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CONJUGACY CLASSES OF INVOLUTIONS AND

KAZHDAN–LUSZTIG CELLS

by

CÉDRIC BONNAFÉ & MEINOLF GECK

Abstract. — According to an old result of Schützenberger, the involutions in a given
two-sided cell of the symmetric group Sn are all conjugate. In this paper, we study
possible generalisations of this property to other types of Coxeter groups. We show
that Schützenberger’s result is a special case of a general result on “smooth” two-
sided cells. Furthermore, we consider Kottwitz’ conjecture concerning the intersec-
tions of conjugacy classes of involutions with the left cells in a finite Coxeter group.
Our methods lead to a proof of this conjecture for classical types; combined with
previous work, this leaves type E8 as the only remaining open case.

Let (W,S) be a Coxeter system, and let ϕ : S → Γ>0 be a weight function, that
is, a map with values in a totally ordered abelian group Γ such that ϕ(s ) = ϕ(t )
whenever s and t are conjugate in W . Associated with this datum, G. Lusztig has
defined [Lu1] a partition of W into left, right or two-sided cells. (If ϕ is constant,
then this was defined earlier by D. Kazhdan and G. Lusztig [KaLu]). There seems
to be almost no connection between cells and conjugacy classes of elements of
order greater than 2. However, several papers have investigated links between
conjugacy classes of involutions and cells [Ko], [LuVo], [Lu6], [Ma].

To the best of our knowledge, the oldest result in this direction is the following.
In the case where W = Sn , the two-sided cells are described by the Robinson-
Schensted correspondence [KaLu], [Lu2]. It then follows from a result of M.-P.
Schützenberger [Sch] (see also C. Hohlweg [Ho]) that, if W = Sn , then all the
(Duflo) involutions contained in the same two-sided cell are conjugate. Of course,
as it can be seen already in the Coxeter group of type B2 (with ϕ constant), the
same kind of result cannot be generalized as such. However, again if W is of type
B2 but if we now take ϕ to be non-constant, then again the same result holds. In
this paper we shall investigate possible generalizations of M.-P. Schützenberger’s
result. For any subset X ⊆ W , we denote by C2(X ) the union of all conjugacy
classes of involutions in W which have non-empty intersection with X .
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Conjecture. — If C and C ′ are two left cells contained in the same two-

sided cell, then C2(C ) =C2(C ′).

As it can already be checked in type A3, the obvious generalization of this con-
jecture to elements of any order is false. In this paper, we investigate this con-
jecture whenever W is finite. For simplification, all along this paper, we will say
that “Lusztig’s Conjectures P’s hold” if “Lusztig’s Conjectures P1, P2,. . . , P15 in [Lu5,
Chapter 14] hold”). Our aim is to prove the following result.

Theorem. — Assume that W is finite. Let C be a two-sided cell of W and let C and C ′

be two left cells contained in C. Then:

(a) If ϕ is constant, then C2(C ) =C2(C ′).

(b) Assume that Lusztig’s Conjectures P’s for (W,S,ϕ) hold. If C is a smooth two-

sided cell, then all the involutions in C are conjugate. In particular, C2(C ) =C2(C ′)

is a single conjugacy class.

(c) Assume that ϕ is constant and W is of classical type Bn or Dn . Then |C ∩C |=

|C ∩C ′| where C is any conjugacy class of involutions in W .

Here, a two-sided cell C is called smooth if the family of irreducible characters
associated with C contains only one element. This definition is inspired by the
theory of rational Cherednik algebras and Calogero–Moser cells (as developed
in [BoRo1] or [BoRo2]). Note that smooth two-sided actually occur quite often;
for example, all the two-sided cells of Sn are smooth [KaLu], [Lu2], as well as all
the two-sided cells when W is of type Bn and ϕ corresponds to the asymptotic
case as in [BoIa], [Bon1]. See also Table 2.1 (p. 10) for more numerical data.

Part (a) of the theorem will be shown in Proposition 4.1; for part (b) see Corol-
lary 3.3. An essential ingredient in our proof is the fact that, if C is a conjugacy
class of involutions in W , then

∑

w∈C Tw is central in the Hecke algebraH ; see Sec-
tion 1. (Here, (Tw )w∈W is the standard basis ofH , as explained below.) Whenever
C is a conjugacy class of reflections, this result is due to L. Iancu (unpublished).

Part (c) of the above result would follow from results of Lusztig [LuB, Chap. 12]
and a general conjecture due to Kottwitz [Ko] concerning the intersections of
conjugacy classes of involutions with left cells. Here, we prove (c) directly by
the methods developped in Section 4 and then use this to actually show that
Kottwitz’ conjecture holds for W of classical type; see Sections 6 and 7.

Finally, we point out that our conjecture also makes sense for arbitrary Coxeter
groups. It can be checked easily that it holds in the infinite dihedral case; it also
follows from work of Guilhot [Gu] that, if W is affine and if C0 is the lowest two-
sided cell, then the above conjecture holds for left cells contained in C0.
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1. Hecke algebras, involutions, cells

Let (W,S) be a finite Coxeter system, let ℓ : W →N denote the length function, let
Γ be a totally ordered abelian group and let ϕ : S→ Γ>0 be a weight function that is,
a map such that ϕ(s ) = ϕ(t ) whenever s and t are conjugate in W . We denote by
A the group ring R[Γ], denoted exponentially: in other words, A =⊕γ∈ΓRv γ, with
v γv γ

′
= v γ+γ

′ . If a =
∑

γ∈Γ
a γv γ ∈ A, then we denote by deg(a ) its degree, namely the

maximal γ ∈ Γ such that αγ 6= 0 (note that deg(0) =−∞).
We denote byH =H (W ,S,ϕ) the Hecke algebra with parameter ϕ. As a mod-

ule, H = ⊕w∈W A Tw and the multiplication is completely determined by the fol-
lowing two rules:

(

Tw Tw ′ = Tw w ′ if ℓ(w w ′) = ℓ(w )+ ℓ(w ′),
T 2

s
= 1+(v ϕ(s )− v −ϕ(s ))Ts if s ∈S.

The Bruhat–Chevalley order on W will be denoted by ¶ .

Remark 1.1. — If P is an assertion, then we define δP by δP = 1 (resp. 0) if P
is true (resp. false). For instance, δi=j replaces the usual Kronecker symbol δi ,j .
With this notation, we have

Ts Tw = Ts w +δs w <w (v ϕ(s )− v −ϕ(s ))Tw ,

Tw Ts = Tw s +δw s <w (v ϕ(s )− v −ϕ(s ))Tw

for all s ∈S and w ∈W .

Lemma 1.2. — Let C be a union of conjugacy classes of involutions in W . Then

TC :=
∑

w∈C

Tw is central inH .

Proof. — Since (Ts )s∈S generates the A-algebra H , it is sufficient to show that
Ts TC = TCTs for all s ∈S. But, by Remark 1.1, we have

Ts TC =
∑

w∈C

Ts w +
∑

w∈C

δs w <w (v
ϕ(s )− v −ϕ(s ))Tw ,

TCTs =
∑

w∈C

Tw s +
∑

w∈C

δw s <w (v
ϕ(s )− v −ϕ(s ))Tw .

Now, as C is a union of conjugacy classes, we have sC = C s . Moreover, as ele-
ments of C are involutions, we have s w <w if and only if w s <w (for any w ∈C ).
The result follows.

If C is a conjugacy class of reflections, the above result is stated in [GeJa,
Exp. 3.3.8]; in this case, it is due to L. Iancu (unpublished).
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Remark 1.3. — Let f : W → R be any class function on W . Let C be a union of
conjugacy classes of involutions in W . Then we also have that

T
f

C :=
∑

w∈C

f (w )Tw is central inH .

(Indeed, it is sufficient to prove this in the case whereC is a single conjugacy class
in which case we have T

f

C = f (t )TC where t ∈C is fixed.) In particular, applying
this to the sign character ǫ of W , we obtain

T
ǫ
C
=
∑

w∈C

(−1)ℓ(w )Tw is central inH .

For any a =
∑

γ∈Ra γv γ, we set a =
∑

γ∈Γ
a γv −γ. This can be extended to an anti-

linear automorphismH →H , h 7→ h̄, by the formula
∑

w∈W

a w Tw =
∑

w∈W

a w T −1
w−1 .

We set A<0 = ⊕γ<0 Av γ and H<0 = ⊕w∈W A<0Tw . By [Lu5, Theorem 5.2(a)], there
exists a unique A-basis (cw )w∈W ofH , called the Kazhdan–Lusztig basis, such that

(

c w = cw ,

cw ≡ Tw modH<0.

We now define ¶L (resp ¶R , resp. ¶LR) as the coarsest preorder such that, for all
w ∈W , ⊕y¶L w Acy (resp. ⊕y¶R w Acy , resp. ⊕y¶LR w Acy ) is a left (resp. right, resp.
two-sided) ideal of H . We define ∼L (resp. ∼R , resp. ∼LR) as the equivalence
relation associated with ¶L (resp. ¶R , resp. ¶LR): its equivalence classes are called
the left (resp. right, resp. two-sided) cells. We denote by CellL(W ) (resp. CellR (W ),
resp. CellLR(W )) the set of left (resp. right, resp. two-sided) cells of W .

In order to define the corresponding cell modules it will be convenient, as in
the later chapters of [Lu5], to work with a slightly modified version of the basis
(cw )w∈W . Let h 7→ h† denote the unique A-algebra automorphism ofH such that

T †
s
=−T−1

s
for all s ∈W .

(See [Lu5, 3.5]). Then, clearly, (c †
w
)w∈W also is an A-basis ofH .

Remark 1.4. — By [Lu5, Theorem 5.2(b)], we have

cw ≡ Tw mod
�

⊕
y <w

A<0Ty

�

for all w ∈W .

Since cw = c w , we also have

c †
w
≡ (−1)ℓ(w )Tw mod

�

⊕
y <w

A>0Ty

�

for all w ∈W .
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Now, for every left cell C , we can construct a leftH -module VC , called a left cell

module, as follows. For x ,y ∈W , let us write

cx cy =
∑

z∈W

hx ,y ,z cz where hx ,y ,z ∈ A.

Then, as an A-module, VC is free with a basis {ex | x ∈C }. The action ofH on VC is
given by the formula (see [Lu5, 21.1]):

c †
x

.ey =
∑

z∈C

hx ,y ,z ez where x ∈W and y ∈C .

We can perform similar constructions for right and two-sided ideals, giving rise
to rightH -modules and (H ,H )-bimodules, respectively.

Now, let K denote the fraction field of A and, if M is an A-module, let K M =

K ⊗A M . Then it is well-known (see, for example, [GePf, 9.3.5]) that the K -algebra
KH is split and semisimple so, by Tits’ deformation Theorem, there is a bijection

Irr(W )
∼
−→ Irr(KH )

χ 7−→ χϕ .

Here, χ can be retrieved from χϕ through the specialization v γ 7→ 1.

Definition 1.5 ([KaLu], [Lu1]). — We define a partition of Irr(W ), depending on
ϕ, as follows. For a two-sided cell C, we denote by IrrC(W ) the set of irreducible
characters χ of W such that χϕ is an irreducible constituent of K VC , where C is a
left cell contained in C. Then:

Irr(W ) =
∐

C∈CellLR (W )

IrrC(W ).

Note that, for each two-sided cell C, we have

|C|=
∑

χ∈IrrC(W )

χ(1)2.

If C is a left cell, we denote by [C ] the character of W obtained by specialization
through v γ 7→ 1 from the character of KH afforded by VC . An indication of the
connection between left cells and involutions is given by the following result.

Proposition 1.6 ([Ge5]). — Let C be a left cell in W . Then the number of involutions

in C is equal to the number of irreducible constituents of [C ] (counting multiplicities).

We denote by Gϕ(W ) the following graph: its vertices are the irreducible char-
acters of W and two irreducible characters χ and χ ′ are joined by an edge if there
exists a left cell C such that χ and χ ′ are irreducible components of [C ]. In order
to relate the graph Gϕ(W ) to the partition of Irr(W ) in Definition 1.5 we need the
following result.
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Proposition 1.7 ([LuB, Theorem 12.15] and [Ge5, Corollary 3.9])
Let C and C ′ be two left cells. Then: 〈[C ], [C ′ ]〉W = |C ′ ∩C−1|.

As two-sided cells are unions of left cells, the sets IrrC(W ) are unions of con-
nected components of the graph Gϕ(W ). It is conjectured that the converse holds:

Corollary 1.8. — Assume that Lusztig’s Conjectures P’s for (W ,S,ϕ) hold. Then

the sets IrrC(W ) are the connected components of the graph Gϕ(W ).

Proof. — Indeed, if Lusztig’s Conjectures P’s for (W,S,ϕ) hold, then ∼LR is the
equivalence relation generated by ∼L and ∼R ; see [Lu5, §14.2, Conjecture P9]. So
the result follows from Proposition 1.7.

We shall also need the following result whose proof relies on some case–by–
case arguments and explicit computations.

Proposition 1.9 ([Lu5, Chap. 22]). — Assume that Lusztig’s Conjectures P’s for

(W ,S,ϕ) hold. Let χ ∈ Irr(W ). Then there exists a left cell C of W such that 〈[C ],χ〉W = 1.

Proof. — By the explicit results in [Lu5, §22] (see also [Ge2, §7] and the references
there for the non-crystallographic types), every χ ∈ Irr(W ) appears with multiplic-
ity 1 in some “contructible” character, as defined in [Lu5, 22.1]. (For Weyl groups
and the equal parameter case, this statement already appeared in [LuB, 5.30].) On
the other hand, since Lusztig’s Conjectures P’s for (W,S,ϕ) are assumed to hold,
we can apply [Lu5, Lemma 22.2] which shows that every constructible character
is of the form [C ] for some left cell C .

2. Leading coefficients

Lusztig has associated with any χ ∈ Irr(W ) two invariants aχ ∈ Γ≥0 and fχ ∈R>0;
see [LuB, Chap. 4], [Lu4], [Lu5, §20]. Let us briefly recall how this is done. It is
known that χϕ(Tw )∈ A for all w ∈W ; see [GePf, 9.3.5]. Thus, we can define

aχ :=min{γ∈ Γ≥0 | v
γχϕ(Tw ) ∈A≥0 for all w ∈W }.

Consequently, there are unique numbers cw ,χ ∈R (w ∈W ) such that

v aχ χϕ(Tw )≡ (−1)ℓ(w ) cw ,χ mod A>0.

These numbers are Lusztig’s “leading coefficients of character values”; see [LuB],
[Lu4]. Since χϕ(Tw ) =χϕ(Tw−1) for all w ∈W (see [GePf, 8.2.6]), we certainly have

cw ,χ = cw−1,χ for all w ∈W .
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Given χ , there is at least one w ∈W such that cw ,χ 6= 0 (by the definition of aχ).
Hence, the sum of all c 2

w ,χ
(w ∈W ) will be strictly positive and so we can write

that sum as fχ χ(1) where fχ ∈ R is strictly positive. We have the following or-
thogonality relations (see [GePf, Exc. 9.8]):

∑

w∈W

cw ,χ cw ,χ ′ =

�

fχχ(1) if χ =χ ′,
0 otherwise.

The coefficients cw ,χ and the numbers fχ are related to the left and two-sided cells
of W . We shall now state a few results which make this relation more precise.

Proposition 2.1 ([LuB, 5.8] and [Ge5, 3.8]). — Let C be a left cell and χ ,χ ′ ∈ Irr(W ).

Then
∑

w∈C

cw ,χ cw ,χ ′ =

�

fχ 〈[C ],χ〉W if χ = χ ′,
0 otherwise.

Corollary 2.2. — Let χ ∈ Irr(W ) and w ∈W . If cw ,χ 6= 0 then 〈[C ],χ〉W 6= 0 where C is

the left cell containing w . In particular, χ ∈ IrrC(W ) where C is the two-sided cell such

that w ∈C.

Proof. — If cw ,χ 6= 0 and w ∈ C , then the left hand side of the formula in Propo-
sition 2.1 (where χ ′ = χ) is non-zero. Hence, so is the right hand side, that is,
〈[C ],χ〉W 6= 0.

Example 2.3. — Let W ′ ⊆W be a standard parabolic subgroup, ǫ′ the sign char-
acter of W ′ and w ′

0
∈W ′ the longest element in W ′. Let χ ∈ Irr(W ) be such that

aχ =ϕ(w
′
0
) and



IndW
W ′
(ǫ′),χ
�

W 6= 0.

Then χ ∈ IrrC(W ) where C is the two-sided cell which contains w ′
0
. (Indeed, by

[GeJa, Cor. 2.8.6], we have

cw ′0,χ =±



IndW
W ′
(ǫ′),χ
�

W 6= 0.

and it remains to use Corollary 2.2.)

Definition 2.4. — We define the set of “distinguished elements” in W by

D := {w ∈W | n w 6= 0} where n w :=
∑

χ∈Irr(W )

f −1
χ

cw ,χ .

(Note that D depends on ϕ.) If Lusztig’s Conjectures P’s for (W,S,ϕ) hold, then
[Ge4, Lemma 3.7] shows that this definition coincides with that in [Lu5, 14.1]. In
particular, by Conjectures P5 and P6, we have n d = ±1 and d 2 = 1 for all d ∈ D;
furthermore, by P13, every left cell contains a unique element of D.
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Proposition 2.5. — Assume that Lusztig’s Conjectures P’s for (W,S,ϕ) hold. Let

C be a left cell and D ∩C = {d }. Then

cd ,χ = n d 〈[C ],χ〉W and
∑

χ∈Irr(W )

f −1
χ
〈[C ],χ〉W = 1.

Proof. — The first identity is contained in [Lu5, 20.6, 21.4]. Then the second iden-
tity immediately follows from the above formula for n d .

Definition 2.6. — A two-sided cell C is said to be smooth if | IrrC(W )|= 1.

The next result gives a characterization of smooth two-sided cells whenever
Lusztig’s Conjectures P’s hold:

Lemma 2.7. — Assume that Lusztig’s Conjectures P’s for (W,S,ϕ) hold. Let C be

a two-sided cell. We denote C(2) = {w ∈ C |w 2 = 1}. Then the following are equivalent:

(1) C is “smooth”, that is, | IrrC(W )|= 1.

(2) There exists a left cell C ⊆C such that [C ] ∈ Irr(W ).

(3) fχ = 1 for some χ ∈ IrrC(W ).

(4) For any left cell C ⊆C, we have [C ] ∈ Irr(W ).

(5) |C|= |C(2)|2.

(6) C(2) ⊆D, that is, all involutions in C are “distinguished”.

Note also that the condition “[C ] ∈ Irr(W )” can be replaced by “|C ∩C−1| = 1”;
see Proposition 1.7.

Proof. — First we show the equivalence of (1), (2), (3), (4).
“(1) ⇒ (2)” Let IrrC(W ) = {χ}. Let C be a left cell as in Proposition 1.9. Since
〈[C ],χ〉W 6= 0, we have C ⊆ C; see Definition 1.5. Furthermore, by Corollary 1.8,
every irreducible constituent of [C ] belongs to C. Hence, χ is the only constituent
of [C ]. Since it occurs with multiplicity 1, we have [C ] =χ ∈ Irr(W ).

“(2) ⇒ (3)” If χ := [C ] ∈ Irr(W ), then the identity in Proposition 2.5 reduces to
1= f −1

χ
and so fχ = 1.

“(3)⇒ (4)” Let C be a left cell as in Proposition 1.9. Then, as above, we have
C ⊆C. The identity in Proposition 2.5 now shows that

1= 1+
∑

χ 6=ψ∈Irr(W )

f −1
ψ
〈[C ],ψ〉W .

Hence, we have 〈[C ],ψ〉W = 0 for all ψ 6= χ and so [C ] = χ ∈ Irr(W ). Now let
C ′ be another left cell contained in C. By Corollary 1.8, there exists a sequence
C = C0,C1, . . . ,Cn = C ′ of left cells contained in C such that 〈[C i ], [C i+1]〉W 6= 0 for
all i . We shall prove by induction on i that [C i ] = [C ]. This is clear if i = 0, so
assume that [C i ]= [C ] and let us show that [C i+1 ]= [C ]. By assumption, we have
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〈[C i ], [C i+1 ]〉W 6= 0, which means that 〈[C i ],ψ〉W ≤ 〈[C i+1 ],ψ〉W for all ψ ∈ Irr(W ).
Applying the identity in Proposition 2.5 to both C i and C i+1, we obtain

1=
∑

ψ∈Irr(W )

f −1
ψ
〈[C i ],ψ〉W ≤
∑

ψ∈Irr(W )

f −1
ψ
〈[C i+1],ψ〉W = 1.

Hence, we must have 〈[C i ],ψ〉W = 〈[C i+1 ]〉W for all ψ ∈ Irr(W ) and so [C i+1 ] =

[C i ]∈ Irr(W ), as required. Thus, (4) holds.
“(4)⇒ (1)” By Corollary 1.8, we necessarily have χ := [C ] = [C ′] for all left cells

C ,C ′⊆C and then IrrC(W ) = {χ}.
Now we show the remaining equivalences.
“(1)⇔ (5)” Let | IrrC(W )| = n ≥ 1 and write IrrC(W ) = {χ1, . . . ,χn}. Then, as noted

in Definition 1.5, we have

|C|=χ1(1)
2+ · · ·+χn (1)

2.

On the other hand, it easily follows from Proposition 1.6 that |C(2)| = χ1(1) + · · ·+

χn (1); see [Ge5, Cor. 3.12], Hence, we have

|C(2)|
2 =
�

χ1(1)+ · · ·+χn (1)
�2

,

which implies that |C|= |C(2)|2 if and only if n = 1.
“(4)⇔ (6)” Recall that, by Lusztig’s Conjecture P13, every left cell contains a

unique element of D; furthermore, by P6, we have d 2 = 1 for all d ∈ D. So the
equivalence immediately follows from Proposition 1.6.

Example 2.8. — Assume that we are in the equal parameter case where ϕ is con-
stant. In this case, it is known that Lusztig’s Conjectures P’s for (W,S,ϕ) hold; see
[Lu2], [Lu5, Chap. 15] (for Weyl groups) and [Du] (for the remaining types).

Note that “smooth” two-sided cells actually occur quite often in this case. For
example, assume that (W,S) is of type An−1 where W =Sn is the symmetric group.
Then we are automatically in the equal parameter case and we have fχ = 1 for all
χ ∈ Irr(W ); see, for example, [LuB, 5.16] and [GePf, 9.4.5]. Hence, every two-sided
cell in W is smooth in this case.

For further information, we give in Table 2.1 the number of smooth two-sided
cells (equal parameter case) whenever |S| ¶ 8 and (W,S) is not of type A. To com-
pute this table it suffices, by Lemma 2.7, to find all χ ∈ Irr(W ) such that fχ = 1, and
this information is easily available from the tables in [LuB], [GePf, Appendix].

Example 2.9. — Let (W,S) be of type Bn and write S = {t ,s1,s2, . . . ,sn−1} in such a
way that the Dynkin diagram of (W,S) is given as follows.

i i i · · · i
t s1 s2 sn−1



10 C. BONNAFÉ AND M. GECK

Type of W |CellLR (W )| |Cellsmooth
LR (W )|

I2(m ) 3 2
B3 6 4
B4 10 5
B5 16 6
B6 26 10
B7 40 12
B8 60 15
D4 11 10
D5 14 12
D6 27 22
D7 35 25
D8 60 40
E6 17 14
E7 35 24
E8 46 23
F4 11 8
H3 7 4
H4 13 6

TABLE 2.1. Number of smooth cells (equal parameters)

We set ϕ(t ) = b and ϕ(s1) = · · ·=ϕ(sn−1) = a . Then it follows from the computation
of constructible characters in [Lu5, Proposition 22.25] that:

(a) fχ = 1 for all χ ∈ Irr(W ) ⇐⇒ b 6∈ {a ,2a , . . . , (n −1)a}.

Hence, if Lusztig’s Conjectures P’s for (W,S,ϕ) hold, then Lemma 2.7 shows that
all two-sided cells of W are smooth if and only if b 6∈ {a ,2a , . . . , (n −1)a}. Without
assuming that Lusztig’s Conjectures P’s for (W ,S,ϕ) hold, the only known results
are the following:

(b) All the two-sided cells in W are smooth if a = 2b or 3a = 2b or b > (n −1)a .

If a = 2b or 3a = 2b , then (b) follows essentially from [Lu5, §16] (see [BGIL,
Theorem 3.14] for some explanation). If b > (n −1)a , then (b) follows from [BoIa,
Theorem 7.7] and [Bon1, Theorem 3.5 and Corollary 5.2].

3. A basic identity

Hypothesis. Throughout this section we assume that Lusztig’s Con-
jectures P’s hold for (W,S,ϕ).
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The main result of this section is the following basic identity, which links cells
and involutions through the leading coefficients of character values.

Lemma 3.1 (The (C,C ,C )-identity). — Let C be a two-sided cell and C a left cell con-

tained in C. Let C be a union of conjugacy classes of involutions in W . Then

〈[C ],χ〉W

∑

w∈C∩C

cw ,χ =χ(1)
∑

w∈C∩C

cw ,χ for all χ ∈ Irr(W ).

Proof. — Let Z(H ) be the centre of H . We denote by ωχ : Z(H )→ A the central

character associated with χϕ: if z ∈ Z(H ), then ωχ (z ) = χϕ(z )/χ(1). Now consider
the central element

T
ǫ
C
=
∑

w∈C

(−1)ℓ(w )Tw (see Remark 1.3).

The desired identity will be obtained by evaluating χϕ on T
ǫ
C

Td , where d is the
unique element ofD contained in C (see Lusztig’s Conjecture P13). First note that,
if χ 6∈ IrrC(W ), then both sides of the identity are zero; see Corollary 2.2.

We can now assume that χ ∈ IrrC(W ). Since T
ǫ
C
∈ Z(H ), we have χ(T ǫ

C
) =

χ(1)ωχ (T
ǫ
C
) and χ(T ǫ

C
Td ) =ωχ (T

ǫ
C
)χ(Td ). Furthermore,

v aχχ(T ǫ
C
) =
∑

w∈C

v aχ (−1)ℓ(w )χ(Tw )≡
�∑

w∈C

cw ,χ

�

mod A>0.

It follows that

v 2aχχ(1)χ(T ǫ
C

Td )≡
�

v aχχ(T ǫ
C
)
��

v aχχ(Td )
�

≡ (−1)ℓ(d )
�∑

w∈C

cw ,χcd ,χ

�

mod A>0.

Now, by Proposition 2.5, we have cd ,χ = n d 〈[C ],χ〉W . Thus, we obtain

v 2aχχ(1)χ(T ǫ
C

Td )≡ (−1)ℓ(d )n d 〈[C ],χ〉W

�∑

w∈C

cw ,χ

�

mod A>0.

The summation on the right hand side can be taken over all w ∈C ∩C (instead of
w ∈C ) since cw ,χ = 0 unless w ∈ C; see Corollary 2.2. Next we re-write T

ǫ
C

Td using
the Kazhdan–Lusztig basis. For any w ∈W , we have Tw ≡ (−1)ℓ(w )c †

w
modH>0; see

Remark 1.4. This yields

T
ǫ
C

Td =
∑

w∈C

(−1)ℓ(w )Tw Td ∈
∑

w∈W

(c †
w
+H>0)((−1)ℓ(d )c †

d +H>0)

⊆
�∑

w∈C

(−1)ℓ(d )c †
w

c †
d

�

+H>0H≥0+H≥0H>0.

We certainly have v aχχ(h)∈A≥0 for any h ∈H≥0 and v aχχ(h)∈ A>0 for any h ∈H>0.
Hence, we obtain

v 2aχχ(T ǫ
C

Td )≡ (−1)ℓ(d )
�∑

w∈C

v 2aχχ
�

c †
w

c †
d

�

�

mod A>0.
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We now look at the term χ(c †
w

c †
d ) (for w ∈C ) in more detail. Following Lusztig’s

notation in [Lu5, §13], we set for x , y ∈W ,

cx cy =
∑

z∈W

hx ,y ,z cz where hx ,y ,z ∈ A.

Furthermore, if z ∈ W , we define a(z ) = max{deg(hx ,y ,z ) | x ,y ∈ W }. Let us now
consider

v 2aχχ(c †
w

c †
d ) =
∑

x∈W

�

v aχhw ,d ,x

��

v aχχ(c †
x
)
�

.

Let x ∈ W be such that hw ,d ,x 6= 0 and χ(c †
x
) 6= 0. Since Lusztig’s Conjecture P4

holds, the first condition implies that a(d )≤ a(x ). By [Ge4, Lemma 3.5], the second
condition implies that a(x )≤ aχ . (Note that the function ã (w ) in [Ge4, 3.5] agrees
with a(w ) by [Ge4, Prop. 3.6 and Rem. 4.2].) On the other hand, since χ ∈ IrrC(W ),
we have aχ = a(d ); see [Lu5, Proposition 20.6]. Thus, we must have a(d ) = a(x ) =

aχ . Furthermore, since hw ,d ,x 6= 0 and a(d ) = a(x ), we can now even conclude that
x ∈C , by Lusztig’s Conjecture P9. Thus, we obtain

v 2aχχ(c †
w

c †
d ) =
∑

x∈C

�

v a(x )hw ,d ,x

��

v aχχ(c †
x
)
�

.

Now, by Remark 1.4, we have v aχ χϕ(c †
w
) ≡ cw ,χ mod A>0. Hence, taking constant

terms in the above identity, we obtain

v 2aχχ(c †
w

c †
d )≡
�∑

x∈C

γw ,d ,x−1 cx ,χ

�

mod A>0;

here, we denote by γw ,d ,x−1 the constant term of v a(x )hw ,d ,x , as in [Lu5, 13.6]. By
Lusztig’s Conjectures P2, P5 and P7, we have

γw ,d ,x−1 =

�

n d if x =w ,

0 otherwise.

We conclude that v 2aχχ(c †
w

c †
d )≡δw∈C n d cw ,χ mod A>0 and so

v 2aχχ(T ǫ
C

Td )≡ (−1)ℓ(d )
∑

w∈C

v 2aχχ
�

c †
w

c †
d

�

≡ (−1)ℓ(d )n d

∑

w∈C

δw∈C n d cw ,χ

≡ (−1)ℓ(d )n d

� ∑

w∈C∩C

cw ,χ

�

mod A>0.

Comparing with our earlier expression for v 2aχχ(1)χ(T ǫ
C

Td )mod A>0 yields the de-
sired identity.

Example 3.2. — Let C be a two-sided cell which is “smooth”, that is, we have

IrrC(W ) = {χ} for some χ ∈ Irr(W ).
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Let d ∈ C∩D and C a union of conjugacy classes of involutions in W . Let C be
the left cell containing d . Then we claim that the (C,C ,C )-identity in Lemma 3.1
reduces to:

∑

w∈C∩C

cw ,χ =

�

χ(1)n d if d ∈C ,

0 otherwise.

Indeed, by Lemma 2.7 and Corollary 2.2, we have [C ] ∈ IrrC(W ) and so χ = [C ].
This yields the left hand side. On the other hand, by Proposition 2.5, we have
cd ,χ = n d 〈[C ],χ〉W = 1. Furthermore, by Lemma 2.7, all the involutions in C are
contained in D. Hence, C ∩C =∅ unless d ∈C , in which case C ∩C = {d }. Thus,
the right hand side of the (C,C ,C )-identity reduces to the expression above.

Corollary 3.3. — Recall our assumption that Lusztig’s Conjectures P’s for

(W ,S,ϕ) hold. Let C be a smooth two-sided cell. Then all the involutions in C are

conjugate in W .

Proof. — Let C = C1 ∐ . . . ∐Cn be the partition of C into left cells. By Lusztig’s
Conjecture P13, for each i there is a unique d i ∈ D ∩C i . On the other hand, by
Lemma 2.7, all involutions in C are contained in D. It follows that {d 1, . . . ,d n} is
precisely the set of involutions in C. Now let C be the conjugacy class containing
d 1. Then the identity in Example 3.2 reads:

∑

w∈C∩C

cw ,χ =χ(1)n d 1
6= 0 (since d 1 ∈C ).

Similarly, for any i ≥ 2, we have
∑

w∈C∩C

cw ,χ =

�

χ(1)n d i
if d i ∈C ,

0 otherwise.

Since the left hand side is non-zero, we conclude that d i ∈C , as claimed.

Example 3.4. — Let W = Sn be of type An−1 with generators given by the basic
transpositions s i = (i , i +1) for 1≤ i ≤ n −1. Then, as already mentioned in Exam-
ple 2.8, all the two-sided cells in W are smooth and so we now recover a known
result of Schützenberger [Sch] in this case. An elementary proof that Lusztig’s
Conjectures P’s for (W,S,ϕ) hold is given in [Ge3] (see also [GeJa, §2.8]). We can
now also explicitly determine the conjugacy class of involutions associated with a
two-sided cell. Indeed, it is well-known that the irreducible characters of W =Sn

have a natural labelling by the partitions of n ; we write this in the form

Irr(Sn ) = {χ
α |α ⊢ n}.

For example, χ (n ) is the trivial character and χ (1n ) is the sign character. For α ⊢ n ,
let Cα be the unique two-sided cell such that χα ∈ IrrCα(Sn ). Since every two-sided
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cell is smooth, the sets {Cα | α ⊢ n} are precisely the two-sided cells of Sn . Given
α ⊢ n , let Cα be the unique conjugacy class of involutions such that Cα ∩Cα 6= ∅.
Let α∗ denote the transpose partition and wα∗ be the longest element in the Young
subgroup Sα∗ ⊆Sn . Then it is well-known that



IndSn

Sα∗
(ǫα∗),χ

α
�

Sn
= 1 where ǫα∗ = sign character of Sα∗ .

Using the formula for aχα in [LuB, 4.4], one also sees that aχα = ℓ(wα∗). Hence, by
Example 2.3, we have wα∗ ∈ Cα and so

Cα = conjugacy class containing wα∗ .

The discussion of this example will be continued in Example 4.10.

Example 3.5. — Assume that (W,S) if of type Bn , as in Example 2.9. Let b >

(n−1)a . Then the fact that all the involutions contained in a two-sided cell are con-
jugate can be proved directly from the combinatorial description given in [BoIa,
Theorem 7.7] and [Bon1, Theorem 3.5 and Corollary 5.2], by using Schützen-
berger’s result for the symmetric group [Sch]. Also, for more general values
of a ,b , a conjectural description of left, right and two-sided cells is provided
by [BGIL, Conjectures A+ and B]: it would be interesting to see if the conjecture
we have stated in the introduction is compatible with this conjectural combinato-
rial construction.

Remark 3.6. — If W is of type F4 or I2(m ) and ϕ is a general weight function, then
Lusztig’s Conjectures P’s for (W,S,ϕ) are known to hold; see [Ge4, §5]. In these
cases, using the explicit knowledge of the cells and the classes of involutions (see
[Ge1] for type F4 and [Lu5, §8] for type I2(m )), one can directly check that, if C

and C ′ are two left cells contained in the same two-sided cell, then C2(C ) =C2(C ′).
This provides some support for the general conjecture stated in the introduction.

4. The equal parameter case

Hypothesis. From now until the end of this paper, we assume that we
are in equal parameter case where Γ=Z and ϕ(s ) = 1 for all s ∈S.

Under this hypothesis, as already mentioned in Example 2.8, it is known that
Lusztig’s Conjectures P’s for (W,S,ϕ) hold. One further distinctive feature of this
case is the existence of “special” characters. For χ ∈ Irr(W ), let bχ denote the small-
est integer i ≥ 0 such that χ occurs in the i th symmetric power of the standard
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reflection representation of W . Then, following Lusztig [LuB, 4.1], χ is called
special’ if aχ = bχ . Let

S (W ) := {χ ∈ Irr(W ) | aχ = bχ}

be the set of special characters of W . It is known that

(♦1) |S (W )∩ IrrC(W )|= 1 for every two-sided cell G of W .

This is seen as follows. Consider the partition of Irr(W ) in terms of “fami-
lies”, as defined in [LuB, 4.2]. (The same definition also works for groups of
non-crystallographic type; see [GePf, §6.5].) By [LuB, 4.14], every such family
contains a unique special character (and this also holds for non-crystallographic
types; see [GePf, §6.5]). Hence, (♦1) follows from the known fact that the par-
tition of Irr(W ) into families coincides with the partition in Definition 1.5. For
Weyl groups, this appeared in [LuB, Theorem 5.25]. A different argument based
on certain “positivity” properties of the Kazhdan–Lusztig basis is given in [Lu5,
Prop. 23.3]; the same argument also works for the non-crystallographic types,
where the analogous “positivity” properties are known by explicit computation;
see Alvis [Al], DuCloux [Du].

Now let C be a two-sided cell. Then, if χ denotes the unique character inS (W )∩
IrrC(W ), we have

(♦2) (−1)aχ+ℓ(w )cw ,χ > 0 for all w ∈C ∩C−1,

where C is any left cell contained in C. This holds by [Lu4, Prop. 3.14] for Weyl
groups and by [Ge6, Rem. 5.12] for the remaining types. Note that, in the notation
of [Lu4, §3], the special character χ corresponds to the pair (1,1)∈M (GC)where GC

is the finite group associated with C (see also [LuB, 4.14.2]). The factor (−1)aχ+ℓ(w )

comes from the identity [Lu4, 3.5(a)] which relates the leading coefficients to the
characters of Lusztig’s asymptotic algebra J .

Proposition 4.1. — Recall our assumption that we are in the equal parameter case. Let

C be a two-sided cell and C ,C ′ be left cells of W which are contained in C. Let C be a

conjugacy class of involutions in W . Then C ∩C 6= ∅ if and only if C ∩C ′ 6= ∅. In

particular, we have C2(C ) =C2(C ′).

Proof. — We consider the (C,C ,C )-identity in Lemma 3.1 with respect to the
unique special character χ ∈ S (W ) ∩ IrrC(W ). Since the sign character of W is
constant on C , we can write this identity in the form:

〈[C ],χ〉W
∑

w∈C∩C

(−1)ℓ(w )cw ,χ =χ(1)
∑

w∈C∩C

(−1)ℓ(w )cw ,χ .
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Multiplying both sides by (−1)aχ , we obtain:

〈[C ],χ〉W
∑

w∈C∩C

(−1)aχ+ℓ(w )cw ,χ =χ(1)
∑

w∈C∩C

(−1)aχ+ℓ(w )cw ,χ .

By (♦2), we have cd ,χ 6= 0 and so 〈[C ],χ〉W 6= 0; see Proposition 2.5. Thus, we obtain
∑

w∈C∩C

(−1)aχ+ℓ(w )cw ,χ =
χ(1)

〈[C ],χ〉W

∑

w∈C∩C

(−1)aχ+ℓ(w )cw ,χ .

Let us denote by Υ(C ,C ) the expression on the right hand side of this identity.
Since the left hand side does not depend on C , we have Υ(C ,C ) = Υ(C ,C ′). Con-
sequently, we have
∑

w∈C∩C

(−1)aχc+ℓ(w )cw ,χ 6= 0 ⇐⇒
∑

w∈C∩C ′

(−1)aχc+ℓ(w )cw ,χ 6= 0.

Finally, by (♦2), we have

(−1)aχ+ℓ(w )cw ,χ > 0 for all w ∈C ∩C and for all w ∈C ∩C ′.

Thus, the left hand side of the above equivalence is non-zero if and only ifC ∩C 6=

∅, and, similarly, the right left hand side is non-zero if and only if C ∩C ′ 6=∅.

Definition 4.2. — A character χ ∈ Irr(W ) is called exceptional if there exists some
w ∈W such that cw ,χ 6= 0 and aχ 6≡ ℓ(w )mod 2.

Remark 4.3. — One easily checks that there is a well-defined ring homomor-
phism α:H → H such that α(v ) = −v and α(r ) = r for all r ∈ R and α(Tw ) =

(−1)ℓ(w )Tw for all w ∈W . (See Lusztig [Lu2, 3.2].) Now, for χ ∈ Irr(W ), we have
χϕ(Tw ) ∈ R[v,v −1] for all w ∈W . Composing the action of H on a representation
affording χϕ with α, we see that there is a well-defined χ̃ ∈ Irr(W ) such that

χ̃ϕ(Tw ) = (−1)ℓ(w )χϕ(Tw )
�

�

v 7→−v
for all w ∈W .

By the definition of aχ and cw ,χ , this implies that

aχ̃ = aχ and cw ,χ̃ = c ∗
w ,χ

for all w ∈W .

Thus, χ is exceptional if and only if χ 6= χ̃ . Using Corollary 2.2 we see that, for a
two-sided cell C of W , we have

χ ∈ IrrG (W ) ⇐⇒ χ̃ ∈ IrrC(W ).

Note that there do exist cases for which χ 6= χ̃ . For example, let (W ,S) be of type
E7. Then, by [LuB, 5.22.2], there exists an involution x ∈W such that cx ,χ 6= 0 and
aχ 6≡ ℓ(x )mod 2 for the special character denoted χ = 512′

a
. In type E8, examples

are given by the special characters 4096z and 4096′
x
; see [LuB, 5.23.2].
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Example 4.4. — Assume that (W,S) is irreducible. By the previous remark we see
that, if v ℓ(w )χ(Tw ) ∈ R[v 2] for all w ∈W , then χ is non-exceptional. So, by [GePf,
Example 9.3.4], all χ ∈ Irr(W ) are non-exceptional unless (W,S) is of type H3, H4,
E7, E8 and χ is one of the characters listed in [GePf, Example 9.2.3]. (This list
includes the characters 512′

a
, 4096z , 4096′

x
already mentioned in Remark 4.3.) The

degree of such an exceptional character is a power of 2; furthermore, we have
v ℓ(w0)χ(Tw0

) 6∈R[v 2]where w0 ∈W is the longest element.
In particular, if (W,S) is of classical type, then all χ ∈ Irr(W ) are non-exceptional.

Example 4.5. — Assume that (W,S) is irreducible and of classical type. (Also re-
call that we are in the equal parameter case). Let C,C ,C be as in Lemma 3.1. Let
χ ∈S (W ) be the unique special character in IrrC(W ). Then we claim that

|C ∩C|=χ(1)|C ∩C |.

This is seen as follows. As already noted in the proof of Proposition 4.1, we have
〈[C ],χ〉W 6= 0. By [LuB, 12.13], every left cell module for W is multiplicity–free and
so 〈[C ],χ〉W = 1. Consequently, the (C,C ,C )-identity in Lemma 3.1 reduces to:

∑

w∈C∩C

cw ,χ =χ(1)
∑

w∈C∩C

cw ,χ .

So it remains to show that

cw ,χ = c ∗
w ,χ
= 1 for all w ∈C ∩C.

Now, the first equality holds since χ is non-exceptional; see Example 4.4. Further-
more, by [Lu4, 3.10(b)], we have cw ,χ ∈ {0,±1} for all w ∈W . Hence, the second
equality immediately follows from (♦2).

In particular, the equality |C ∩C|=χ(1)|C ∩C | shows that the cardinality |C ∩C |

does not depend on C . This phenomenon is related to a conjecture of Kottwitz
[Ko], which we shall now explain.

Definition 4.6 ([Ko], [LuVo], [Lu6]). — Let C be a union of conjugacy classes of
involutions in W . Let VC be an R-vector space with a basis {a w |w ∈C }. Then, by
[LuVo, 6.3] and [Lu6], there is a linear action of W on VC such that, for any s ∈ S

and w ∈C , we have

s .a w =

�

−a w if s w =w s and ℓ(s w )< ℓ(w ),

a s w s otherwise.

Let ρC denote the character of this representation of W on VC .

Conjecture 4.7 (Kottwitz [Ko, §1]). — Let C be a union of conjugacy classes of invo-

lutions and C be a left cell of W . Then 〈ρC , [C ]〉W = |C ∩C |.
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Remark 4.8. — The fact that ρC indeed is equal to the character originally con-
structed in [Ko] is shown in [GeMa, Rem. 2.2]. Note also that, if C =C1∐ . . .∐Cr

is the partition of C into conjugacy classes, then we certainly have

ρC =ρC1
+ . . .+ρCr

.

Hence, it is sufficient to prove the above conjecture for the case where C is a
single conjugacy class of involutions.

A strong support is provided by the following general result.

Theorem 4.9 (Marberg [Ma, 1.7]). — Let I denote the set of all involutions in W . Then

〈ρI, [C ]〉W = |I∩C | for every left cell C in W .

Already Kottwitz [Ko] showed that his conjecture holds in type An−1; see Exam-
ple 4.10 below. The aim of the following three sections is to deal with Bn and Dn ;
see Theorems 6.3 and 7.6. This will rely in an essential way on the above identity
in Example 4.5. As far as the exceptional types are concerned, Casselman [Ca]
has verified the conjecture by explicit computation for F4 and E6; in [Ge6], this is
extended to E7. Marberg [Ma] verified the conjecture for the non-crystallographic
types H3, H4, I2(m ). Thus, the only remaining case is type E8, which is currently
being considered by A. Halls at the University of Aberdeen.

Example 4.10. — Let W =Sn be of type An−1 with generators given by the basic
transpositions s i = (i , i + 1) for 1 ≤ i ≤ n − 1. A complete set of representatives of
the conjugacy classes of involutions is given by the elements

σj := s1s3 · · · s2j−1 ∈Sn where 0≤ 2j ≤ n .

(Thus, σj is the product of j disjoint transpositions and σj has precisely n − 2j

fixed points on {1, . . . ,n}.) Note that σj has minimal length in its conjugacy class;
see [GePf, 3.1.16]. Let Cj be the conjugacy class containing σj and write ρj =ρCj

.
As in Example 3.4, we write Irr(Sn ) = {χα |α ⊢n}. Then, by [Ko, 3.1], we have

(a) 〈ρj ,χα〉Sn
=δn−2j=t ,

where t is the number of odd parts of the conjugate partition α∗. In particular, if
I denotes the set of all involutions in Sn , then

ρI =
∑

j

ρj =
∑

α⊢n

χα.

For later reference, we explicitly note the following special case of (a). Let α= (1n );
then χα = ǫ is the sign character of Sn . Then (a) yields:

(b) 〈ρj ,ǫ〉Sn
=

�

1 if j = ⌊n/2⌋,

0 otherwise.
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We have now all ingredients in place to verify that Kottwitz’ Conjecture holds.
Indeed, first note that the longest element in Sn has precisely one fixed point on
{1, . . . ,n} if n is odd, and no fixed point at all if n is even. Now let α ⊢ n and let
wα∗ be the longest element in the Young subgroup Sα∗ ⊆Sn , as in Example 3.4. If
α∗

1
, . . . ,α∗

r
are the non-zero parts of α∗, then Sα∗

∼= Sα∗1
× . . .×Sα∗r

and so the num-
ber of fixed points of wα∗ on {1, . . . ,n} is the number t of odd parts of α∗. Thus,
wα∗ is conjugate to σ(n−t )/2 and so we can reformulate (a) as follows. Let C be a
conjugacy class of involutions in Sn . Then

(c) 〈ρC ,χα〉Sn
=

�

1 if wα∗ ∈C ,

0 otherwise.

Comparison with Example 3.4 now shows that Conjecture 4.7 holds in this case.

5. An inductive approach to Kottwitz’ Conjecture

We keep the basic assumptions of the previous section. The results in this sec-
tion will provide some ingredients for an inductive proof of Kottwitz’ Conjec-
ture 4.7.

Let C be a two-sided cell of W . We shall say that “Kottwitz’ Conjecture holds for

C” if, for any conjugacy class of involutions C in W , we have

〈ρC , [C ]〉W = |C ∩C | for all left cells C ⊆C.

Remark 5.1. — Let w0 ∈W be the longest element. Let C be a left cell of W . Then,
by [LuB, 5.14], the set C w0 also is a left cell and we have

[C w0] = [C ]⊗ ǫ where ǫ = sign character of W .

Now let C be a two-sided cell. Then Cw0 also is a two-sided cell and we have

IrrCw0
(W ) = IrrC(W )⊗ ǫ := {χ ⊗ ǫ |χ ∈ IrrC(W )}.

Lemma 5.2. — Assume that the longest element w0 ∈W is central in W . Let C be a

union of conjugacy classes of involutions in W . Then Cw0 also is a union of conjugacy

classes of involutions and we have ρCw0
=ρC ⊗ ǫ.

Proof. — It is sufficient to prove this in the case where C is a single conjugacy
class. Let l 0 :=min{ℓ(w ) | w ∈ C }. Then ℓ(w )− l 0 is even for every w ∈ C . So, for
any w ∈C , there is a well-defined integer m (w ) such that ℓ(w )− l 0 = 2m (w ). Now
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we perform a change of basis in VC : we set a ′
w

:= (−1)m (w )a w for w ∈C . Then the
action of W on VC is given by the following formulae, where s ∈S and w ∈C :

s .a ′
w
=







−a ′
w

if s w =w s and ℓ(s w )< ℓ(w ),

a ′
w

if s w =w s and ℓ(s w )> ℓ(w ),

−a ′
s w s

otherwise (that is, if s w 6=w s ).

Note that, since w ∈C is an involution, we have ℓ(s w )> ℓ(w ) if and only if ℓ(w s )>

ℓ(w ); hence, if s w 6= w s , then ℓ(s w s ) = ℓ(w )± 2 (see [GePf, 1.2.6]) and so a ′
s w s
=

−a ′
w

. Furthermore, it is well-kwown that ℓ(y w0) = ℓ(w0)− ℓ(y ) for every y ∈ W .
Hence, we can also write the above formulae in the following form:

s .a ′
w
=







a ′
w

if s w w0 =w w0s and ℓ(s w w0)< ℓ(w w0),

−a ′
w

if s w w0 =w w0s and ℓ(s w w0)> ℓ(w w0),

−a ′
w

otherwise.

Tensoring with ǫ, we see that we obtain exactly the same formulae as for the
action of W on VCw0

.

Lemma 5.3. — Assume that the longest element w0 ∈ W is central in W . Let C be a

two-sided cell. Then Kottwitz’ Conejcture holds for C if and only if Kottwitz’ Conjecture

holds for Cw0.

Proof. — Assume that Kottwitz’ Conjecture holds for C. Let C be a conjugacy
class of involutions in W . Let C be a left cell contained in Cw0. Then C w0 is a left
contained in C and we obtain

〈ρC , [C ]〉W = 〈ρC ⊗ ǫ, [C ]⊗ ǫ〉W = 〈ρCw0
, [C w0]〉W

where the last equality holds by Remark 5.1 and Lemma 5.2. Now, by assump-
tion, the right hand side equals |(Cw0)∩ (C w0)| = |C ∩C |, as desired. The reverse
implication is then clear.

Definition 5.4 ([LuB, 8.1]). — Let C be a two-sided cell in W . We say that C is
strongly non-cuspidal if there exists a proper standard parabolic subgroup W ′ $W

and a two-sided cell C′ in W ′ such that the “truncated induction” JW
W ′ (as defined

in [LuB, 4.1.7]) establishes a bijection

IrrC′(W
′)→ IrrC(W ), χ ′ 7→ JW

W ′
(χ ′).

We say that C is non-cuspidal if C or Cw0 is strongly cuspidal (where w0 ∈W is the
longest element). Finally, we say that C is cuspidal if C is not non-cuspidal.
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(Note that, in [LuB, 8.1], the formulation is in terms of “families” of Irr(W );
however, as already mentioned at the beginning of Section 4, it is known that the
sets IrrC(W ) are precisely the “families” of Irr(W ).)

Remark 5.5. — Let C be a two-sided cell in W and assume that C is strongly non-

cuspidal. Let W ′,C′ be as in Definition 5.4. Let

χ = JW
W ′
(χ ′) ∈ IrrC(W ) where χ ′ ∈ IrrC′(W

′).

By the definition of the truncated induction, we have aχ = aχ ′ . Using [LuB, 4.1.6],
one easily sees that also fχ ′ = fχ ′ . In particular, C is smooth if and only if C′ is
smooth (see Lemma 2.7).

Lemma 5.6. — Let C be a strongly non-cuspidal two-sided cell in W . Let W ′,C′ be as in

Definition 5.4. Then Kottwitz’s Conjecture holds for C if the following three conditions

are satisfied.

(K1) For any conjugacy class of involutions C in W and any left cells C ,C ′⊆C such that

[C ] = [C ′], we have |C ∩C |= |C ∩C ′|.

(K2) Kottwitz’s Conjecture holds for the two-sided cell C′ in W ′.

(K3) For any conjugacy class of involutions C in W such that C ∩W ′ 6=∅, we have

〈ρC∩W ′ ,χ
′〉W ′ ≤



ρC , JW
W ′
(χ ′)
�

W for all χ ′ ∈ IrrC′(W ′).

Proof. — Let C be any conjugacy class of involutions in W . First we show that

(∗) 〈ρC , [C ]〉W ≥ |C ∩C | for all left cells C ⊆C.

Indeed, let C be a left cell of W which is contained in C. If C ∩C = ∅, then (∗) is
obvious. Now assume that C ∩C 6= ∅. By [Lu3, §3] (see also [Ge2, Lemma 5.6]),
there exists a left cell C ′ of W ′ which is contained in C′ and such that [C ] = JW

W ′
([C ′]).

Since JW
W ′

establishes a bijection between IrrC′(W ′) and IrrC(W ), we have

〈ρC , [C ]〉W = 〈ρC , JW
W ′
([C ′])〉W .

Using now (K2) and (K3), we obtain

〈ρC , JW
W ′
([C ′])〉W ≥ 〈ρC∩W ′ , [C

′]〉W ′ = |(C ∩W ′)∩C ′|= |C ∩C ′|.

On the other hand, let C1 be the left cell of W such that C ′⊆C1. Then we also have
[C1] = JW

W ′([C
′]); see [LuB, 5.28] (or the argument in the proof of Case 1 in [Lu5,

Lemma 22.2]). Now, since [C1] = JW
W ′([C

′]) and since JW
W ′ establishes a bijection be-

tween IrrC′(W ) and IrrC(W ), we conclude that [C ′] and [C1] have the same number
of irreducible constituents (counting multiplicities). Hence, by Proposition 1.6, C ′

and C1 contain the same number of involutions. Consequently, since C ′ ⊆ C1, all
the involutions in C1 must be contained in C ′ and so C ∩C ′ =C ∩C1. In particular,
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this shows that |C ∩C ′| = |C ∩C1| = |C ∩C |, where the second equality holds by
(K1). Thus, (∗) is proved. Once this is established, it actually follows that we must
have equality in (∗). Indeed, let C1, . . . ,Cm be the conjugacy classes of involutions
in W ; then I=C1 ∪ . . .∪Cm is the set of all involutions in W . By (∗), we have

〈ρI, [C ]〉W =
∑

1≤i≤m

〈ρCi
, [C ]〉W ≥
∑

1≤i≤m

|Ci ∩C |= |I∩C |.

However, by Theorem 4.9, we know that the left hand side equals the right hand
side. Hence, all the inequalities in (∗) must be equalities, as claimed. Thus, Kot-
twitz’s Conjecture holds for C.

Remark 5.7. — We note that an analogous version of the inequality in (K3) al-
ways holds where JW

W ′
(χ ′) is replaced by IndW

W ′
(χ ′). In fact, for any parabolic sub-

group W ′ ⊆W and any conjugacy of involutions C in W such that C ′ ∩W ′ 6= ∅,
we have

〈ρC∩W ′ ,χ
′〉W ′ ≤



ρC , IndW
W ′
(χ ′)
�

W for all χ ′ ∈ Irr(W ′).

This is seen as follows. Let VC be as in Definition 4.6. From the formulae for
the action of W on VC , it is clear that the subspace U ⊆ VC spanned by the basis
elements {a w | w ∈ C ∩W ′} is a W ′-submodule. Furthermore, the character of
this W ′-module is just ρC∩W ′ . Thus, we can write ResW

W ′
(ρC ) =ρC∩W ′ +ψ for some

character ψ of W ′. This yields that

〈ρC ′∩W ′ ,χ
′〉W ′ ≤ 〈ResW

W ′
(ρC ),χ

′〉W ′ for all χ ′ ∈ Irr(W ′)

and so the assertion immediately follows by Frobenius reciprocity.

Lemma 5.8. — Let W ′ ⊆ W be a standard parabolic subgroup and C ′ be a conjugacy

class of involutions in W ′. Let C be the conjugacy class of W such that C ′ ⊆C . Then



ρC ,χ
�

W ≤



IndW
W ′
(ρC ′),χ
�

W for all χ ∈ Irr(W ).

Proof. — We can find a representative σ ∈ C ′ such that σ is the longest element
in a standard parabolic subgroup W ′′ ⊆W ′ and such that σ is central in W ′′; see
[GePf, 3.2.10]. Then, by Kottwitz’ original construction in [Ko], we have

ρC = IndW
CW (σ)

(ǫσ) and ρC ′ = IndW ′

CW ′ (σ)
(ǫ′
σ
),

where ǫσ : CW (σ) → {±1} and ǫ′
σ

: Cw ′(σ) → {±1} are certain linear characters. To
describe these characters explicitly, let Φ be the root system of W ; let Φ = Φ+∐Φ−

be the decomposition into positive and negative roots (defined by the given set
of generators S of W ). Let Φ′′ be the parabolic subsystem defined by W ′′. Then,
for any w ∈ CW (σ), we have ǫσ(w ) = (−1)k where k is the number of positive
roots in Φ′′ which are sent to negative roots by w (see also [GeMa, Rem. 2.2]). The
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definition of ǫ′
σ

is analogous. By this description, it is clear that ǫ′
σ

is the restriction
of ǫσ to W ′. Hence, we can write

Ind
CW (σ)

CW ′ (σ)
(ǫ′
σ
) = ǫσ+ψ

for some character ψ of CW (σ). By the transitivity of induction, this yields

IndW
W ′
(ρC ′) = IndW

CW ′ (σ)
(ǫ′
σ
) = IndW

CW (σ)

�

ǫσ+ψ
�

=ρC + IndW
CW (σ)

(ψ),

which immediately implies the assertion.

6. Kottwitz’ Conjecture for type Bn

Throughout this section, let W =Wn be of type Bn with generators t ,s1, . . . ,sn−1

and diagram given as follows.

i i i · · · i
t s1 s2 sn−1

The aim of this section is to prove that Conjecture 4.7 holds for Wn . For this pur-
pose, we first need to recall some results from [Ko] concerning the decomposition
of the character ρC into irreducibles.

Example 6.1. — A complete set of representatives of the conjugacy classes of in-
volutions in Wn is given as follows. Let l , j be non-negative integers such that
l +2j ≤ n . Then set

σl ,j := t1 · · · t l s l+1s l+3 · · · s l+2j−1 ∈Wn ,

where t1 := t and t i := s i−1t i−1s s−i for 2 ≤ i ≤ n . Note that σl ,j is the longest
element in a parabolic subgroup of Wn of type Bl × A1 × . . . × A1, where the A1

factor is repeated j times. In particular, σl ,j has minimal length in its conjugacy
class; see also [GePf, 3.2.10]. Let Cl ,j be the conjugacy class containing σl ,j and
write ρl ,j = ρCl ,j

. The irreducible characters of Wn are parametrised by pairs of
partitions (α,β ) such that |α|+ |β |= n . We write this as

Irr(Wn ) = {χ
(α,β ) | (α,β ) ⊢ n}.

Now let χ ∈ Irr(W ). We associate with χ two invariants d (χ) and j0(χ), as follows.
Let (α,β ) ⊢ n be such that χ =χ (α,β ). Choose m ≥ 0 such that we can write

α= (0≤α1 ≤α2 ≤ . . .≤ αm+1) and β = (0≤β1 ≤β2 ≤ . . .≤βm ).

As in [LuB, §4.5], we have a corresponding “symbol”

Λm (χ) :=

�

λ1,λ2, . . . ,λm+1

µ1,µ2, . . . ,µm

�
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where λi :=α+ i −1 for 1≤ i ≤m +1 and µi =βi + i −1 for 1≤ i ≤m . We set

d (χ) := number of i ∈ {1, . . . ,m } such that µi 6∈ {λ1,λ2, . . . ,λm+1},

j0(χ) :=
∑

1≤i≤m

min{αi+1,βi }.

(Note that these definitions do not depend on the choice of m .) By [Lu5, 22.14],
we have fχ = 2d (χ); furthermore,

χ is special ⇐⇒ λi ≤µi ≤λi+1 for 1≤ i ≤m .

Now, by [Ko, (3.2.4)], the following hold:

(a) 〈ρl ,j ,χ〉Wn
= 0 unless χ is special and j + l = |β |.

(b) If χ is special and j + l = |β |, then

〈ρl ,j ,χ〉Wn
=

�

d (χ)

j0(χ)− j

�

(binomial coefficient);

in particular, the multiplicity is zero unless j0(χ)−d (χ)≤ j ≤ j0(χ).

Consequently, if I denotes the set of all involutions in Wn , then

ρI =
∑

l ,j

ρl ,j =
∑

χ∈S (Wn )

2d (χ)χ .

Remark 6.2. — By [LuB, 8.1], we have an explicit combinatorial description of
the cuspidal and non-cuspidal two-sided cells in Wn . Let us briefly recall the
main points of this description. Let C be any two-sided cell and χ0 ∈ IrrC(Wn ) the
unique special character. Let (α,β ) ⊢n be such that χ0 = χ (α,β ). Write

α= (0≤ α1 ≤ . . .≤αm+1) and β = (0≤β1 ≤ . . .≤βm )

for some m ≥ 0. Consider the corresponding symbol

Λm (χ0) =

�

λ1,λ2, . . . ,λm+1

µ1,µ2, . . . ,µm

�

; see Example 6.1.

We assume that m is chosen such that 0 does not appear in both rows of Λm (χ).
First of all, C is cuspidal if and only if n = d 2 + d for some d ≥ 1 and Λm (χ0)

contains each of the numbers 0,1, . . . ,2m exactly once.
Now consider the general case. Let t0 be the largest entry in Λm (χ0). Then C is

strongly non-cuspidal if there is some i ∈ {0,1, . . . , t0−1}which does not appear in
any of the two rows of Λm (χ0). Let us now assume that this is the case. Then there
exists a parabolic subgroup W ′ $Wn and a two-sided cell C′ of W ′ such that J

Wn

W ′

establishes a bijection

IrrC′(W
′)→ IrrC(Wn ), χ ′ 7→ JWn

W ′
(χ ′).

More precisely, as discussed in [LuB, 8.1], the subgroup W ′ and the two-sided cell
C′ can be chosen as follows, where χ ′

0
∈ IrrC′(W ′) is the unique special character.
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(a) There exists some r ∈ {1, . . . ,n} such that W ′ = Wn−r × Hr where Wn−r =

〈t ,s1, . . . ,sn−r−1〉 (of type Bn−r ) and Hr = 〈sn−r+1, . . . ,sn−1〉
∼=Sr .

(b) We have χ ′
0
=ψ0⊠ ǫr where ψ0 ∈ Irr(Wn−r ) is special and ǫr denotes the sign

character on Hr ; furthermore, Λm (χ0) is obtained by increasing the largest r

entries in the symbol Λm (ψ0) by 1.
(c) We have d (χ0) = d (ψ0) and j0(χ0) = j0(ψ0)+ ⌊r /2⌋.

Only (c) requires a proof here. (Both (a) and (b) are explicitly discussed in [LuB,
8.1].) As remarked in Example 6.1, we have fχ0

= 2d (χ0) and fψ0
= 2d (ψ0). So the

first equality follows from Remark 5.5. To see the second equality in (c), consider
the symbol Λm (χ0). Since χ0 is special, the largest r entries in Λm (χ0) are the last r

terms in the sequence

λ1, µ1, λ2, µ2, . . . , λm , µm , λm+1.

Now consider the pair of partitions (α′,β ′) ⊢ n − r such that ψ0 = χ (α
′,β ′); we also

write α′ = (0 ≤ α′
1
≤ . . . ≤ α′

m+1
) and β ′ = (0 ≤ β ′

1
≤ . . . ≤ β ′

m
). By (b), the symbol

Λm (χ0) is obtained by increasing the largest r entries in the symbol Λm (ψ0) by 1.
Consequently, the sequence

α1, β1, α2, β2, . . . , αm , βm , αm+1

is obtained from the sequence

α′
1
, β ′

1
, α′

2
, β ′

2
, . . . , α′

m
, β ′

m
, α′

m+1

by increasing the last r terms in the latter sequence by 1. This then immediately
yields the statement about d (χ0). Thus, (c) is proved.

Theorem 6.3. — Let W =Wn be of type Bn , as above. Let C be a two-sided cell of Wn and

χ0 ∈ IrrC(Wn ) be the unique special character. Let C be a conjugacy class of involutions

in Wn . Then

〈ρC , [C ]〉Wn
= 〈ρC ,χ0〉Wn

= |C ∩C | for any left cell C ⊆C.

Thus, Kottwitz’ Conjecture 4.7 holds for Wn .

Proof. — The first equality is seen as follows. As already remarked in Exam-
ple 4.5, we have 〈[C ],χ0〉Wn

= 1 for every left cell C ⊆ C. On the other hand, by
Example 6.1(a), all constituents of ρC are special. Hence, we have 〈ρC , [C ]〉Wn

=

〈ρC ,χ0〉Wn
, as required.

We now show by induction on n that Kottwitz’ Conjecture holds. If n = 1, then
W2
∼=S2 and the assertion holds by Example 4.10. Now assume that n ≥ 2. First
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we consider the case where C is strongly non-cuspidal. Let W ′ =Wn−r ×Hr and
ψ0 ∈ Irr(Wn−r ) be as in Remark 6.2, where r ∈ {1, . . . ,n}. Then

χ0 = JW
W ′
(χ ′

0
) where χ ′

0
=ψ0⊠ ǫr .

Let C′ be the two-sided cell of W ′ such that χ ′
0
∈ IrrC′(W ′). We now check that the

assumptions (K1), (K2), (K3) in Lemma 5.6 are satisfied.
Assumption (K1) certainly holds by the identity in Example 4.5, while (K2)

holds by our inductive hypothesis. Now consider (K3).
Let χ ′ ∈ IrrC′(W ′) and C be a conjugacy class of involutions in Wn such that
C ∩W ′ 6= ∅. If 〈ρC∩W ′ ,χ ′〉W ′ = 0, then the assertion is obvious. Now assume that
〈ρC∩W ′ ,χ ′〉W ′ 6= 0. Then there is a conjugacy class of involutions C ′ in W ′ such that

(△) C ′ ⊆C ∩W ′ and 〈ρC ′ ,χ
′〉W ′ 6= 0.

(We shall see that C ′ is uniquely determined with property.) Since W ′ is a direct
product, we can write C ′ as a direct product of a conjugacy class in Wn−r and a
conjugacy class in Hr . Thus, using the notation in Examples 4.10 and 6.1, we have

C ′ =Cl ,j ′ ×Ck where l , j ′,k ≥ 0, l +2j ′≤ n − r, 2k ≤ r ;

here, the class Cl ′,j ′ ⊆ Wn−r has a representative σl ,j ′ given by the expression in
Example 6.1 and the class Ck ⊆ Hr has a representative σk as in Example 4.10.
(Explicitly, we have σk = sn−r+1sn−r+3 · · · sn−r+2k−1.) We note that σl ,j ′ ×σk ∈ C ′ is
the longest element in a parabolic subgroup of Wn of type Bl ×A1× . . .×A1, where
the A1 factor is repeated j ′+k times. Hence, since C ′ ⊆C , we must have

C =Cl ,j where j = j ′+k .

Now, we can also write χ ′ =ψ⊠ ǫr where ψ ∈ Irr(Wn−r ). Then we obtain

〈ρC ′ ,χ
′〉W ′ = 〈ρl ,j ′ ,ψ〉Wn−r

〈ρk ,ǫr 〉Hr
,

Since this is assumed to be non-zero, we conclude that

〈ρl ,j ′ ,ψ〉Wn−r
6= 0 and 〈ρk ,ǫr 〉Hr

6= 0.

By Example 6.1, the first condition implies that ψ is special and, hence, χ ′ is spe-
cial. Thus, we must have χ ′ = χ ′

0
and ψ = ψ0. By Example 4.10(b), the second

condition implies that 〈ρk ,ǫr 〉Hr
= 1 and k = ⌊r /2⌋. In particular, the class C ′ in (△)

is uniquely determined. Combining these statements, we obtain that

〈ρC∩W ′ ,χ
′〉W ′ = 〈ρC ′ ,χ

′〉Wn
= 〈ρl ,j ′ ,ψ0〉Wn−r

.

Since χ ′ =χ ′
0
, we have χ0 = J

Wn

W ′
(χ ′); since C =Cl ,j , we are finally reduced to show-

ing that

〈ρl ,j ′ ,ψ0〉Wn−r
≤ 〈ρl ,j ,χ0〉Wn

where j = j ′+k and k = ⌊r /2⌋.
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But, by Remark 6.2(c), we have d (χ0) = d (ψ0) and j0(χ0) = j0(ψ0) + ⌊r /2⌋. Hence,
the multiplicity formula in Example 6.1 shows that we actually have

〈ρl ,j ′ ,ψ0〉Wn−r
= 〈ρl ,j ,χ0〉Wn

.

Thus, (K3) is satisfied and so Kottwitz’ Conjecture holds for C. Since the longest
element w0 ∈ Wn is central in Wn , we can apply Lemma 5.3 which shows that
Kottwitz’s Conjecture will also hold for Cw0. By [LuB, 8.1], these arguments cover
all non-cuspidal two-sided cells in Wn .

It remains to consider the case where C is a cuspidal two-sided cell. By Re-
mark 6.2, such a two-sided cell can only exist if n = d 2+d for some d ≥ 1, in which
case it is uniquely determined. So let us now assume that n = d 2+d where d ≥ 1.
Let Wn =
∐

0≤i≤N
Ci be the partition into two-sided cells where C0 is the unique

cuspidal two-sided cell. For 0≤ i ≤N , let χi ∈ IrrCi
(Wn ) be the unique special char-

acter and let C i ⊆ Ci be a left cell. Let C be a conjugacy class of involutions. To
obtain a statement about 〈ρC ,χ0〉Wn

, we consider
∑

0≤i≤N

χi (1)〈ρC ,χi 〉Wn
=
D

ρC ,
∑

0≤i≤N

χi (1)χi

E

Wn

.

Since all constituents of ρC are special, the sum on the right hand side can be
extended over all χ ∈ Irr(Wn ), in which case we just obtain the character of the
regular representation of Wn . Hence, the right hand side equals ρC (1). Now,
for any i ≥ 1, we already know that Kottwitz’s Conjecture holds for Ci and so
〈ρC ,χi 〉Wn

= 〈ρC , [C i ]〉Wn
= |C ∩C i |. Hence, we find that

χ0(1)〈ρC ,χ0〉Wn
=ρC (1)−
∑

1≤i≤N

χi (1)|C ∩C i |.

On the other hand, using the identity in Example 4.5, we obtain
∑

0≤i≤N

χi (1)|C ∩C i |=
∑

0≤i≤N

|C ∩Ci |= |C |.

Hence, we find that

χ0(1)|C ∩C0|= |C |−
∑

1≤i≤N

χi (1)|C ∩C i |.

Since ρC (1) = |C |, we deduce that

χ0(1)〈ρC ,χ0〉Wn
=χ0(1)|C ∩C0|

and so 〈ρC , [C0]〉Wn
= 〈ρC ,χ0〉Wn

= |C ∩C0|, as required.

7. Kottwitz’ Conjecture for type Dn

Throughout this section, let n ≥ 2 and W =W ′
n

be of type Dn , with generators
u ,s1, . . . ,sn−1 and diagram given as follows.
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i

i

�
�
��

P
P
PP i i · · · i

s1

u

s2 s3 sn−1

By convention, we will also set W ′
0
=W ′

1
= {1}. The aim of this section is to prove

that Conjecture 4.7 holds for W ′
n
. For this purpose, it will be convenient to use an

embedding of W ′
n

into the group Wn of type Bn , with generators t ,s1, . . . ,sn−1 and
diagram as in the previous section. Setting u = t s1t (and identifying the remain-
ing generators s1, . . . sn−1), we can identify W ′

n
with a subgroup of Wn . Thus, we

have Wn
∼=W ′

n
⋊ 〈θ 〉 where θ : W ′

n
→W ′

n
is the automorphism given by conjugation

with t . In this setting, a large part of the argument will be analogous to that for
type Bn . However, when n is even, there are some particularly intricate questions
to solve concerning the unique conjugacy class of involutions in W ′

n
which is not

invariant under θ .

Example 7.1. — Let C ′ be a conjugacy class of involutions in W ′
n
. If θ (C ′) = C ′,

then C ′ is a conjugacy class in Wn and the decomposition of ρC ′ into irreducible
characters of W ′

n
is given by formulae similar to those for type Wn in Example 6.1;

see [Ko, §3.3]. In particular, we have

(a) 〈ρC ′ ,χ〉W ′n = 0 unless χ ∈ Irr(W ′
n
) is special and can be extended to Wn .

Classes which are not θ -invariant can only exist if n is even, and then we will also
encounter characters which can not be extended to Wn . So let us now assume that
n is even. Let C ′

0
be the conjugacy class of W ′

n
containing the element

σ0,n/2 := s1s3s5 · · · sn−1.

Then θ (C ′
0
) 6= C ′

0
and {C ′

0
,θ (C ′

0
)} is the only pair of conjugacy classes of invo-

lutions with this property; see [GePf, 3.4.12]. To describe the decomposition
of ρC ′0 into irreducible characters, we introduce some further notation. For ev-
ery partition α ⊢ n/2, we define two characters χα,±1 ∈ Irr(W ′

n
), as follows. Let

Hn = 〈s1, . . . ,sn−1〉
∼=Sn . Let 2α∗ denote the partition of 2n obtained by multiply-

ing all parts of the conjugate partition α∗ by 2 and consider the corresponding
Young subgroup H2α∗ ⊆ Hn . (We have H2α∗

∼=S2α∗ .). Let ǫ2α∗ be the sign character
of H2α∗ and let w2α∗ be the longest element in H2α∗ . Then, by [GePf, 5.3.2], there is
a unique χα,±1 ∈ Irr(W ′

n
) such that bχ = ℓ(w2α∗) and

Ind
W ′n
H2α∗
(ǫ2α∗) =χ

α,+1+ sum of various χ ∈ Irr(W ′
n
) with bχ > ℓ(w2α∗);

furthermore, χα,−1 is defined as the conjugate of χα,+ under θ . It is well-known
that {χα,±1 | α ⊢ n/2} are precisely the irreducible characters of W ′

n
which can not

be extended to Wn ; see [LuB, 4.6], [GePf, §5.6]. By [Ko, §3.3], the decompositions
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of ρC ′0 and ρθ (C ′0) into irreducible characters are given as follows:

(b) ρC ′0 =
∑

α⊢n/2

χα,να and ρθ (C ′0) =
∑

α⊢n/2

χα,−να

where να ∈ {±1} for all α ⊢n/2.

Note that the above signs have not been determined in [Ko]. It will be essential
to fix these signs in order to prove Kottwitz’ Conjecture. In fact, the following
example shows that this conjecture can only hold if να =+1 for all α ⊢ n/2.

Example 7.2. — Assume that n is even and ley C ′
0

be the conjugacy class of the
elementσ0,n/2, as above. By [LuB, 4.6.10], we have for any χ =χα,±1 where α ⊢n/2:

(a) fχ = 1 and aχ = bχ = ℓ(w2α∗)

Consequently, each χα,±1 is special and we have

(b) χα,+1 = J
W ′n
H2α∗
(ǫ2α∗) for any α ⊢ n/2;

see [LuB, 4.6.2]. Let C±
α

denote the two-sided cell such that χα,±1 ∈ IrrC±α (W
′

n
). Then

C±
α

is smooth, by (a) and Lemma 2.7. We also have:

(c) C ′
0
∩C+

α
6=∅ and θ (C ′

0
)∩C−

α
6=∅ for all α ⊢ n/2.

Indeed, (a), (b) and Example 2.3 show that w2α∗ ∈ C+α . Now recall that H2α∗ is iso-
morphic to a direct product of various symmetric groups of even degrees, where
the sum of all these degrees is n . Since the longest element in S2m (any m ≥ 1)
is a product of m disjoint 2-cylces, we see that w2α∗ is a product of n/2 disjoint
2-cycles and so we have w2α∗ ∈ C

′
0
. Hence, C ′

0
is the unique conjugacy class of

involutions in W ′
n

such that C ′
0
∩C+

α
6=∅ (see Corollary 3.3). Similarly, θ (C ′

0
) is the

unique conjugacy class of involutions in W ′
n

such that θ (C ′
0
)∩C+

α
6=∅.

In particular, if C is a left cell contained in C+
α

, then [C ] = χα,+1 and |C ′
0
∩C |= 1.

So, if Kottwitz’ Conjecture holds for W ′
n
, then we must have 〈ρC ′0 ,χα,+1〉= 1.

Now, determining the signs in Example 7.1(b) is related to the subtle issue of
distinguishing the two characters χα,+1 and χα,−1 for a given partition α ⊢ n/2. We
shall need the following version of the “branching rule” for the characters of W ′

n
.

Lemma 7.3. — Assume that n ≥ 2 is even. Consider the parabolic subgroup W ′ =

W ′
n−2
×H2 where W ′

n−2
= 〈u ,s1, . . . ,sn−3〉 (type Dn−2) and H2 = 〈sn−1〉. Let α′ ⊢ (n − 2)/2

and denote by ǫ1 the sign character on the factor H2. Then

Ind
W ′n
W ′

�

χα
′,+1⊠ ǫ1

�

=
∑

α

χα,+1 + “further terms”,
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where the sum runs over all partitions α ⊢ n/2 such that α is obtained by increasing one

part of α′ by 1; the expression “further terms” stands for a sum of various χ ∈ Irr(W ′
n
)

which can be extended to Wn . In particular,
D

Ind
W ′n
W ′

�

χα
′,+1⊠ ǫ1

�

,χα,−1
E

W ′n

= 0 for all α ⊢ n/2.

A proof can be found in [Ge7].

Proposition 7.4. — Assume that n ≥ 2 is even. Then, with the notation in Example 7.1,

we have

ρC ′0 =
∑

α⊢n/2

χα,+1 and ρθ (C ′0) =
∑

α⊢n/2

χα,−1.

Proof. — We prove this by induction on n/2. If n = 2, then the assertion is easily
checked directly. The character table of W ′

2
= 〈u ,s1〉with the appropriate labelling

of the characters is given as follows.

1 s1 u s1u

χ (2,∅) 1 1 1 1

χ (11,∅) 1 −1 −1 1

χ (1,+) 1 −1 1 −1

χ (1,−) 1 1 −1 −1

ρC ′0 =χ
(1,+),

ρθ (C ′0) =χ
(1,−).

Now assume that n ≥ 4. Let W ′ = W ′
n−2
⊗H2 be as in Lemma 7.3. As already

noted in the above proof, the intersection C ′
0
∩W ′ is just the conjugacy class of W ′

containing σ0,n/2. Hence, we are in the setting of Lemma 5.8 and so



ρC ′0 ,χα,−
�

W ′n
≤
D

Ind
W ′n
W ′
(ρC ′0∩W ′),χ

α,−
E

W ′n

for all α ⊢ n/2.

It will now be sufficient to show that the scalar product on the right hand side is
zero for all α ⊢ n/2. Now, since σ0,n/2 = σ0,(n−2)/2 × sn−1 ∈W ′

n−2
×H2, we can apply

induction and obtain
ρC ′0∩W ′ =
� ∑

α′⊢n/2

χα
′,+1
�

⊠ ǫ1.

Then Lemma 7.3 implies that
D

Ind
W ′n
W ′

�

ρC ′0∩W ′
�

,χα,−1
E

W ′n

= 0 for all α ⊢n/2,

as required.

Remark 7.5. — Let C be any conjugacy classes of involutions in Wn . We can as-
sociate with C a character ρ̃C of Wn , as follows. If C is contained in W ′

n
, let ρC

be the character of W ′
n

as defined in Definition 4.6. Then ρ̃C will be the canonical
extension described in [GeMa, §2]. If C is contained in the coset W ′

n
t , then we

consider a similar extension of the “twisted” character defined in [Ko, 4.2]. By a
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combination of the results in [Ko, §3.3, §5.4] with [GeMa, Prop. 3.5], we obtain
an explicit description of the decomposition of ρ̃C into irreducible characters of
Wn , similar to that in Example 6.1. One can then essentially argue as in the proof
of Theorem 6.3 to show that



ρ̃C , Ind
Wn

W ′n
([C ])
�

Wn
= |C ∩ (C ∪ t C )| for any left cell C ⊆W ′

n
.

The appropriate framework for doing this is provided by [GeJa, §2.4]; in this
set-up, the sets C ∪ t C can actually be interpreted as left cells for Wn , but with
respect to the non-constant weight function with value 0 on t and value 1 on all
s i ; the characters of the corresponding left cell modules are given by the induced
characters on the left hand side. The details of this argument can be found in
[Ge7].

Corollary 7.6. — Let W = W ′
n

be of type Dn , as above. Let C be a two-sided cell of

W ′
n

and χ0 ∈ IrrC(W ′
n
) be the unique special character. Let C ′ be a conjugacy class of

involutions in W ′
n
. Then

〈ρC , [C ]〉W ′n = 〈ρC ,χ0〉W ′n = |C ∩C | for any left cell C ⊆C.

Thus, Kottwitz’ Conjecture 4.7 holds for W ′
n
. In particular, if n is even and C ′

0
denotes

the conjugacy class of the element σ0,n/2 = s1s3 · · · sn−1, then

〈ρC ′0 , [C ]〉W ′n = |C
′

0
∩C |= 1 for any left cell C ⊆C+

α
and any α ⊢ n/2,

where C+
α

is the smooth two-sided cell as in Example 7.2.

Proof. — The equality 〈ρC , [C ]〉W ′n = 〈ρC ,χ0〉W ′n is shown as in the proof of Theo-
rem 6.3, using Example 7.1(a), (b).

To prove Kottwitz’ Conjecture, let us first deal with the case where C ′ is a
conjugacy class of involutions in W ′

n
such that θ (C ′) =C ′. Then C ′ is a conjugacy

class in Wn and we can use the identity in Remark 7.5. By Frobenius reciprocity
we obtain:

(a) 〈ρC ′ , [C ]〉W ′n = |C
′ ∩C | for any left cell C ⊆W ′

n
.

It now remains to deal with the case where n is even and C ′ is such that θ (C ′) 6=
C ′. Let C ′ =C ′

0
be the conjugacy class in Example 7.1. First we will show that

(b) 〈ρC ′0 , [C ]〉W ′n ≤ |C
′

0
∩C | for any left cell C ⊆W ′

n
.

Indeed, let C be a left cell in W ′
n
. If 〈ρC ′0 , [C ]〉W ′n = 0, then (a) is obvious. Now

assume that 〈ρC ′0 , [C ]〉W ′n 6= 0. Then, by Proposition 7.4, there exists some α ⊢ n/2

such that 〈χα,+1, [C ]〉W ′n 6= 0. So, using the notation in Example 7.2, we have C ⊆ C+
α

and C ′
0
∩ C+

α
6= ∅. Since C+

α
is smooth, we have [C ] = χα,+1 (see Lemma 2.7) and

C ′
0
∩C 6= ∅ (see Corollary 3.3). Consequently, we see that (b) holds. Once this
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is established, it actually follows that we must have equality in (b). Indeed, let
W =
∐

1≤i≤m C i be the partition into left cells. By (b), we have
D

ρC ′0 ,
∑

1≤i≤m

[C i ]
E

W ′n

=
∑

1≤i≤m

〈ρC ′0 , [C i ]〉W ′n ≤
∑

1l≤i≤m

|C ′
0
∩C i |= |C

′
0
|.

But,
∑

1≤i≤m
[C i ] is the character of the regular representation of W ′

n
and so the left

hand side also equals |C ′
0
| = ρC ′0(1). So all the inequalities in (b) must be equali-

ties, as required. The argument for θ (C ′
0
) is completely analogous. Note that, by

Example 7.1(b), the character ρθ (C ′0) is the conjugate of ρC ′0 under θ .
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