Cédric Bonnafé 
  
Meinolf Geck 
  
Conjugacy classes of involutions and Kazhdan-Lusztig cells

come    

Conjecture. -If C and C ′ are two left cells contained in the same two-sided cell, then 2 (C ) = 2 (C ′ ).

As it can already be checked in type A 3 , the obvious generalization of this conjecture to elements of any order is false. In this paper, we investigate this conjecture whenever W is finite. For simplification, all along this paper, we will say that "Lusztig's Conjectures P's hold" if "Lusztig's Conjectures P1, P2,. . . , P15 in [START_REF] Lusztig | Hecke algebras with unequal parameters[END_REF]Chapter 14] hold"). Our aim is to prove the following result.

Theorem. -Assume that W is finite. Let C be a two-sided cell of W and let C and C ′ be two left cells contained in C. Then: Here, a two-sided cell C is called smooth if the family of irreducible characters associated with C contains only one element. This definition is inspired by the theory of rational Cherednik algebras and Calogero-Moser cells (as developed in [START_REF] Bonnafé | Calogero-Moser versus Kazhdan-Lusztig cells[END_REF] or [START_REF] Bonnafé | Calogero-Moser cells[END_REF]). Note that smooth two-sided cells actually occur quite often; for example, all the two-sided cells of S n are smooth [KaLu], [START_REF] Lusztig | Cells in affine Weyl groups[END_REF], as well as all the two-sided cells when W is of type B n and ϕ corresponds to the asymptotic case as in [BoIa], [START_REF] Bonnafé | Two-sided cells in type B (asymptotic case)[END_REF]. See also Table 2.1 (p. 10) for more numerical data.

Part (a) of the theorem will be shown in Proposition 4.1; for part (b) see Corollary 3.3. An essential ingredient in our proof is the fact that, if is a conjugacy class of involutions in W , then w ∈ T w is central in the Hecke algebra ; see Section 1. (Here, (T w ) w ∈W is the standard basis of , as explained below.) Whenever is a conjugacy class of reflections, this result is due to L. Iancu (unpublished).

Part (c) of the above result would follow from results of Lusztig [LuB, Chap. 12] and a general conjecture due to R.E. Kottwitz [Ko] concerning the intersections of conjugacy classes of involutions with left cells. Here, we prove (c) directly by the methods developped in Section 4 and then use this to actually show that Kottwitz' conjecture holds for W of classical type; see Sections 6, 7 and [START_REF] Geck | On Kottwitz' conjecture for twisted involutions[END_REF].

Finally, we point out that our conjecture also makes sense for arbitrary Coxeter groups. It can be checked easily that it holds in the infinite dihedral case; it also follows from work of J. Guilhot [Gu] that, if W is affine and if C 0 is the lowest twosided cell, then the above conjecture holds for left cells contained in C 0 .

Hecke algebras, involutions, cells

Let (W,S) be a finite Coxeter system, let ℓ : W → denote the length function, let Γ be a totally ordered abelian group and let ϕ : S → Γ >0 be a weight function that is, a map such that ϕ(s ) = ϕ(t ) whenever s and t are conjugate in W . We denote by A the group ring [Γ], denoted exponentially: in other words, A = ⊕ γ∈Γ v γ , with v γ v γ ′ = v γ+γ ′ . If a = γ∈Γ a γ v γ ∈ A, then we denote by deg(a ) its degree, namely the maximal γ ∈ Γ such that α γ = 0 (note that deg(0) = -∞).

We denote by = (W,S, ϕ) the Hecke algebra with parameter ϕ. As a module, = ⊕ w ∈W A T w and the multiplication is completely determined by the following two rules:

T w T w ′ = T w w ′ if ℓ(w w ′ ) = ℓ(w ) + ℓ(w ′ ), T 2 s = 1 + (v ϕ(s ) -v -ϕ(s ) )T s if s ∈ S.
The Bruhat-Chevalley order on W will be denoted by .

Remark 1.1. -If is an assertion, then we define δ by δ = 1 (resp. 0) if is true (resp. false). For instance, δ i =j replaces the usual Kronecker symbol δ i ,j . With this notation, we have

T s T w = T s w + δ s w < w (v ϕ(s ) -v -ϕ(s ) )T w , T w T s = T w s + δ w s < w (v ϕ(s ) -v -ϕ(s ) )T w
for all s ∈ S and w ∈ W .

Lemma 1.2. -Let be a union of conjugacy classes of involutions in W . Then

T := w ∈ T w is central in .
Proof. -Since (T s ) s ∈S generates the A-algebra , it is sufficient to show that T s T = T T s for all s ∈ S. But, by Remark 1.1, we have

T s T = w ∈ T s w + w ∈ δ s w < w (v ϕ(s ) -v -ϕ(s ) )T w , T T s = w ∈ T w s + w ∈ δ w s < w (v ϕ(s ) -v -ϕ(s ) )T w .
Now, as is a union of conjugacy classes, we have s = s . Moreover, as elements of are involutions, we have s w < w if and only if w s < w (for any w ∈ ). The result follows.

If

is a conjugacy class of reflections, the above result is stated in [START_REF] Geck | Representations of Hecke a lgebras at roots of unity[END_REF]Exp. 3.3.8]; in this case, it is due to L. Iancu (unpublished).

Remark 1.3. -Let f : W → be any class function on W . Let be a union of conjugacy classes of involutions in W . Then we also have that

T f := w ∈ f (w )T w is central in .
(Indeed, it is sufficient to prove this in the case where is a single conjugacy class in which case we have T f = f (t )T where t ∈ is fixed.) In particular, applying this to the sign character ǫ of W , we obtain

T ǫ = w ∈ (-1) ℓ(w ) T w is central in .
For any a = γ∈ a γ v γ , we set a = γ∈Γ a γ v -γ . This can be extended to an antilinear automorphism → , h → h, by the formula

w ∈W a w T w = w ∈W a w T -1 w -1 .
We set A <0 = ⊕ γ<0 Av γ and <0 = ⊕ w ∈W A <0 T w . By [START_REF] Lusztig | Hecke algebras with unequal parameters[END_REF]Theorem 5.2(a)], there exists a unique A-basis (c w ) w ∈W of , called the Kazhdan-Lusztig basis, such that

c w = c w , c w ≡ T w mod <0 .
We now define L (resp R , resp. LR ) as the coarsest preorder such that, for all Cell LR (W )) the set of left (resp. right, resp. two-sided) cells of W .

In order to define the corresponding cell modules it will be convenient, as in the later chapters of [START_REF] Lusztig | Hecke algebras with unequal parameters[END_REF], to work with a slightly modified version of the basis (c w ) w ∈W . Let h → h † denote the unique A-algebra automorphism of such that

T † s = -T -1 s for all s ∈ W .
(See [START_REF] Lusztig | Hecke algebras with unequal parameters[END_REF]3.5]). Then, clearly, (c † w ) w ∈W also is an A-basis of . Since c w = c w , we also have

c † w ≡ (-1) ℓ(w ) T w mod ⊕ y < w A >0 T y for all w ∈ W .
Now, for every left cell C , we can construct a left -module V C , called a left cell module, as follows. For x , y ∈ W , let us write

c x c y = z ∈W h x ,y ,z c z where h x ,y ,z ∈ A.
Then, as an A-module, V C is free with a basis {e x | x ∈ C }. The action of on V C is given by the formula (see [START_REF] Lusztig | Hecke algebras with unequal parameters[END_REF]21.1]):

c † x .e y = z ∈C h x ,y ,z e z
where x ∈ W and y ∈ C .

We can perform similar constructions for right and two-sided ideals, giving rise to right -modules and ( , )-bimodules, respectively. Now, let K denote the fraction field of A and, if

M is an A-module, let K M = K ⊗ A M .
Then it is well-known (see, for example, [START_REF] Geck | Characters of finite Coxeter groups and Iwahori-Hecke algebras[END_REF]9.3.5]) that the K -algebra K is split and semisimple so, by Tits' deformation Theorem, there is a bijection

Irr(W ) ∼ -→ Irr(K ) χ -→ χ ϕ .
Here, χ can be retrieved from χ ϕ through the specialization v γ → 1.

Definition 1.5 ([KaLu], [START_REF] Lusztig | Left cells in Weyl groups, Lie group representations[END_REF]). -We define a partition of Irr(W ), depending on ϕ, as follows. For a two-sided cell C, we denote by Irr C (W ) the set of irreducible characters χ of W such that χ ϕ is an irreducible constituent of K V C , where C is a left cell contained in C. Then:

Irr(W ) = C∈Cell LR (W )
Irr C (W ).

Note that, for each two-sided cell C, we have

|C| = χ∈Irr C (W ) χ(1) 2 .
If C is a left cell, we denote by [C ] the character of W obtained by specialization through v γ → 1 from the character of K afforded by V C . An indication of the connection between left cells and involutions is given by the following result.

Proposition 1.6 ([Ge5]

). -Let C be a left cell in W . Then the number of involutions in C is equal to the number of irreducible constituents of [C ] (counting multiplicities).

We denote by ϕ (W ) the following graph: its vertices are the irreducible characters of W and two irreducible characters χ and χ ′ are joined by an edge if there exists a left cell C such that χ and χ ′ are irreducible components of [C ]. In order to relate the graph ϕ (W ) to the partition of Irr(W ) in Definition 1.5 we need the following result.

Proposition 1.7 ( [START_REF] Lusztig | Characters of reductive groups over a finite field[END_REF]Theorem 12.15] and [START_REF] Geck | Kazhdan-Lusztig cells and the Frobenius-Schur indicator[END_REF]Corollary 3.9])

Let C and C ′ be two left cells. Then:

〈[C ], [C ′ ]〉 W = |C ′ ∩ C -1 |.
As two-sided cells are unions of left cells, the sets Irr C (W ) are unions of connected components of the graph ϕ (W ). It is conjectured that the converse holds:

Corollary 1.8. -Assume that Lusztig's Conjectures P's for (W,S, ϕ) hold. Then the sets Irr C (W ) are the connected components of the graph ϕ (W ).

Proof. -Indeed, if Lusztig's Conjectures P's for (W,S, ϕ) hold, then ∼ LR is the equivalence relation generated by ∼ L and ∼ R ; see [START_REF] Lusztig | Hecke algebras with unequal parameters[END_REF]§14.2,Conjecture P9]. So the result follows from Proposition 1.7.

We shall also need the following result whose proof relies on some case-by-case arguments and explicit computations.

Proposition 1.9 ([Lu5, Chap. 22]). -Assume that Lusztig's Conjectures P's for (W,S, ϕ) hold. Let χ ∈ Irr(W ). Then there exists a left cell

C of W such that 〈[C ], χ〉 W = 1.
Proof. -By the explicit results in [START_REF] Lusztig | Hecke algebras with unequal parameters[END_REF]§22] (see also [START_REF] Geck | Left cells and constructible representations[END_REF]§7] and the references there for the non-crystallographic types), every χ ∈ Irr(W ) appears with multiplicity 1 in some "contructible" character, as defined in [START_REF] Lusztig | Hecke algebras with unequal parameters[END_REF]22.1]. (For Weyl groups and the equal parameter case, this statement already appeared in [START_REF] Lusztig | Characters of reductive groups over a finite field[END_REF]5.30].) On the other hand, since Lusztig's Conjectures P's for (W,S, ϕ) are assumed to hold, we can apply [START_REF] Lusztig | Hecke algebras with unequal parameters[END_REF]Lemma 22.2] which shows that every constructible character is of the form [C ] for some left cell C .

Leading coefficients

Lusztig has associated with any χ ∈ Irr(W ) two invariants a χ ∈ Γ ≥0 and f χ ∈ >0 ; see [START_REF] Lusztig | Characters of reductive groups over a finite field[END_REF]Chap. 4], [START_REF] Lusztig | Leading coefficients of character values of Hecke algebras[END_REF], [START_REF] Lusztig | Hecke algebras with unequal parameters[END_REF]§20]. Let us briefly recall how this is done. It is known that χ ϕ (T w ) ∈ A for all w ∈ W ; see [START_REF] Geck | Characters of finite Coxeter groups and Iwahori-Hecke algebras[END_REF]9.3.5]. Thus, we can define

a χ := min{γ ∈ Γ ≥0 | v γ χ ϕ (T w ) ∈ A ≥0 for all w ∈ W }.
Consequently, there are unique numbers c w,χ ∈ (w ∈ W ) such that

v a χ χ ϕ (T w ) ≡ (-1) ℓ(w ) c w,χ mod A >0 .
These numbers are Lusztig's "leading coefficients of character values"; see [LuB], [START_REF] Lusztig | Leading coefficients of character values of Hecke algebras[END_REF]. Since χ ϕ (T w ) = χ ϕ (T w -1 ) for all w ∈ W (see [START_REF] Geck | Characters of finite Coxeter groups and Iwahori-Hecke algebras[END_REF]8.2.6]), we certainly have

c w,χ = c w -1 ,χ for all w ∈ W .
Given χ, there is at least one w ∈ W such that c w,χ = 0 (by the definition of a χ ). Hence, the sum of all c 2 w,χ (w ∈ W ) will be strictly positive and so we can write that sum as f χ χ(1) where f χ ∈ is strictly positive. We have the following orthogonality relations (see [START_REF] Geck | Characters of finite Coxeter groups and Iwahori-Hecke algebras[END_REF]Exc. 9.8]):

w ∈W c w,χ c w,χ ′ = f χ χ(1) if χ = χ ′ , 0 otherwise.
The coefficients c w,χ and the numbers f χ are related to the left and two-sided cells of W . We shall now state a few results which make this relation more precise.

Proposition 2.1 ( [START_REF] Lusztig | Characters of reductive groups over a finite field[END_REF]5.8] and [START_REF] Geck | Kazhdan-Lusztig cells and the Frobenius-Schur indicator[END_REF]3.8]). -Let C be a left cell and χ, χ ′ ∈ Irr(W ). Then

w ∈C c w,χ c w,χ ′ = f χ 〈[C ], χ〉 W if χ = χ ′ , 0 otherwise. Corollary 2.2. -Let χ ∈ Irr(W ) and w ∈ W . If c w,χ = 0 then 〈[C ], χ〉 W = 0
where C is the left cell containing w . In particular, χ ∈ Irr C (W ) where C is the two-sided cell such that w ∈ C.

Proof.

-If c w,χ = 0 and w ∈ C , then the left hand side of the formula in Proposition 2.1 (where χ ′ = χ) is non-zero. Hence, so is the right hand side, that is,

〈[C ], χ〉 W = 0.
Example 2.3. -Let W ′ ⊆ W be a standard parabolic subgroup, ǫ ′ the sign character of W ′ and w ′ 0 ∈ W ′ the longest element in W ′ . Let χ ∈ Irr(W ) be such that

a χ = ϕ(w ′ 0 )
and

Ind W W ′ (ǫ ′ ), χ W = 0.
Then χ ∈ Irr C (W ) where C is the two-sided cell which contains w ′ 0 . (Indeed, by [START_REF] Geck | Representations of Hecke a lgebras at roots of unity[END_REF]Cor. 2.8.6], we have

c w ′ 0 ,χ = ± Ind W W ′ (ǫ ′ ), χ W = 0.
and it remains to use Corollary 2.2.)

Definition 2.4. -We define the set of "distinguished elements" in W by

:= {w ∈ W | n w = 0}
where

n w := χ∈Irr(W ) f -1 χ c w,χ .
(Note that depends on ϕ.) If Lusztig's Conjectures P's for (W,S, ϕ) hold, then [START_REF] Geck | On Iwahori-Hecke algebras with unequal parameters and Lusztig's isomorphism theorem, Jacques Tits special issue[END_REF]Lemma 3.7] shows that this definition coincides with that in [START_REF] Lusztig | Hecke algebras with unequal parameters[END_REF]14.1]. In particular, by Conjectures P5 and P6, we have n d = ±1 and d 2 = 1 for all d ∈ ; furthermore, by P13, every left cell contains a unique element of .

Proposition 2.5. -Assume that Lusztig's Conjectures P's for (W,S, ϕ) hold. Let C be a left cell and ∩ C = {d }. Then

c d ,χ = n d 〈[C ], χ〉 W and χ∈Irr(W ) f -1 χ 〈[C ], χ〉 W = 1.
Proof. -The first identity is contained in [START_REF] Lusztig | Hecke algebras with unequal parameters[END_REF]20.6,21.4]. Then the second identity immediately follows from the above formula for n d . The next result gives a characterization of smooth two-sided cells whenever Lusztig's Conjectures P's hold: Lemma 2.7. -Assume that Lusztig's Conjectures P's for (W,S, ϕ) hold. Let C be a two-sided cell. We denote C (2) = {w ∈ C | w 2 = 1}. Then the following are equivalent:

(1) C is "smooth", that is, | Irr C (W )| = 1. (2) There exists a left cell C ⊆ C such that [C ] ∈ Irr(W ). (3) f χ = 1 for some χ ∈ Irr C (W ). (4) For any left cell C ⊆ C, we have [C ] ∈ Irr(W ). (5) |C| = |C (2) | 2 . (6) C (2) ⊆ , that is, all involutions in C are "distinguished".
Note also that the condition "[C ] ∈ Irr(W )" can be replaced by "|C ∩ C -1 | = 1"; see Proposition 1.7.

Proof. -First we show the equivalence of (1), (2), (3), (4).

"(1) ⇒ (2)" Let Irr C (W ) = {χ}. Let C be a left cell as in Proposition 1.9. Since Since it occurs with multiplicity 1, we have

[C ] = χ ∈ Irr(W ). "(2) ⇒ (3)" If χ := [C ] ∈ Irr(W )
, then the identity in Proposition 2.5 reduces to

1 = f -1
χ and so f χ = 1. "(3) ⇒ (4)" Let C be a left cell as in Proposition 1.9. Then, as above, we have C ⊆ C. The identity in Proposition 2.5 now shows that

1 = 1 + χ =ψ∈Irr(W ) f -1 ψ 〈[C ], ψ〉 W .
Hence, we have 〈[C ], ψ〉 W = 0 for all ψ = χ and so [C ] = χ ∈ Irr(W ). Now let C ′ be another left cell contained in C. By Corollary 1.8, there exists a sequence

C = C 0 ,C 1 , . . . ,C n = C ′ of left cells contained in C such that 〈[C i ], [C i +1 ]〉 W = 0 for all i . We shall prove by induction on i that [C i ] = [C ]. This is clear if i = 0, so assume that [C i ] = [C ] and let us show that [C i +1 ] = [C ]. By assumption, we have 〈[C i ], [C i +1 ]〉 W = 0, which means that 〈[C i ], ψ〉 W ≤ 〈[C i +1 ],
ψ〉 W for all ψ ∈ Irr(W ). Applying the identity in Proposition 2.5 to both C i and C i +1 , we obtain

1 = ψ∈Irr(W ) f -1 ψ 〈[C i ], ψ〉 W ≤ ψ∈Irr(W ) f -1 ψ 〈[C i +1 ], ψ〉 W = 1.
Hence, we must have

〈[C i ], ψ〉 W = 〈[C i +1 ]〉 W for all ψ ∈ Irr(W ) and so [C i +1 ] = [C i ] ∈
Irr(W ), as required. Thus, (4) holds.

"(4) ⇒ (1)" By Corollary 1.8, we necessarily have

χ := [C ] = [C ′ ] for all left cells C ,C ′ ⊆ C and then Irr C (W ) = {χ}. Now we show the remaining equivalences. "(1) ⇔ (5)" Let | Irr C (W )| = n ≥ 1 and write Irr C (W ) = {χ 1 , . . . , χ n }.
Then, as noted in Definition 1.5, we have

|C| = χ 1 (1) 2 + • • • + χ n (1) 2 .
On the other hand, it easily follows from Proposition 1.6 that [START_REF] Geck | Kazhdan-Lusztig cells and the Frobenius-Schur indicator[END_REF]Cor. 3.12], Hence, we have

|C (2) | = χ 1 (1)+• • •+χ n (1); see [
|C (2) | 2 = χ 1 (1) + • • • + χ n (1) 2 , which implies that |C| = |C (2) | 2 if and only if n = 1. "(4) ⇔ (6)"
Recall that, by Lusztig's Conjecture P13, every left cell contains a unique element of ; furthermore, by P6, we have d 2 = 1 for all d ∈ . So the equivalence immediately follows from Proposition 1.6.

Example 2.8. -Assume that we are in the equal parameter case where ϕ is constant. In this case, it is known that Lusztig's Conjectures P's for (W,S, ϕ) hold; see [START_REF] Lusztig | Cells in affine Weyl groups[END_REF], [START_REF] Lusztig | Hecke algebras with unequal parameters[END_REF]Chap. 15] (for Weyl groups) and [Du] (for the remaining types).

Note that "smooth" two-sided cells actually occur quite often in this case. For example, assume that (W,S) is of type A n -1 where W = S n is the symmetric group. Then we are automatically in the equal parameter case and we have f χ = 1 for all χ ∈ Irr(W ); see, for example, [START_REF] Lusztig | Characters of reductive groups over a finite field[END_REF]5.16] and [START_REF] Geck | Characters of finite Coxeter groups and Iwahori-Hecke algebras[END_REF]9.4.5]. Hence, every two-sided cell in W is smooth in this case.

For further information, we give in Table 2.1 the number of smooth two-sided cells (equal parameter case) whenever |S| 8 and (W,S) is not of type A. To compute this table it suffices, by Lemma 2.7, to find all χ ∈ Irr(W ) such that f χ = 1, and this information is easily available from the tables in [LuB], [GePf, Appendix].

Example 2.9. -Let (W,S) be of type B n and write S = {t , s 1 , s 2 , . . . , s n -1 } in such a way that the Dynkin diagram of (W,S) is given as follows. 

Type of W | Cell LR (W )| | Cell smooth LR (W )| I 2 (m ) 3 2 B 3 6 4 B 4 10 
i i i • • • i t s 1 s 2 s n -1 We set ϕ(t ) = b and ϕ(s 1 ) = • • • = ϕ(s n -1 ) = a .
Then it follows from the computation of constructible characters in [START_REF] Lusztig | Hecke algebras with unequal parameters[END_REF]Proposition 22.25] that:

(a)

f χ = 1 for all χ ∈ Irr(W ) ⇐⇒ b ∈ {a , 2a , . . . , (n -1)a }.
Hence, if Lusztig's Conjectures P's for (W,S, ϕ) hold, then Lemma 2.7 shows that all two-sided cells of W are smooth if and only if b ∈ {a , 2a , . . . , (n -1)a }. Without assuming that Lusztig's Conjectures P's for (W,S, ϕ) hold, the only known results are the following:

(b) All the two-sided cells in W are smooth if a = 2b or 3a = 2b or b > (n -1)a .
If a = 2b or 3a = 2b , then (b) follows essentially from [START_REF] Lusztig | Hecke algebras with unequal parameters[END_REF]§16] (see [START_REF] Bonnafé | On domino insertion and Kazhdan-Lusztig cells in type B n , Representation theory of algebraic groups and quantum groups[END_REF]Theorem 3.14] for some explanation). If b > (n -1)a , then (b) follows from [START_REF] Bonnafé | Left cells in type B n with unequal parameters[END_REF]Theorem 7.7] and [Bon1, Theorem 3.5 and Corollary 5.2].

A basic identity

Hypothesis. Throughout this section we assume that Lusztig's Conjectures P's hold for (W,S, ϕ).

The main result of this section is the following basic identity, which links cells and involutions through the leading coefficients of character values.

Lemma 3.1 (The (C,C , )-identity). -Let C be a two-sided cell and C a left cell contained in C. Let be a union of conjugacy classes of involutions in W . Then

〈[C ], χ〉 W w ∈ ∩C c w,χ = χ(1) w ∈ ∩C c w,χ for all χ ∈ Irr(W ).
Proof. -Let Z( ) be the centre of . We denote by

ω χ : Z( ) → A the central character associated with χ ϕ : if z ∈ Z( ), then ω χ (z ) = χ ϕ (z )/χ(1)
. Now consider the central element

T ǫ = w ∈ (-1) ℓ(w ) T w (see Remark 1.3).
The desired identity will be obtained by evaluating χ ϕ on T ǫ T d , where d is the unique element of contained in C (see Lusztig's Conjecture P13). First note that, if χ ∈ Irr C (W ), then both sides of the identity are zero; see Corollary 2.2.

We can now assume that χ ∈ Irr C (W ). Since T ǫ ∈ Z( ), we have

χ(T ǫ ) = χ(1)ω χ (T ǫ ) and χ(T ǫ T d ) = ω χ (T ǫ )χ(T d ). Furthermore, v a χ χ(T ǫ ) = w ∈ v a χ (-1) ℓ(w ) χ(T w ) ≡ w ∈ c w,χ mod A >0 .
It follows that

v 2a χ χ(1)χ(T ǫ T d ) ≡ v a χ χ(T ǫ ) v a χ χ(T d ) ≡ (-1) ℓ(d ) w ∈ c w,χ c d ,χ mod A >0 .
Now, by Proposition 2.5, we have

c d ,χ = n d 〈[C ], χ〉 W . Thus, we obtain v 2a χ χ(1)χ(T ǫ T d ) ≡ (-1) ℓ(d ) n d 〈[C ], χ〉 W w ∈ c w,χ mod A >0 .
The summation on the right hand side can be taken over all w ∈ ∩ C (instead of w ∈ ) since c w,χ = 0 unless w ∈ C; see Corollary 2.2. Next we re-write T ǫ T d using the Kazhdan-Lusztig basis. For any w ∈ W , we have T w ≡ (-1) ℓ(w ) c † w mod >0 ; see Remark 1.4. This yields

T ǫ T d = w ∈ (-1) ℓ(w ) T w T d ∈ w ∈W (c † w + >0 )((-1) ℓ(d ) c † d + >0 ) ⊆ w ∈ (-1) ℓ(d ) c † w c † d + >0 ≥0 + ≥0 >0 .
We certainly have v a χ χ(h) ∈ A ≥0 for any h ∈ ≥0 and v a χ χ(h) ∈ A >0 for any h ∈ >0 . Hence, we obtain

v 2a χ χ(T ǫ T d ) ≡ (-1) ℓ(d ) w ∈ v 2a χ χ c † w c † d mod A >0 .
We now look at the term χ(c † w c † d ) (for w ∈ ) in more detail. Following Lusztig's notation in [START_REF] Lusztig | Hecke algebras with unequal parameters[END_REF]§13], we set for x , y ∈ W ,

c x c y = z ∈W h x ,y ,z c z where h x ,y ,z ∈ A. Furthermore, if z ∈ W , we define a(z ) = max{deg(h x ,y ,z ) | x , y ∈ W }. Let us now consider v 2a χ χ(c † w c † d ) = x ∈W v a χ h w,d ,x v a χ χ(c † x ) .
Let x ∈ W be such that h w,d ,x = 0 and χ(c † x ) = 0. Since Lusztig's Conjecture P4 holds, the first condition implies that a(d ) ≤ a(x ). By [Ge4, Lemma 3.5], the second condition implies that a(x ) ≤ a χ . (Note that the function ã (w ) in [START_REF] Geck | On Iwahori-Hecke algebras with unequal parameters and Lusztig's isomorphism theorem, Jacques Tits special issue[END_REF]3.5] agrees with a(w ) by [START_REF] Geck | On Iwahori-Hecke algebras with unequal parameters and Lusztig's isomorphism theorem, Jacques Tits special issue[END_REF]Prop. 3.6 and Rem. 4.2].) On the other hand, since χ ∈ Irr C (W ), we have a χ = a(d ); see [START_REF] Lusztig | Hecke algebras with unequal parameters[END_REF]Proposition 20.6]. Thus, we must have a(d ) = a(x ) = a χ . Furthermore, since h w,d ,x = 0 and a(d ) = a(x ), we can now even conclude that x ∈ C , by Lusztig's Conjecture P9. Thus, we obtain

v 2a χ χ(c † w c † d ) = x ∈C v a(x ) h w,d ,x v a χ χ(c † x ) .
Now, by Remark 1.4, we have v a χ χ ϕ (c † w ) ≡ c w,χ mod A >0 . Hence, taking constant terms in the above identity, we obtain

v 2a χ χ(c † w c † d ) ≡ x ∈C γ w,d ,x -1 c x ,χ mod A >0 ;
here, we denote by γ w,d ,x -1 the constant term of v a(x ) h w,d ,x , as in [START_REF] Lusztig | Hecke algebras with unequal parameters[END_REF]13.6]. By Lusztig's Conjectures P2, P5 and P7, we have

γ w,d ,x -1 = n d if x = w , 0 otherwise. We conclude that v 2a χ χ(c † w c † d ) ≡ δ w ∈C n d c w,χ mod A >0 and so v 2a χ χ(T ǫ T d ) ≡ (-1) ℓ(d ) w ∈ v 2a χ χ c † w c † d ≡ (-1) ℓ(d ) n d w ∈ δ w ∈C n d c w,χ ≡ (-1) ℓ(d ) n d w ∈ ∩C c w,χ mod A >0 .
Comparing with our earlier expression for v 2a χ χ(1)χ(T ǫ T d ) mod A >0 yields the desired identity.

Example 3.2. -Let C be a two-sided cell which is "smooth", that is, we have

Irr C (W ) = {χ}
for some χ ∈ Irr(W ).

Let d ∈ C ∩ and a union of conjugacy classes of involutions in W . Let C be the left cell containing d . Then we claim that the (C,C , )-identity in Lemma 3.1 reduces to:

w ∈ ∩C c w,χ = χ(1)n d if d ∈ , 0 otherwise.
Indeed, by Lemma 2.7 and Corollary 2.2, we have

[C ] ∈ Irr C (W ) and so χ = [C ].
This yields the left hand side. On the other hand, by Proposition 2.5, we have 

c d ,χ = n d 〈[C ], χ〉 W = 1.
w ∈ ∩C c w,χ = χ(1)n d 1 = 0 (since d 1 ∈ ).
Similarly, for any i ≥ 2, we have

w ∈ ∩C c w,χ = χ(1)n d i if d i ∈ , 0 otherwise.
Since the left hand side is non-zero, we conclude that d i ∈ , as claimed.

Example 3.4. -Let W = S n be of type A n -1 with generators given by the basic transpositions

s i = (i , i + 1) for 1 ≤ i ≤ n -1.
Then, as already mentioned in Example 2.8, all the two-sided cells in W are smooth and so we now recover a known result of Schützenberger [Sch] in this case. An elementary proof that Lusztig's Conjectures P's for (W,S, ϕ) hold is given in [START_REF] Geck | Kazhdan-Lusztig cells and the Murphy basis[END_REF] (see also [START_REF] Geck | Representations of Hecke a lgebras at roots of unity[END_REF]§2.8]). We can now also explicitly determine the conjugacy class of involutions associated with a twosided cell. Indeed, it is well-known that the irreducible characters of W = S n have a natural labelling by the partitions of n ; we write this in the form

Irr(S n ) = {χ α | α ⊢ n }.
For example, χ (n ) is the trivial character and χ (1 n ) is the sign character. For α ⊢ n , let C α be the unique two-sided cell such that χ α ∈ Irr C α (S n ). Since every two-sided cell is smooth, the sets {C α | α ⊢ n } are precisely the two-sided cells of S n . Given α ⊢ n , let α be the unique conjugacy class of involutions such that α ∩ C α = ∅.

Let α * denote the transpose partition and w α * be the longest element in the Young subgroup S α * ⊆ S n . Then it is well-known that

Ind S n S α * (ǫ α * ), χ α S n = 1
where ǫ α * = sign character of S α * .

Using the formula for a χ α in [START_REF] Lusztig | Characters of reductive groups over a finite field[END_REF]4.4], one also sees that a χ α = ℓ(w α * ). Hence, by Example 2.3, we have w α * ∈ C α and so α = conjugacy class containing w α * . The discussion of this example will be continued in Example 4.10.

Example 3.5. -Assume that (W,S) if of type B n , as in Example 2.9. Let b > (n -1)a . Then the fact that all the involutions contained in a two-sided cell are conjugate can be proved directly from the combinatorial description given in [START_REF] Bonnafé | Left cells in type B n with unequal parameters[END_REF]Theorem 7.7] and [Bon1, Theorem 3.5 and Corollary 5.2], by using Schützenberger's result for the symmetric group [Sch]. Also, for more general values of a ,b , a conjectural description of left, right and two-sided cells is provided by [BGIL, Conjectures A + and B]: it would be interesting to see if the conjecture we have stated in the introduction is compatible with this conjectural combinatorial construction.

Remark 3.6. -If W is of type F 4 or I 2 (m ) and ϕ is a general weight function, then Lusztig's Conjectures P's for (W,S, ϕ) are known to hold; see [START_REF] Geck | On Iwahori-Hecke algebras with unequal parameters and Lusztig's isomorphism theorem, Jacques Tits special issue[END_REF]§5]. In these cases, using the explicit knowledge of the cells and the classes of involutions (see [START_REF] Geck | Computing Kazhdan-Lusztig cells for unequal parameters[END_REF] for type F 4 and [START_REF] Lusztig | Hecke algebras with unequal parameters[END_REF]§8] for type I 2 (m )), one can directly check that, if C and C ′ are two left cells contained in the same two-sided cell, then 2 (C ) = 2 (C ′ ). This provides some support for the general conjecture stated in the introduction.

The equal parameter case

Hypothesis. From now until the end of this paper, we assume that we are in equal parameter case where Γ = and ϕ(s ) = 1 for all s ∈ S.

Under this hypothesis, as already mentioned in Example 2.8, it is known that Lusztig's Conjectures P's for (W,S, ϕ) hold. One further distinctive feature of this case is the existence of special characters. For χ ∈ Irr(W ), let b χ denote the smallest integer i ≥ 0 such that χ occurs in the i th symmetric power of the standard reflection representation of W . Then, following Lusztig [START_REF] Lusztig | Characters of reductive groups over a finite field[END_REF]4.1]

, χ is called special if a χ = b χ . Let (W ) := {χ ∈ Irr(W ) | a χ = b χ } be the set of special characters of W . It is known that (♦ 1 ) | (W ) ∩ Irr C (W )| = 1
for every two-sided cell of W . This is seen as follows. Consider the partition of Irr(W ) in terms of "families", as defined in [START_REF] Lusztig | Characters of reductive groups over a finite field[END_REF]4.2]. (The same definition also works for groups of noncrystallographic type; see [START_REF] Geck | Characters of finite Coxeter groups and Iwahori-Hecke algebras[END_REF]§6.5].) By [START_REF] Lusztig | Characters of reductive groups over a finite field[END_REF]4.14], every such family contains a unique special character (and this also holds for non-crystallographic types; see [START_REF] Geck | Characters of finite Coxeter groups and Iwahori-Hecke algebras[END_REF]§6.5]). Hence, (♦ 1 ) follows from the known fact that the partition of Irr(W ) into families coincides with the partition in Definition 1.5. For Weyl groups, this appeared in [START_REF] Lusztig | Characters of reductive groups over a finite field[END_REF]Theorem 5.25]. A different argument based on certain "positivity" properties of the Kazhdan-Lusztig basis is given in [START_REF] Lusztig | Hecke algebras with unequal parameters[END_REF]Prop. 23.3]; the same argument also works for the non-crystallographic types, where the analogous "positivity" properties are known by explicit computation; see Alvis [Al], DuCloux [Du]. Now let C be a two-sided cell. Then, if χ denotes the unique character in (W ) ∩

Irr C (W ), we have (♦ 2 ) (-1) a χ +ℓ(w ) c w,χ > 0 for all w ∈ C ∩ C -1 ,
where C is any left cell contained in C. This holds by [START_REF] Lusztig | Leading coefficients of character values of Hecke algebras[END_REF]Prop. 3.14] for Weyl groups and by [START_REF] Geck | PyCox: Computing with (finite) Coxeter groups and Iwahori-Hecke algebras[END_REF]Rem. 5.12] for the remaining types. Note that, in the notation of [START_REF] Lusztig | Leading coefficients of character values of Hecke algebras[END_REF]§3], the special character χ corresponds to the pair (1, 1) ∈ (G C ) where G C is the finite group associated with C (see also [START_REF] Lusztig | Characters of reductive groups over a finite field[END_REF]4.14.2]). The factor (-1) a χ +ℓ(w ) comes from the identity [START_REF] Lusztig | Leading coefficients of character values of Hecke algebras[END_REF]3.5(a)] which relates the leading coefficients to the characters of Lusztig's asymptotic algebra J .

Proposition 4.1. -Recall our assumption that we are in the equal parameter case. Let C be a two-sided cell and C ,C ′ be left cells of W which are contained in C. Let be a conjugacy class of involutions in W . Then

∩ C = ∅ if and only if ∩ C ′ = ∅.
In particular, we have

2 (C ) = 2 (C ′ ).
Proof. -We consider the (C,C , )-identity in Lemma 3.1 with respect to the unique special character χ ∈ (W )∩ Irr C (W ). Since the sign character of W is constant on , we can write this identity in the form:

〈[C ], χ〉 W w ∈ ∩C (-1) ℓ(w ) c w,χ = χ(1) w ∈ ∩C (-1) ℓ(w ) c w,χ .
Multiplying both sides by (-1) a χ , we obtain:

〈[C ], χ〉 W w ∈ ∩C (-1) a χ +ℓ(w ) c w,χ = χ(1) w ∈ ∩C (-1) a χ +ℓ(w ) c w,χ .
By (♦ 2 ), we have c d ,χ = 0 and so 〈[C ], χ〉 W = 0; see Proposition 2.5. Thus, we obtain

w ∈ ∩C (-1) a χ +ℓ(w ) c w,χ = χ(1) 〈[C ], χ〉 W w ∈ ∩C (-1) a χ +ℓ(w ) c w,χ .
Let us denote by Υ( ,C ) the expression on the right hand side of this identity. Since the left hand side does not depend on C , we have Υ( ,C ) = Υ( ,C ′ ). Consequently, we have

w ∈ ∩C (-1) a χc +ℓ(w ) c w,χ = 0 ⇐⇒ w ∈ ∩C ′ (-1) a χc +ℓ(w ) c w,χ = 0.
Finally, by (♦ 2 ), we have

(-1) a χ +ℓ(w ) c w,χ > 0
for all w ∈ ∩ C and for all w ∈ ∩ C ′ .

Thus, the left hand side of the above equivalence is non-zero if and only if ∩C = ∅, and, similarly, the right left hand side is non-zero if and only if

∩ C ′ = ∅.
Definition 4.2. -A character χ ∈ Irr(W ) is called exceptional if there exists some w ∈ W such that c w,χ = 0 and a χ ≡ ℓ(w ) mod 2.

Remark 4.3. -One easily checks that there is a well-defined ring homomorphism α: → such that α(v ) = -v and α(r ) = r for all r ∈ and α(T w ) = (-1) ℓ(w ) T w for all

w ∈ W . (See Lusztig [Lu2, 3.2].) Now, for χ ∈ Irr(W ), we have χ ϕ (T w ) ∈ [v, v -1 ] for all w ∈ W .
Composing the action of on a representation affording χ ϕ with α, we see that there is a well-defined χ ∈ Irr(W ) such that

χϕ (T w ) = (-1) ℓ(w ) χ ϕ (T w ) v →-v for all w ∈ W .
By the definition of a χ and c w,χ , this implies that

a χ = a χ and c w, χ = c * w,χ for all w ∈ W .
Thus, χ is exceptional if and only if χ = χ. Using Corollary 2.2 we see that, for a two-sided cell C of W , we have

χ ∈ Irr (W ) ⇐⇒ χ ∈ Irr C (W ).
Note that there do exist cases for which χ = χ. For example, let (W,S) be of type E 7 . Then, by [START_REF] Lusztig | Characters of reductive groups over a finite field[END_REF]5.22.2], there exists an involution x ∈ W such that c x ,χ = 0 and a χ ≡ ℓ(x ) mod 2 for the special character denoted χ = 512 ′ a . In type E 8 , examples are given by the special characters 4096 z and 4096 ′

x ; see [START_REF] Lusztig | Characters of reductive groups over a finite field[END_REF]5.23 ) The degree of such an exceptional character is a power of 2; furthermore, we have v ℓ(w 0 ) χ(T w 0 ) ∈ [v 2 ] where w 0 ∈ W is the longest element. In particular, if (W,S) is of classical type, then all χ ∈ Irr(W ) are non-exceptional.

Example 4.5. -Assume that (W,S) is irreducible and of classical type. (Also recall that we are in the equal parameter case). Let C,C , be as in Lemma 3.1. Let χ ∈ (W ) be the unique special character in Irr C (W ). Then we claim that

| ∩ C| = χ(1)| ∩ C |.
This is seen as follows. As already noted in the proof of Proposition 4.1, we have [START_REF] Lusztig | Characters of reductive groups over a finite field[END_REF]12.13], every left cell module for W is multiplicity-free and so 〈[C ], χ〉 W = 1. Consequently, the (C,C , )-identity in Lemma 3.1 reduces to: In particular, the equality | ∩ C| = χ(1)| ∩ C | shows that the cardinality | ∩ C | does not depend on C . This phenomenon is related to a conjecture of Kottwitz [Ko], which we shall now explain. [LuVo], [START_REF] Lusztig | A bar operator for involutions in a Coxeter group[END_REF]). -Let be a union of conjugacy classes of involutions in W . Let V be an -vector space with a basis {a w | w ∈ }. Then, by [START_REF] Lusztig | Hecke algebras and involutions in Weyl groups[END_REF]6.3] and [START_REF] Lusztig | A bar operator for involutions in a Coxeter group[END_REF], there is a linear action of W on V such that, for any s ∈ S and w ∈ , we have Let ρ denote the character of this representation of W on V .

〈[C ], χ〉 W = 0. By
w ∈ ∩C c w,χ = χ(1) w ∈ ∩C c w,χ .

So it remains to show that

Definition 4.6 ([Ko],

Conjecture 4.7 (Kottwitz [START_REF] Kottwitz | Involutions in Weyl groups[END_REF]§1]). -Let be a union of conjugacy classes of involutions and C be a left cell of W . Then 〈ρ ,

[C ]〉 W = | ∩ C |.
Remark 4.8. -The fact that ρ indeed is equal to the character originally constructed in [Ko] is shown in [START_REF] Geck | Frobenius-Schur indicators of unipotent characters and the twisted involution module[END_REF]Rem. 2.2]. Note also that, if = 1 ∐ . . . ∐ r is the partition of into conjugacy classes, then we certainly have

ρ = ρ 1 + • • • + ρ r .
Hence, it is sufficient to prove the above conjecture for the case where is a single conjugacy class of involutions.

A strong support is provided by the following general result.

Theorem 4.9 (Marberg [START_REF] Marberg | How to compute the Frobenius-Schur indicator of a unipotent character of a finite Coxeter system[END_REF]1.7]). -Let I denote the set of all involutions in W . Then

〈ρ I , [C ]〉 W = |I ∩ C | for every left cell C in W .
Already Kottwitz [Ko] showed that his conjecture holds in type A n -1 ; see Example 4.10 below. The aim of the following three sections is to deal with types B n and D n ; see Theorems 6.3 and 7.6. This will rely in an essential way on the above identity in Example 4.5. As far as the exceptional types are concerned, Casselman [Ca] has verified the conjecture by explicit computation for F 4 and E 6 ; in [START_REF] Geck | PyCox: Computing with (finite) Coxeter groups and Iwahori-Hecke algebras[END_REF], this is extended to E 7 . Marberg [Ma] verified the conjecture for the non-crystallographic types H 3 , H 4 , I 2 (m ). Thus, the only remaining case is type E 8 , which is currently being considered by A. Halls at the University of Aberdeen.

Example 4.10. -Let W = S n be of type A n -1 with generators given by the basic transpositions s i = (i , i + 1) for 1 ≤ i ≤ n -1. A complete set of representatives of the conjugacy classes of involutions is given by the elements

σ j := s 1 s 3 • • • s 2j -1 ∈ S n where 0 ≤ 2j ≤ n .
(Thus, σ j is the product of j disjoint transpositions and σ j has precisely n -2j fixed points on {1, . . . , n }.) Note that σ j has minimal length in its conjugacy class; see [START_REF] Geck | Characters of finite Coxeter groups and Iwahori-Hecke algebras[END_REF]3.1.16]. Let j be the conjugacy class containing σ j and write ρ j = ρ j . As in Example 3.4, we write

Irr(S n ) = {χ α | α ⊢ n }.
Then, by [START_REF] Kottwitz | Involutions in Weyl groups[END_REF]3.1], we have (a)

〈ρ j , χ α 〉 S n = δ n -2j =t ,
where t is the number of odd parts of the conjugate partition α * . In particular, if I denotes the set of all involutions in S n , then

ρ I = j ρ j = α⊢n χ α .
For later reference, we explicitly note the following special case of (a). Let α = (1 n ); then χ α = ǫ is the sign character of S n . Then (a) yields:

(b)

〈ρ j , ǫ〉 S n = 1 if j = ⌊n /2⌋, 0 otherwise.
We have now all ingredients in place to verify that Kottwitz' Conjecture holds. Indeed, first note that the longest element in S n has precisely one fixed point on 

〈ρ , χ α 〉 S n = 1 if w α * ∈ , 0 otherwise.
Comparison with Example 3.4 now shows that Conjecture 4.7 holds in this case.

An inductive approach to Kottwitz' Conjecture

We keep the basic assumptions of the previous section. The results in this section will provide some ingredients for an inductive proof of Kottwitz' Conjecture 4.7.

Let C be a two-sided cell of W . We shall say that "Kottwitz' Conjecture holds for C" if, for any conjugacy class of involutions in W , we have

〈ρ , [C ]〉 W = | ∩ C | for all left cells C ⊆ C.
Remark 5.1. -Let w 0 ∈ W be the longest element. Let C be a left cell of W . Then, by [START_REF] Lusztig | Characters of reductive groups over a finite field[END_REF]5.14], the set C w 0 also is a left cell and we have

[C w 0 ] = [C ] ⊗ ǫ where ǫ = sign character of W .
Now let C be a two-sided cell. Then Cw 0 also is a two-sided cell and we have

Irr Cw 0 (W ) = Irr C (W ) ⊗ ǫ := {χ ⊗ ǫ | χ ∈ Irr C (W )}.
Lemma 5.2. -Assume that the longest element w 0 ∈ W is central in W . Let be a union of conjugacy classes of involutions in W . Then w 0 also is a union of conjugacy classes of involutions and we have ρ w 0 = ρ ⊗ ǫ.

Proof. -It is sufficient to prove this in the case where is a single conjugacy class. Let l 0 := min{ℓ(w ) | w ∈ }. Then ℓ(w )-l 0 is even for every w ∈ . So, for any w ∈ , there is a well-defined integer m (w ) such that ℓ(w )l 0 = 2m (w ). Now we perform a change of basis in V : we set a ′ w := (-1) m (w ) a w for w ∈ . Then the action of W on V is given by the following formulae, where s ∈ S and w ∈ :

s .a ′ w =    -a ′ w if s w = w s and ℓ(s w ) < ℓ(w ), a ′ w if s w = w s and ℓ(s w ) > ℓ(w ), -a ′ s w s otherwise (that is, if s w = w s ).
Note that, since w ∈ is an involution, we have ℓ(s w ) > ℓ(w ) if and only if ℓ(w s ) > ℓ(w ); hence, if s w = w s , then ℓ(s w s ) = ℓ(w ) ± 2 (see [START_REF] Geck | Characters of finite Coxeter groups and Iwahori-Hecke algebras[END_REF]1.2.6]) and so a ′ s w s = -a ′ w . Furthermore, it is well-kwown that ℓ(y w 0 ) = ℓ(w 0 )ℓ(y ) for every y ∈ W . Hence, we can also write the above formulae in the following form:

s .a ′ w =    a ′ w if s w w 0 = w w 0 s and ℓ(s w w 0 ) < ℓ(w w 0 ), -a ′ w if s w w 0 = w w 0 s and ℓ(s w w 0 ) > ℓ(w w 0 ), -a ′ w otherwise.
Tensoring with ǫ, we see that we obtain exactly the same formulae as for the action of W on V w 0 . -Let C be a two-sided cell in W . We say that C is strongly non-cuspidal if there exists a proper standard parabolic subgroup W ′ W and a two-sided cell C ′ in W ′ such that the "truncated induction" J W W ′ (as defined in [START_REF] Lusztig | Characters of reductive groups over a finite field[END_REF]4.1.7]) establishes a bijection

Irr C ′ (W ′ ) → Irr C (W ), χ ′ → J W W ′ (χ ′ ).
We say that C is non-cuspidal if C or Cw 0 is strongly cuspidal (where w 0 ∈ W is the longest element). Finally, we say that C is cuspidal if C is not non-cuspidal.

(Note that, in [START_REF] Lusztig | Characters of reductive groups over a finite field[END_REF]8.1], the formulation is in terms of "families" of Irr(W ); however, as already mentioned at the beginning of Section 4, it is known that the sets Irr C (W ) are precisely the "families" of Irr(W ).)

Remark 5.5. -Let C be a two-sided cell in W and assume that C is strongly noncuspidal. Let W ′ , C ′ be as in Definition 5.4. Let

χ = J W W ′ (χ ′ ) ∈ Irr C (W )
where

χ ′ ∈ Irr C ′ (W ′ ).
By the definition of the truncated induction, we have a χ = a χ ′ . Using [START_REF] Lusztig | Characters of reductive groups over a finite field[END_REF]4.1.6], one easily sees that also

f χ ′ = f χ ′ . In particular, C is smooth if and only if C ′ is smooth (see Lemma 2.7).
Lemma 5.6. -Let C be a strongly non-cuspidal two-sided cell in W . Let W ′ , C ′ be as in Definition 5.4. Then Kottwitz's Conjecture holds for C if the following three conditions are satisfied.

(K1) For any conjugacy class of involutions in W and any left cells

C 1 ,C 2 ⊆ C such that [C 1 ] = [C 2 ], we have | ∩ C 1 | = | ∩ C 2 |. (K2) Kottwitz's Conjecture holds for the two-sided cell C ′ in W ′ . (K3) For any conjugacy class of involutions in W such that ∩ W ′ = ∅, we have 〈ρ ∩W ′ , χ ′ 〉 W ′ ≤ ρ , J W W ′ (χ ′ ) W for all χ ′ ∈ Irr C ′ (W ′ ).
Proof.

-Let be any conjugacy class of involutions in W . First we show that [START_REF] Lusztig | Sur les cellules gauches des groupes de Weyl[END_REF]§3] (see also [START_REF] Geck | Left cells and constructible representations[END_REF]Lemma 5.6]), there exists a left cell

( * ) 〈ρ , [C ]〉 W ≥ | ∩ C | for all left cells C ⊆ C. Indeed, let C be a left cell of W which is contained in C. If ∩ C = ∅, then ( * ) is obvious. Now assume that ∩ C = ∅. By [
C ′ of W ′ which is contained in C ′ and such that [C ] = J W W ′ ([C ′ ]).

So we have

〈ρ , [C ]〉 W = 〈ρ , J W W ′ ([C ′ ])〉 W .
Using now (K2) and (K3), we obtain

〈ρ , J W W ′ ([C ′ ])〉 W ≥ 〈ρ ∩W ′ , [C ′ ]〉 W ′ = |( ∩ W ′ ) ∩ C ′ | = | ∩ C ′ |.
On the other hand, let C 1 be the left cell of W such that C ′ ⊆ C 1 . Then we also have

[C 1 ] = J W W ′ ([C ′ ])
; see [START_REF] Lusztig | Characters of reductive groups over a finite field[END_REF]5.28] (or the argument in the proof of Case 1 in [START_REF] Lusztig | Hecke algebras with unequal parameters[END_REF]Lemma 22.2]). Now, since

[C 1 ] = J W W ′ ([C ′ ]
) and since J W W ′ establishes a bijection between Irr C ′ (W ) and Irr C (W ), we conclude that [C ′ ] and [C 1 ] have the same number of irreducible constituents (counting multiplicities). Hence, by Proposition 1.6, C ′ and C 1 contain the same number of involutions. Consequently, since C ′ ⊆ C 1 , all the involutions in C 1 must be contained in C ′ and so

∩ C ′ = ∩ C 1 . In particular, this shows that | ∩ C ′ | = | ∩ C 1 | = | ∩ C |,
where the second equality holds by (K1). Thus, ( * ) is proved. Once this is established, it actually follows that we must have equality in ( * ). Indeed, let 1 , . . . , m be the conjugacy classes of involutions in W ; then I = 1 ∪ . . . ∪ m is the set of all involutions in W . By ( * ), we have

〈ρ I , [C ]〉 W = 1≤i ≤m 〈ρ i , [C ]〉 W ≥ 1≤i ≤m | i ∩ C | = |I ∩ C |.
However, by Theorem 4.9, we know that the left hand side equals the right hand side. Hence, all the inequalities in ( * ) must be equalities, as claimed. Thus, Kottwitz's Conjecture holds for C.

Remark 5.7. -We note that an analogous version of the inequality in (K3) always holds where

J W W ′ (χ ′ ) is replaced by Ind W W ′ (χ ′ ).
In fact, for any parabolic subgroup W ′ ⊆ W and any conjugacy of involutions in W such that ′ ∩ W ′ = ∅, we have

〈ρ ∩W ′ , χ ′ 〉 W ′ ≤ ρ , Ind W W ′ (χ ′ ) W for all χ ′ ∈ Irr(W ′ ).
This is seen as follows. Let V be as in Definition 4.6. From the formulae for the action of W on V , it is clear that the subspace U ⊆ V spanned by the basis elements

{a w | w ∈ ∩ W ′ } is a W ′ -submodule. Furthermore, the character of this W ′ -module is just ρ ∩W ′ . Thus, we can write Res W W ′ (ρ ) = ρ ∩W ′ + ψ for some character ψ of W ′ . This yields that 〈ρ ′ ∩W ′ , χ ′ 〉 W ′ ≤ 〈Res W W ′ (ρ ), χ ′ 〉 W ′ for all χ ′ ∈ Irr(W ′ )
and so the assertion immediately follows by Frobenius reciprocity.

Lemma 5.8. -Let W ′ ⊆ W be a standard parabolic subgroup and ′ be a conjugacy class of involutions in W ′ . Let be the conjugacy class of W such that ′ ⊆ . Then

ρ , χ W ≤ Ind W W ′ (ρ ′ ), χ W for all χ ∈ Irr(W ).
Proof. -We can find a representative σ ∈ ′ such that σ is the longest element in a standard parabolic subgroup W ′′ ⊆ W ′ and such that σ is central in W ′′ ; see [START_REF] Geck | Characters of finite Coxeter groups and Iwahori-Hecke algebras[END_REF]3.2.10]. Then, by Kottwitz' original construction in [Ko], we have

ρ = Ind W C W (σ) (ǫ σ )
and

ρ ′ = Ind W ′ C W ′ (σ) (ǫ ′ σ ),
where ǫ σ : C W (σ) → {±1} and ǫ ′ σ : C w ′ (σ) → {±1} are certain linear characters. To describe these characters explicitly, let Φ be the root system of W ; let Φ = Φ + ∐ Φ -be the decomposition into positive and negative roots (defined by the given set of generators S of W ). Let Φ ′′ be the parabolic subsystem defined by W ′′ . Then, for any w ∈ C W (σ), we have ǫ σ (w ) = (-1) k where k is the number of positive roots in Φ ′′ which are sent to negative roots by w (see also [START_REF] Geck | Frobenius-Schur indicators of unipotent characters and the twisted involution module[END_REF]Rem. 2.2]). The definition of ǫ ′ σ is analogous. By this description, it is clear that ǫ ′ σ is the restriction of ǫ σ to W ′ . Hence, we can write

Ind C W (σ) C W ′ (σ) (ǫ ′ σ ) = ǫ σ + ψ
for some character ψ of C W (σ). By the transitivity of induction, this yields

Ind W W ′ (ρ ′ ) = Ind W C W ′ (σ) (ǫ ′ σ ) = Ind W C W (σ) ǫ σ + ψ = ρ + Ind W C W (σ) (ψ),
which immediately implies the assertion.

Kottwitz' Conjecture for type B n

Throughout this section, let W = W n be of type B n with generators t , s 1 , . . . , s n -1 and diagram given as follows.

i i i • • • i t s 1 s 2 s n -1
The aim of this section is to prove that Conjecture 4.7 holds for W n . For this purpose, we first need to recall some results from [Ko] concerning the decomposition of the character ρ into irreducibles.

Example 6.1. -A complete set of representatives of the conjugacy classes of involutions in W n is given as follows. Let l , j be non-negative integers such that l + 2j ≤ n . Then set

σ l ,j := t 1 • • • t l s l +1 s l +3 • • • s l +2j -1 ∈ W n ,
where t 1 := t and t i := s i -1 t i -1 s s -i for 2 ≤ i ≤ n . Note that σ l ,j is the longest element in a parabolic subgroup of W n of type B l ×A 1 ×. . .×A 1 , where the A 1 factor is repeated j times. In particular, σ l ,j has minimal length in its conjugacy class; see also [START_REF] Geck | Characters of finite Coxeter groups and Iwahori-Hecke algebras[END_REF]3.2.10]. Let l ,j be the conjugacy class containing σ l ,j and write ρ l ,j = ρ l ,j . The irreducible characters of W n are parametrised by pairs of partitions (α, β ) such that

|α| + |β | = n .
We write this as

Irr(W n ) = {χ (α,β ) | (α, β ) ⊢ n }.
Now let χ ∈ Irr(W ). We associate with χ two invariants d (χ) and j 0 (χ), as follows.

Let (α, β ) ⊢ n be such that χ = χ (α,β ) . Choose m ≥ 0 such that we can write

α = (0 ≤ α 1 ≤ α 2 ≤ . . . ≤ α m +1 )
and

β = (0 ≤ β 1 ≤ β 2 ≤ . . . ≤ β m ).
As in [START_REF] Lusztig | Characters of reductive groups over a finite field[END_REF]§4.5], we have a corresponding "symbol"

Λ m (χ) := λ 1 , λ 2 , . . . , λ m +1 µ 1 , µ 2 , . . . , µ m
where

λ i := α + i -1 for 1 ≤ i ≤ m + 1 and µ i = β i + i -1 for 1 ≤ i ≤ m . We set d (χ) := number of i ∈ {1, . . . , m } such that µ i ∈ {λ 1 , λ 2 , . . . , λ m +1 }, j 0 (χ) := 1≤i ≤m min{α i +1 , β i }.
(Note that these definitions do not depend on the choice of m .) By [START_REF] Lusztig | Hecke algebras with unequal parameters[END_REF]22.14], we have f χ = 2 d (χ) ; furthermore, χ is special

⇐⇒ λ i ≤ µ i ≤ λ i +1 for 1 ≤ i ≤ m .
Now, by [START_REF] Kottwitz | Involutions in Weyl groups[END_REF](3.2.4)], the following hold:

(a) 〈ρ l ,j , χ〉 W n = 0 unless χ is special and

j + l = |β |. (b) If χ is special and j + l = |β |, then 〈ρ l ,j , χ〉 W n = d (χ) j 0 (χ) -j (binomial coefficient);
in particular, the multiplicity is zero unless j 0 (χ)d (χ) ≤ j ≤ j 0 (χ).

Consequently, if I denotes the set of all involutions in W n , then

ρ I = l ,j ρ l ,j = χ∈ (W n ) 2 d (χ) χ.
Remark 6.2. -By [START_REF] Lusztig | Characters of reductive groups over a finite field[END_REF]8.1], we have an explicit combinatorial description of the cuspidal and non-cuspidal two-sided cells in W n . Let us briefly recall the main points of this description. Let C be any two-sided cell and χ 0 ∈ Irr C (W n ) the unique special character. Let (α, β ) ⊢ n be such that χ 0 = χ (α,β ) . Write

α = (0 ≤ α 1 ≤ . . . ≤ α m +1 ) and β = (0 ≤ β 1 ≤ . . . ≤ β m )
for some m ≥ 0. Consider the corresponding symbol

Λ m (χ 0 ) = λ 1 , λ 2 , . . . , λ m +1 µ 1 , µ 2 , . . . , µ m ; see Example 6.1.
We assume that m is chosen such that 0 does not appear in both rows of Λ m (χ).

First of all, C is cuspidal if and only if n = d 2 + d for some d ≥ 1 and Λ m (χ 0 ) contains each of the numbers 0, 1, . . . , 2m exactly once. Now consider the general case. Let t 0 be the largest entry in Λ m (χ 0 ). Then C is strongly non-cuspidal if there is some i ∈ {0, 1, . . . , t 0 -1} which does not appear in any of the two rows of Λ m (χ 0 ). Let us now assume that this is the case. Then there exists a parabolic subgroup W ′ W n and a two-sided cell

C ′ of W ′ such that J W n W ′ establishes a bijection Irr C ′ (W ′ ) → Irr C (W n ), χ ′ → J W n W ′ (χ ′ ).
More precisely, as discussed in [START_REF] Lusztig | Characters of reductive groups over a finite field[END_REF]8.1], the subgroup W ′ and the two-sided cell C ′ can be chosen as follows, where χ ′ 0 ∈ Irr C ′ (W ′ ) is the unique special character.

(a) There exists some r ∈ {1, . . . , n } such that W ′ = W n -r × H r where W n -r = 〈t , s 1 , . . . , s n -r -1 〉 (of type B n -r ) and H r = 〈s n -r +1 , . . . , s n -1 〉 ∼ = S r . (b) We have χ ′ 0 = ψ 0 ⊠ ǫ r where ψ 0 ∈ Irr(W n -r ) is special and ǫ r denotes the sign character on H r ; furthermore, Λ m (χ 0 ) is obtained by increasing the largest r entries in the symbol Λ m (ψ 0 ) by 1. 

f χ 0 = 2 d (χ 0 ) and f ψ 0 = 2 d (ψ 0 )
. So the first equality follows from Remark 5.5. To see the second equality in (c), consider the symbol Λ m (χ 0 ). Since χ 0 is special, the largest r entries in Λ m (χ 0 ) are the last r terms in the sequence

λ 1 , µ 1 , λ 2 , µ 2 , . . . , λ m , µ m , λ m +1 .

Now consider the pair of partitions

(α ′ , β ′ ) ⊢ n -r such that ψ 0 = χ (α ′ ,β ′ ) ; we also write α ′ = (0 ≤ α ′ 1 ≤ . . . ≤ α ′ m +1 ) and β ′ = (0 ≤ β ′ 1 ≤ . . . ≤ β ′ m )
. By (b), the symbol Λ m (χ 0 ) is obtained by increasing the largest r entries in the symbol Λ m (ψ 0 ) by 1. Consequently, the sequence

α 1 , β 1 , α 2 , β 2 , . . . , α m , β m , α m +1 is obtained from the sequence α ′ 1 , β ′ 1 , α ′ 2 , β ′ 2 , . . . , α ′ m , β ′ m , α ′ m +1
by increasing the last r terms in the latter sequence by 1. This then immediately yields the statements about j 0 (χ 0 ) and |β |. Thus, (c) is proved.

Theorem 6.3. -Let W = W n be of type B n , as above. Let C be a two-sided cell of W n and χ 0 ∈ Irr C (W n ) be the unique special character. Let be a conjugacy class of involutions in Then

W n . Then 〈ρ , [C ]〉 W n = 〈ρ , χ 0 〉 W n = | ∩ C | for any left cell C ⊆ C.
χ 0 = J W W ′ (χ ′ 0 )
where

χ ′ 0 = ψ 0 ⊠ ǫ r .
Let C ′ be the two-sided cell of W ′ such that χ ′ 0 ∈ Irr C ′ (W ′ ). We now check that the assumptions (K1), (K2), (K3) in Lemma 5.6 are satisfied.

Assumption (K1) certainly holds by the identity in Example 4.5, while (K2) holds by our inductive hypothesis. Now consider (K3).

Let χ ′ ∈ Irr C ′ (W ′ ) and be a conjugacy class of involutions in W n such that

∩ W ′ = ∅. If 〈ρ ∩W ′ , χ ′ 〉 W ′ = 0, then the assertion is obvious. Now assume that 〈ρ ∩W ′ , χ ′ 〉 W ′ = 0. Then there is a conjugacy class of involutions ′ in W ′ such that (△) ′ ⊆ ∩ W ′ and 〈ρ ′ , χ ′ 〉 W ′ = 0.
(We shall see that ′ is uniquely determined with property.) Since W ′ is a direct product, we can write ′ as a direct product of a conjugacy class in W n -r and a conjugacy class in H r . Thus, using the notation in Examples 4.10 and 6.1, we have

′ = l ,j ′ × k where l , j ′ , k ≥ 0, l + 2j ′ ≤ n -r, 2k ≤ r ;
here, the class l ′ ,j ′ ⊆ W n -r has a representative σ l ,j ′ given by the expression in Example 6.1 and the class k ⊆ H r has a representative σ k as in Example 4.10. (Explicitly, we have σ k = s n -r +1 s n -r +3 • • • s n -r +2k -1 .) We note that σ l ,j ′ × σ k ∈ ′ is the longest element in a parabolic subgroup of W n of type B l × A 1 × . . . × A 1 , where the A 1 factor is repeated j ′ + k times. Hence, since ′ ⊆ , we must have = l ,j where j = j ′ + k . Now, we can also write χ ′ = ψ ⊠ ǫ r where ψ ∈ Irr(W n -r ). Then we obtain

〈ρ ′ , χ ′ 〉 W ′ = 〈ρ l ,j ′ , ψ〉 W n -r 〈ρ k , ǫ r 〉 H r ,
Since this is assumed to be non-zero, we conclude that

〈ρ l ,j ′ , ψ〉 W n -r = 0 and 〈ρ k , ǫ r 〉 H r = 0.
By Example 6.1, the first condition implies that ψ is special and, hence, χ ′ is special. Thus, we must have χ ′ = χ ′ 0 and ψ = ψ 0 . By Example 4.10(b), the second condition implies that 〈ρ k , ǫ r 〉 H r = 1 and k = ⌊r /2⌋. In particular, the class ′ in (△) is uniquely determined. Combining these statements, we obtain that

〈ρ ∩W ′ , χ ′ 〉 W ′ = 〈ρ ′ , χ ′ 〉 W n = 〈ρ l ,j ′ , ψ 0 〉 W n -r . Since χ ′ = χ ′ 0 , we have χ 0 = J W n W ′ (χ ′ ); since = l ,j , we are finally reduced to showing that 〈ρ l ,j ′ , ψ 0 〉 W n -r ≤ 〈ρ l ,j , χ 0 〉 W n where j = j ′ + k and k = ⌊r /2⌋.
But, by Remark 6.2(c), we have d (χ 0 ) = d (ψ 0 ) and j 0 (χ 0 ) = j 0 (ψ 0 ) + ⌊r /2⌋. Hence, the multiplicity formula in Example 6.1 shows that we actually have

〈ρ l ,j ′ , ψ 0 〉 W n -r = 〈ρ l ,j , χ 0 〉 W n .
Thus, (K3) is satisfied and so Let W n = 0≤i ≤N C i be the partition into two-sided cells where C 0 is the unique cuspidal two-sided cell. For 0 ≤ i ≤ N , let χ i ∈ Irr C i (W n ) be the unique special character and let C i ⊆ C i be a left cell. Let be a conjugacy class of involutions. To obtain a statement about 〈ρ , χ 0 〉 W n , we consider

0≤i ≤N χ i (1)〈ρ , χ i 〉 W n = ρ , 0≤i ≤N χ i (1)χ i W n .
Since all constituents of ρ are special, the sum on the right hand side can be extended over all χ ∈ Irr(W n ), in which case we just obtain the character of the regular representation of W n . Hence, the right hand side equals ρ (1). Now, for any i ≥ 1, we already know that Kottwitz's Conjecture holds for C i and so 〈ρ ,

χ i 〉 W n = 〈ρ , [C i ]〉 W n = | ∩ C i |. Hence, we find that χ 0 (1)〈ρ , χ 0 〉 W n = ρ (1) - 1≤i ≤N χ i (1)| ∩ C i |.
On the other hand, using the identity in Example 4.5, we obtain

0≤i ≤N χ i (1)| ∩ C i | = 0≤i ≤N | ∩ C i | = | |.
Hence, we find that

χ 0 (1)| ∩ C 0 | = | | - 1≤i ≤N χ i (1)| ∩ C i |. Since ρ (1) = | |, we deduce that χ 0 (1)〈ρ , χ 0 〉 W n = χ 0 (1)| ∩ C 0 | and so 〈ρ , [C 0 ]〉 W n = 〈ρ , χ 0 〉 W n = | ∩ C 0 |, as required.

Kottwitz' Conjecture for type D n

Throughout this section, let n ≥ 2 and W = W ′ n be of type D n , with generators u , s 1 , . . . , s n -1 and diagram given as follows. 

P i i • • • i s 1 u s 2 s 3 s n -1
By convention, we will also set W ′ 0 = W ′ 1 = {1}. The aim of this section is to prove that Conjecture 4.7 holds for W ′ n (where we also rely on some results in [START_REF] Geck | On Kottwitz' conjecture for twisted involutions[END_REF]). For this purpose, it will be convenient to use an embedding of W ′ n into the group W n of type B n , with generators t , s 1 , . . . , s n -1 and diagram as in the previous section. Setting u = t s 1 t (and identifying the remaining generators s 1 , . . . , s n -1 ), we can identify W ′ n with a subgroup of W n . Thus, we have

W n ∼ = W ′ n ⋊ 〈θ 〉 where θ : W ′ n → W ′
n is the automorphism given by conjugation with t . In this setting, a large part of the argument will be analogous to that for type B n . However, when n is even, there are some particularly intricate questions to solve concerning the unique conjugacy class of involutions in W ′ n which is not invariant under θ .

Example 7.1. -Let ′ be a conjugacy class of involutions in W ′ n . If θ ( ′ ) = ′ , then ′ is a conjugacy class in W n and the decomposition of ρ ′ into irreducible characters of W ′ n is given by formulae similar to those for type W n in Example 6.1; see [START_REF] Kottwitz | Involutions in Weyl groups[END_REF]§3.3]. In particular, we have (a) 〈ρ ′ , χ〉 W ′ n = 0 unless χ ∈ Irr(W ′ n ) is special and can be extended to W n . Classes which are not θ -invariant can only exist if n is even, and then we will also encounter characters which can not be extended to W n . So let us now assume that n is even. Let ′ 0 be the conjugacy class of W ′ n containing the element σ 0,n /2 := s 1 s 3 s 5 • • • s n -1 .

Then θ ( ′ 0 ) = ′ 0 and { ′ 0 , θ ( ′ 0 )} is the only pair of conjugacy classes of involutions with this property; see [START_REF] Geck | Characters of finite Coxeter groups and Iwahori-Hecke algebras[END_REF]3.4.12]. To describe the decomposition of ρ ′ 0 into irreducible characters, we introduce some further notation. For every partition α ⊢ n /2, we define two characters χ α,±1 ∈ Irr(W ′ n ), as follows. Let H n = 〈s 1 , . . . , s n -1 〉 ∼ = S n . Let 2α * denote the partition of 2n obtained by multiplying all parts of the conjugate partition α * by 2 and consider the corresponding Young subgroup H 2α * ⊆ H n . (We have H 2α * ∼ = S 2α * .). Let ǫ 2α * be the sign character of H 2α * and let w 2α * be the longest element in H 2α * . Then, by [START_REF] Geck | Characters of finite Coxeter groups and Iwahori-Hecke algebras[END_REF]5.3.2], there is a unique χ α,±1 ∈ Irr(W ′ n ) such that b χ = ℓ(w 2α * ) and Ind W ′ n H 2α * (ǫ 2α * ) = χ α,+1 + sum of various χ ∈ Irr(W ′ n ) with b χ > ℓ(w 2α * ); furthermore, χ α,-1 is defined as the conjugate of χ α,+ under θ . It is well-known that {χ α,±1 | α ⊢ n /2} are precisely the irreducible characters of W ′ n which can not be extended to W n ; see [START_REF] Lusztig | Characters of reductive groups over a finite field[END_REF]4.6], [START_REF] Geck | Characters of finite Coxeter groups and Iwahori-Hecke algebras[END_REF]§5.6]. By [START_REF] Kottwitz | Involutions in Weyl groups[END_REF]§3.3], the decompositions of where ν α ∈ {±1} for all α ⊢ n /2.

Note that the above signs have not been determined in [Ko]. It will be essential to fix these signs in order to prove Kottwitz' Conjecture. In fact, the following example shows that this conjecture can only hold if ν α = +1 for all α ⊢ n /2.

Example 7.2. -Assume that n is even and ley ′ 0 be the conjugacy class of the element σ 0,n /2 , as above. By [START_REF] Lusztig | Characters of reductive groups over a finite field[END_REF]4.6.10], we have for any χ = χ α,±1 where α ⊢ n /2: (a)

f χ = 1 and a χ = b χ = ℓ(w 2α * )
Consequently, each χ α,±1 is special and we have (b)

χ α,+1 = J W ′ n H 2α * (ǫ 2α * )
for any α ⊢ n /2; see [START_REF] Lusztig | Characters of reductive groups over a finite field[END_REF]4.6.2]. Let C ± α denote the two-sided cell such that χ α,±1 ∈ Irr C ± α (W ′ n ). Then C ± α is smooth, by (a) and Lemma 2.7. We also (c)

′ 0 ∩ C + α = ∅ and θ ( ′ 0 ) ∩ C - α = ∅ for all α ⊢ n /2.
Indeed, (a), (b) and Example 2.3 show that w 2α * ∈ C + α . Now recall that H 2α * is isomorphic to a direct product of various symmetric groups of even degrees, where the sum of all these degrees is n . Since the longest element in S 2m (any m ≥ 1) is a product of m disjoint 2-cylces, we see that w 2α * is a product of n /2 disjoint 2-cycles and so we have w 2α * ∈ ′ 0 . Hence, ′ 0 is the unique conjugacy class of involutions in Now, determining the signs in Example 7.1(b) is related to the subtle issue of distinguishing the two characters χ α,+1 and χ α,-1 for a given partition α ⊢ n /2. We shall need the following version of the "branching rule" for the characters of W ′ n .

Lemma 7.3. -Assume that n ≥ 2 is even. Consider the parabolic subgroup

W ′ = W ′ n -2 ×
H 2 where W ′ n -2 = 〈u , s 1 , . . . , s n -3 〉 (type D n -2 ) and H 2 = 〈s n -1 〉. Let α ′ ⊢ (n -2)/2 and denote by ǫ 1 the sign character on the factor H 2 . Then Ind W ′ n W ′ χ α ′ ,+1 ⊠ ǫ 1 = α χ α,+1 + "further terms",

  (a) If ϕ is constant, then 2 (C ) = 2 (C ′ ). (b) Assume that Lusztig's Conjectures P's for (W,S, ϕ) hold. If C is a smooth twosided cell, then all the involutions in C are conjugate. In particular, 2 (C ) = 2 (C ′ ) is a single conjugacy class. (c) Assume that ϕ is constant and W is of classical type B n or D n . Then | ∩ C | = | ∩ C ′ | where is any conjugacy class of involutions in W .

  Definition 2.6. -A two-sided cell C is said to be smooth if | Irr C (W )| = 1. The set of smooth two-sided cells will be denoted by Cell smooth LR (W ).

  c w,χ = c * w,χ = 1 for all w ∈ ∩ C. Now, the first equality holds since χ is non-exceptional; see Example 4.4. Furthermore, by [Lu4, 3.10(b)], we have c w,χ ∈ {0, ±1} for all w ∈ W . Hence, the second equality immediately follows from (♦ 2 ).

s

  .a w = -a w if s w = w s and ℓ(s w ) < ℓ(w ), a s w s otherwise.

Lemma 5. 3 .

 3 -Assume that the longest element w 0 ∈ W is central in W . Let C be a twosided cell. Then Kottwitz' Conejcture holds for C if and only if Kottwitz' Conjecture holds for Cw 0 . Proof. -Assume that Kottwitz' Conjecture holds for C. Let be a conjugacy class of involutions in W . Let C be a left cell contained in Cw 0 . Then C w 0 is a left contained in C and we obtain 〈ρ , [C ]〉 W = 〈ρ ⊗ ǫ, [C ] ⊗ ǫ〉 W = 〈ρ w 0 , [C w 0 ]〉 W where the last equality holds by Remark 5.1 and Lemma 5.2. Now, by assumption, the right hand side equals |( w 0 ) ∩ (C w 0 )| = | ∩ C |, as desired. The reverse implication is then clear. Definition 5.4 ([LuB, 8.1]).

  (c) We have d (χ 0 ) = d (ψ 0 ), j 0 (χ 0 ) = j 0 (ψ 0 ) + ⌊r /2⌋ and |β | = |β ′ | + ⌊r /2⌋ where ψ 0 is labelled by the pair of partitions (α ′ , β ′ ) ⊢ nr . Only (c) requires a proof here. (Both (a) and (b) are explicitly discussed in [LuB, 8.1].) As remarked in Example 6.1, we have

  α = ∅ (see Corollary 3.3). Similarly, θ ( ′ 0 ) is the unique conjugacy class of involutions in W ′ n such that θ ( ′ 0 ) ∩ C + α = ∅. In particular, if C is a left cell contained in C + α , then [C ] = χ α,+1 and | ′ 0 ∩ C | = 1. So, if Kottwitz' Conjecture holds for W ′n , then we must have 〈ρ ′ 0 , χ α,+1 〉 = 1.

  〈[C ], χ〉 W = 0, we have C ⊆ C; see Definition 1.5. Furthermore, by Corollary 1.8, every irreducible constituent of [C ] belongs to C. Hence, χ is the only constituent of [C ].

TABLE 2

 2 

	5

.1. Number of smooth cells (equal parameters)

  Furthermore, by Lemma 2.7, all the involutions in C are contained in . Hence, ∩ C = ∅ unless d ∈ , in which case ∩ C = {d }. Thus, the right hand side of the (C,C , )-identity reduces to the expression above.

Corollary 3.3. -Recall our assumption that Lusztig's Conjectures P's for (W,S, ϕ) hold. Let C be a smooth two-sided cell. Then all the involutions in C are conjugate in W . Proof. -Let C = C 1 ∐. . . ∐C n be the partition of C into left cells. By Lusztig's Conjecture P13, for each i there is a unique d i ∈ ∩ C i . On the other hand, by Lemma 2.7, all involutions in C are contained in . It follows that {d 1 , . . . , d n } is precisely the set of involutions in C. Now let be the conjugacy class containing d 1 . Then the identity in Example 3.2 reads:

  .2]. -Assume that (W,S) is irreducible. By the previous remark we see that, if v ℓ(w ) χ(T w ) ∈ [v 2 ] for all w ∈ W , then χ is non-exceptional. So, by[START_REF] Geck | Characters of finite Coxeter groups and Iwahori-Hecke algebras[END_REF] Example 9.3.4], all χ ∈ Irr(W ) are non-exceptional unless (W,S) is of type H 3 , H 4 , E 7 , E 8 and χ is one of the characters listed in[START_REF] Geck | Characters of finite Coxeter groups and Iwahori-Hecke algebras[END_REF] Example 9.2.3]. (This list includes the characters 512 ′ a , 4096 z , 4096 ′ x already mentioned in Remark 4.3.

	Example 4.4.

  {1, . . . , n } if n is odd, and no fixed point at all if n is even. Now let α ⊢ n and let w α * be the longest element in the Young subgroup S α * ⊆ S n , as in Example 3.4. If are the non-zero parts of α * , then S α * ∼ = S α * 1 × . . . × S α * r and so the number of fixed points of w α * on {1, . . . , n } is the number t of odd parts of α * . Thus, w α * is conjugate to σ (n -t )/2 and so we can reformulate (a) as follows. Let be a conjugacy class of involutions in S n . Then

	α * 1 , . . . , α *
	(c)

r

  Thus, Kottwitz' Conjecture 4.7 holds for W n .Proof. -The first equality is seen as follows. As already remarked in Example 4.5, we have 〈[C ], χ 0 〉 W n = 1 for every left cell C ⊆ C. On the other hand, by Example 6.1(a), all constituents of ρ are special. Hence, we have 〈ρ , [C ]〉 W n = 〈ρ , χ 0 〉 W n , as required.We now show by induction on n that Kottwitz' Conjecture holds. If n = 1, then W 2 ∼ = S 2 and the assertion holds by Example 4.10. Now assume that n ≥ 2. First we consider the case where C is strongly non-cuspidal. Let W ′ = W n -r × H r and ψ 0 ∈ Irr(W n -r ) be as in Remark 6.2, where r ∈ {1, . . . , n }.

  Kottwitz' Conjecture holds for C. Since the longest element w 0 ∈ W n is central in W n , we can apply Lemma 5.3 which shows that Kottwitz's Conjecture will also hold for Cw 0 . By[START_REF] Lusztig | Characters of reductive groups over a finite field[END_REF] 8.1], these arguments cover all non-cuspidal two-sided cells in W n .It remains to consider the case where C is a cuspidal two-sided cell. By Remark 6.2, such a two-sided cell can only exist if n = d 2 + d for some d ≥ 1, in which case it is uniquely determined. So let us now assume that n = d 2 + d where d ≥ 1.

where the sum runs over all partitions α ⊢ n /2 such that α is obtained by increasing one part of α ′ by 1; the expression "further terms" stands for a sum of various χ ∈ Irr(W ′ n ) which can be extended to W n . In particular,

A proof can be found in [START_REF] Geck | On Kottwitz' conjecture for twisted involutions[END_REF]§3].

Proposition 7.4. -Assume that n ≥ 2 is even. Then, with the notation in Example 7.1, we have

and

Proof. -We prove this by induction on n /2. If n = 2, then the assertion is easily checked directly. The character table of W ′ 2 = 〈u , s 1 〉 with the appropriate labelling of the characters is given as follows. -) . Now assume that n ≥ 4. Let W ′ = W ′ n -2 ⊗ H 2 be as in Lemma 7.3. As already noted in the above proof, the intersection ′ 0 ∩ W ′ is just the conjugacy class of W ′ containing σ 0,n /2 . Hence, we are in the setting of Lemma 5.8 and so

It will now be sufficient to show that the scalar product on the right hand side is zero for all

we can apply induction and obtain

Then Lemma 7.3 implies that

as required.

Remark 7.5. -Let be any conjugacy classes of involutions in W n . We can associate with a character ρ of W n , as follows. If is contained in W ′ n , let ρ be the character of W ′ n as defined in Definition 4.6. Then ρ will be the canonical extension described in [START_REF] Geck | Frobenius-Schur indicators of unipotent characters and the twisted involution module[END_REF]§2]. If is contained in the coset W ′ n t , then we consider a similar extension of the "twisted" character defined in [START_REF] Kottwitz | Involutions in Weyl groups[END_REF]4.2]. Then one can show that

The proof of this equality, although quite similar to that of Theorem 6.3, requires a number of preparations concerning "twisted" involutions with respect to the nontrivial graph automorphism of W ′ n . Furthermore, the sets C ∪ t C can actually be interpreted as left cells for W n , but with respect to the non-constant weight function with value 0 on t and value 1 on all s i ; the characters of the corresponding left cell modules of W n are given by the induced characters on the left hand side. The whole argument is worked out in [START_REF] Geck | On Kottwitz' conjecture for twisted involutions[END_REF]§5].

Corollary 7.6. -Let W = W ′ n be of type D n , as above. Let C be a two-sided cell of W ′ n and

n ) be the unique special character. Let ′ be a conjugacy class of involutions in

Thus, Kottwitz' Conjecture 4.7 holds for W ′ n . In particular, if n is even and ′ 0 denotes the conjugacy class of the element σ

for any left cell C ⊆ C + α and any α ⊢ n /2, where C + α is the smooth two-sided cell as in Example 7.2.

Proof.

n is shown as in the proof of Theorem 6.3, using Example 7.1(a), (b).

To prove Kottwitz' Conjecture, let us first deal with the case where ′ is a conjugacy class of involutions in W ′ n such that θ ( ′ ) = ′ . Then ′ is a conjugacy class in W n and we can use the identity in Remark 7.5. By Frobenius reciprocity we obtain:

It now remains to deal with the case where n is even and ′ is such that θ ( ′ ) = ′ . Let ′ = ′ 0 be the conjugacy class in Example 7.1. First we will show that (b)

Indeed, let C be a left cell in 

But, 1≤i ≤m [C i ] is the character of the regular representation of W ′ n and so the left hand side also equals | ′ 0 | = ρ ′ 0 (1). So all the inequalities in (b) must be equalities, as required. The argument for θ ( ′ 0 ) is completely analogous. Note that, by Example 7.1(b), the character ρ θ ( ′ 0 ) is the conjugate of ρ ′ 0 under θ .