.

First, let us examine the results of the Taylor expansion of
cosine (first line of Figure 4). We can see that the initial error
bounds of cosine are almost linearly scattered between the values
2.5 · 10−16 and 6.0 · 10−16, i.e. the number of expressions with
the same error bound grows linearly with the error. However our
transformation is able to shift all of the error bounds between the
values 2.5 · 10−16 and 4.8 · 10−16, with most of below 3.7 · 10−16.
This corresponds to an improvement of the worst case accuracy by
20% at least. If we look to the improvement of each expression we
obtained an average improvement of 17%.

For the Taylor expansion of the sine function (second line of
Figure 4), we can see that the initial error bounds are between
3 ·10−14 and 1.2 ·10−13, and most of them are near the worst error
bound. We can see that our analysis has regrouped the initial error
bounds near three areas: the optimal value, the value 5.5 · 10−14

and the value 7.5 · 10−14. Also, the optimized error bound are all
inferior to 1 · 10−13, which corresponds to an improvement of the
worst case accuracy by 17% at least. If we look to the improvement
of each expression we obtained an average improvement of 28%.

Finally we present the results obtained for the Taylor expansion
of ln(2 + x) (third line of Figure 4). We can see that initially the
number of expressions with the same value of error bound grows
linearly with the errors, and are all between the values 1.6 · 10−16

and 3.2 · 10−16. Here our analysis has regrouped the initial error
bounds near three areas: the value 1.7 ·10−16, the value 2.1 ·10−14

and the value 2.7 · 10−14. Therefor we have improved the worst
case accuracy by 16% at least. If we look to the improvement of
each expression we obtained an average improvement of 23%.

5.2 Embedded Altitude Estimator
In this section we illustrate our approach on a Kalman filtering
code used on an unmanned airborne system. This filter is used
in the Paparazzi project3 developed by the DRONES laboratory
at the French civil aviation university (ENAC). Paparazzi is an
open-source project which intends to create an auto-pilot system for
fixed-wing aircrafts as well as for multicopters. This filter is used to
predict the altitude estimation produced by the aircraft using GPS
coordinates.

Contrarily to a GPS used on grounded vehicles, which only op-
erate with longitude and latitude, aircrafts also uses the altitude pro-
vided by the GPS. However this last coordinate is usually less pre-
cise than the former. Combined to the slow rate of values produced
GPS, a real-time auto-pilot must constantly predict and then correct
its predictions when the actual values arrive.

The filter uses a covariance matrix P of size 3, constructed by
means of Algorithm 2, where initially P [i][j] = 10 if i = j and
P [i][j] = 0 otherwise. The terms ∆t, C1, C2, C3 are constants.

1cosx =
∑+∞

n=0(−1)n x2n

(2n)!
and sinx =

∑+∞
n=0(−1)n x2n+1

(2n+1)!

2ln(2 + x) =
∑+∞

n=1(−1)n−1 xn

n×2n
.

3http://paparazzi.enac.fr
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Intuitively the first row represents the confidence on the current
altitude, the second row represents the confidence on the current
vertical speed of the aircraft, and the third row represents the
confidence on the current vertical acceleration of the aircraft. This
covariance matrix is defined such as its terms slowly grow, in
order to model the fact that the confidence decreases over time.
The model used to infer this confidence assumes that: the vertical
acceleration of an aircraft is linear, thus it deduces the vertical speed
by integration of the acceleration and the altitude by integration
of the speed. Algorithm 2 describes how this covariance matrix is
updated at each step using the previous state of the matrix. Note
that the calculation performed in Algorithm 2 has been already
manually transformed by us to its simplest form.

Our purpose is to illustrate how the choice of the order Strict,
Max or Integral on the streams of value, as introduced in section
4.2, impacts the result of our optimization process. We have used
the three orders on a scenario where the covariance matrix is up-
dated 35 times using Algorithm 2. We consider this scenario as
realistic because the covariance matrix is usually updated dozens
of times before a new value is produced by the GPS. Note that
each of these results have been obtained in less than 20s on a lap-
top computer, and all the calculations are carried out in the IEEE-
754 binary 32 format [1] accordingly to the specification of the
Paparazzi project. In addition, let us remark that only the cells
P [0][0], P [0][1], P [1][0] and P [1][1] updated by Algorithm 2 are
candidate to significant optimizations as their expression is com-
plex enough to allow some transformations.

In this case study, the choice of the order has two consequences
on the optimized expression of the filter. First, depending on the or-
der the significant cells are not always optimized. Second, even if
a cell is optimized by two different orders, they are not optimized
in the same way and consequently the errors bounds are not the
same. Our results show that the Strict order is able to optimize all
the significant cells (P [0][0], P [0][1], P [1][0] and P [1][1]), the
Max order optimizes only the cells P [0][0], P [1][0] and P [1][1],
and the Integral order optimizes only the cells P [0][0], P [0][1] and
P [1][0].
As P [0][0] is optimized for all orders, let us show how the opti-
mizations are different from one order to another. Figures 5 and
6 show the evolution of the error bound on P [0][0] along the sce-
nario using respectively the orders Max, Strict and Integral. These
figures represent on the x-axis the instants where the error stream
is defined, and on the y-axis the values of both the upper and lower
bounds of the error attached to the concerned expression. Note that,
in general, these two bounds are close and seem to coincide on
the figures. The different orders produce the following expressions
from the definition of P [0][0]:

• Strict order:

P [0][0]+((∆t×((P [1][1]×∆t)+(P [0][1]+P [1][0])))+C1)

• Max order:

(P [0][0]+(∆t×((P [1][1]×∆t)+(P [0][1]+P [1][0]))))+C1

• Integral order:

(P [0][0]+(∆t×(P [0][1]+((P [1][1]×∆t)+P [1][0]))))+C1

We can observe that for the Strict order the term P [0][0] is added
to the rest of the expression at the very end but that for the Max
and Strict orders it is the constant C1 which is add at the end of
the calculation. Also, with the Max order Sardana recommends
to first add together the terms P [0][1] and P [1][0], and then to
add the result to the term P [1][1] × ∆t. On the contrary, with the
Integral order, Sardana recommends to add the terms P [1][1]×∆t
and P [1][0] first and then to add the result to P [1][0]. This well

Algorithm 2 Kalman filter for the altitude prediction. ( +←− operator
corresponds to the ”add and store” operation.)

P [0][0]
+←− (∆t× (P [1][0] + P [0][1] + ∆t× P [1][1])) + C1

P [0][1]
+←− ∆t× (P [1][1]− P [0][2]−∆t× P [1][2])

P [0][2]
+←− ∆t× (P [1][2])

P [1][0]
+←− ∆t× (−P [2][0] + P [1][1]−∆t× P [2][1])

P [1][1]
+←− (∆t× (−P [2][1]−P [1][2] + ∆t×P [2][2])) +C2

P [1][2]
+←− ∆t× (−P [2][2])

P [2][0]
+←− ∆t× (P [2][1])

P [2][1]
+←− ∆t× (−P [2][2])

P [2][2]
+←− C3
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Figure 5. On the left hand side, the evolution of the initial error
bounds of P [0][0]. On the right hand side the evolution of the error
bounds of the optimized expression of P [0][0] using Strict order.
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Figure 6. On the left hand side, the evolution of the error bounds
of the optimized expression of P [0][0] using Max order. On the
right hand side, the evolution of the error bounds of the optimized
expression of P [0][0] using Integral order.

illustrates how the floating-point arithmetic is not intuitive, because
slight modifications, that an human expert may not foresee easily,
lead to different improvements of the evolution of the error bounds,
as it is illustrated by Figures 5 and 6.

5.3 Avionic Benchmarks
We present in this section several experimental results obtained on
pieces of code extracted from embedded critical industrial avionic
codes. These experimental results concern in one hand programs
using the IEEE-754 binary 32 format (Table 1), and, on the other
hand, programs using the IEEE-754 binary 64 format (Table 2). For
both floating-point formats, we have tested each program for many
contexts, each having its own input values. Again, input values
are described by means of streams of intervals of floating-point
numbers. All the contexts we used have been kindly provided by
the ASTRÉE team [2] who currently analyzes these programs and
have access to realistic simulations of them. For industrial property
reasons, we denote the programs used by the following generic
terms:
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• Interpol, stands for a first order interpolation,
• L-P filter, stands for a low-pass filter of the first order,
• H-P filter, stands for a high-pass filter of the first order,
• Transfer, stands for a transfer function of the second order

between two inputs,
• Sqrt, stands for a polynomial interpolation of the square root.

Note that even if some programs appear in both tables 1 and 2, these
programs have different codes and performances, yet they aim at
achieving a similar task.
Note also that, in this case study, only the Integral order is used.

To perform our benchmarks, we used for each program and each
context three identical scenarii in which Sardana computes streams
of size 5, 15 or 35 instants. For all the contexts of each program,
we present in Table 1 and 2 the improvement of the integral value
of the errors for these scenarii.

We can draw two conclusions with these experiments. First,
in many cases, the gain in accuracy decreases as the length of
the streams increases. This can be observed on all low-pass filters
described here. We explain this phenomenon by the fact that in
most of these cases the values generated by the program tend
towards zero and the errors on these values then decreases as well
over time. Thus, the gain at each step of the integral tends to
become smaller and smaller leading the integral gain to decrease as
well. This conclusion is even more accurate to us, that in the other
cases where the values are growing without limit (like with the
high-pass filter in Table 1 or the Transfer program in Table 2) the
gain on the integral value increases as the stream length increases.
The second conclusion is that our approach is able to improve
the overall numerical accuracy of very different programs in many
different contexts. This gain is for most of the considered programs
between 2% and 20% for 50% to 90% of the contexts. For the few
programs we are unable to improve such as Interpol in Table 1, we
may argue that the way these programs are written does not allow
much transformation on it. Therefor we are not able to synthesize
new programs with significant difference in numerical accuracy, as
there is not much to transform available.

Program #Contexts %Optimized #Integral from
0 to 5 0 to 15 0 to 35

Interpol 2135 3.5% 0.4% 0.4% 0.4%
L-P filter 1 32 96.9% 13.5% 6.7% 3.1%
L-P filter 2 501 57% 6.6% 3.1% 1.3%
H-P filter 414 80.9% 11.7% 23% 25.6%
Transfer 477 100% 15.9% 18.4% 20.2%

% accuracy gain

Table 1. Results on programs using IEEE-754 binary 32 format.

Program #Contexts %Optimized #Integral from
0 to 5 0 to 15 0 to 35

Interpol 7817 4.9% 7.1% 7.1% 7.1%
L-P filter 1 44 85,2% 9,2% 8,3% 7%
L-P filter 2 618 50,3% 7,5% 5,2% 4,1%
H-P filter 1 42 61,9% 14% 9,5% 2,5%
H-P filter 2 125 52% 7,4% 6,1% 3,9%

Transfer 364 98,5% 14,4% 17,7% 19,4%
Sqrt 76 80.2% 6.3% 6.3% 6.3%

% accuracy gain

Table 2. Results on programs using IEEE-754 binary 64 format.

6. Conclusion
In this article we have presented a new profitability heuristic which
allows us to extract a more accurate version of a program from
our intermediate representation called APEG. This article briefly
describes how APEGs are constructed, and how they are able to
represent many equivalent versions of a program in order to find
one with better numerical accuracy.

We have designed a profitability analysis which runs in polyno-
mial time and synthesize a new, but yet mathematically equivalent,
version of a program. This heuristic is applied recursively into the
APEG in order to synthesize a well-formed program using all the
expressivity of our intermediate representation. We have presented
extensive tests of our approach on many cases, both real case stud-
ies and exhaustive benchmarks. Our experimental results show that
we are able to improve the accuracy of complex polynomial expres-
sions by 20%.

Also our experimental results show significant improvement for
real case example such as the embedded altitude estimator or real
avionic code. We believe that our approach could be extended in
many ways, also we already think about defining new propagation
and expansion algorithms, also we are confident that the profitabil-
ity heuristic we currently use could be improve in order to synthe-
size even more accurate programs.
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