On the discriminating power of tests in resource lambda-calculus

Flavien Breuvart

To cite this version:

Flavien Breuvart. On the discriminating power of tests in resource lambda-calculus. 2012. hal00698609v1

HAL Id: hal-00698609
https://hal.science/hal-00698609v1
Preprint submitted on 21 May 2012 (v1), last revised 22 May 2012 (v2)

HAL is a multi-disciplinary open access archive for the deposit and dissemination of scientific research documents, whether they are published or not. The documents may come from teaching and research institutions in France or abroad, or from public or private research centers.

L'archive ouverte pluridisciplinaire HAL, est destinée au dépôt et à la diffusion de documents scientifiques de niveau recherche, publiés ou non, émanant des établissements d'enseignement et de recherche français ou étrangers, des laboratoires publics ou privés.

On the discriminating power of tests in ressource λ-calculus

May 21, 2012

Abstract

Since the discovery of the differential linear logic (DLL), it inspired numerous domains. In denotational semantics, categorical models of DLL are now commune, and the simplest one is Rel, the category of sets and relations. In proof theory this naturally gave birth to differential proof nets that are full and complete for DLL. In turn, these tools can naturally be translated to intuitionistic counterpart. By taking the coKleisly category associated to the ! comonade, Rel becomes MRel, a model of the λ-calculus that contain a notion of differentiation. And proof nets can be used naturally to extend the λ-calculus into the lambda calculus with resources, a calculus that contains notions of linearity and differentiations. Of course MRel is a model of the λ-calculus with resources, and it has been proved adequate, but is it fully abstract?

That was a strong conjecture of Bucciarelli, Carraro, Ehrhard and Manzonetto in [4]. However, in this paper we exhibit a counter-example. Moreover, to give more intuition on what it does and to look for more generality, we will use an extension of the resource λ-calculus also introduced by Bucciarelli et al in [4] for which \mathcal{M}_{∞} is fully abstract, the tests.

1 Introduction

The first extension of the λ-calculus with resources, by Boudol in 1993 [1], was introducing a special resource sensitive application that may involve multisets of affine arguments (each one has to be used at most one time). This was a natural way to export resource sensitiveness to the functional setting. However, gathering no known and interesting properties (confluence, linearity...), it was not fully exploided.

Later on, Ehrhard and Regnier, working on functional interpretation of differential proof nets, discovered a calculus similar to Boudol's one, named differential λ calculus [9]. By adding to the λ-calculus a derivative operation $\frac{\partial M}{x}(N)$, which syntactically correspond to a linear substitution of x by N in M, it recovers the operations of resources. This is done through the translation $(\lambda x . M)\left[N_{1}, \ldots, N_{n} ; N^{!}\right] \simeq\left(\lambda x . \frac{\partial^{(n)} M}{x}\left(N_{1}, \ldots, N_{n}\right)\right) N$ where N_{i} are the linear
arguments and N is the non linear one. This more semantical view even allow for the generalisation of the operation and recover excellent semantical properties (confluence, Taylor expansion...). We will adopt the syntax of [12] that re-implement improvements from differential λ-calculus into Boudol's calculus, and we will call it $\partial \lambda$-calculus.

The category Rel of set and relations is known to model the linear logic, and, despite its high degree of degeneration $\left(\right.$ Rel $^{o p}=$ Rel $)$, it is a very natural construction. Indeed, what appeared to be a degeneration is in reality a natural choice that preserves all proofs. But our principal interest for this category is that it models the differential linear logic, and of known such category it is one of the simplest and more natural.

As for every category of models of linear logic, the interpretation of the ! induced a comonade. From that comonade we can construct the co-kleisly category. In the case of Rel, this new category, MRel, corresponds to the category of sets with, as morphisms from A to B, the relations from $\mathcal{M}_{f}(A)$ (the finite multisets over A) to B. It is then a model of the λ-calculus and of the $\partial \lambda$-calculus. This construction being the most natural we can do, MRel is, a priori, one of the most natural models of the $\partial \lambda$-calculus (even if non well pointed [6]).

It is only natural, then, to question on the depth of the link among these reflexive elements of MRel and the $\partial \lambda$ calculus. And more precisely among MRel's canonical reflexive element \mathcal{M}_{∞} and the $\partial \lambda$ calculus. Until now we knew that \mathcal{M}_{∞} was adequate for the λ-calculus, i.e. that two terms carying the same interpretations in MRel behave the same way on all contexts. But we did not know anything about the counter part, named full abstraction.

This question has been heavily studied, however, since \mathcal{M}_{∞} have been proved (resp. in [11], [5] and [4]) fully abstract not only for both of the principal subcalculi of $\partial \lambda$-calculus, namely the usual λ-calculus and Kfoury's linear calculus of [10], but also for the extension with tests of [4] (denoted $\tau \partial \lambda$-calculus). Therefore Bucciarelli et al emit in [4] a strong conjecture of full abstraction for the $\partial \lambda$-calculus.

However, and it is our purpose here, a counter example can be found. In order to exhibit this counter example, we will take an unusual shortcut using full abstraction result for $\tau \partial \lambda$-calculus. Indeed, we will prove a slightly more general theorem: the failure of full abstraction for $\partial \lambda$-calculus of any model that is fully abstract for $\tau \partial \lambda$-calculus. Due to this generalization we will not have to introduce the full description of \mathcal{M}_{∞} in the core of the article (it is available in annexes).

Additionally to be considerably easier and more intuitive than the direct and usual method, this way of proceeding is part of a larger study of full abstraction. Indeed, we are looking for a mechanical way to tackle full abstraction problems in two steps. First we extend the calculus with well chosen semantical objects in order to reach the definability of compact elements. And then to study the full abstraction question indirectly via the link between the operational equivalences of the original calculus and its artificial extension. This reduces our mix of semantic and syntactic question to a purely syntactic one, allowing us to use powerful syntactic constructions.

Tests where introduced in [2] to have a full abstraction theorem for Boudol λ-calculus with resources. Later on, the principle was improved in [4], implementing semantic objects in the syntax in order to be fully abstract of \mathcal{M}_{∞}, following an idea of [8]. This extension can, in our context, be compared to a basic exception mechanism. The term $\bar{\tau}(Q)$ is raising the exception (or test) Q, absorbing all its non resources-limited applications and the exception $\tau(M)$ is catching any exception in M by annihilating all the head $-\lambda$-abstraction. The more important here being the scope of the $\tau(M)$ that act as an infinite application over M.
Notations: $\lambda \bar{x}^{n}$ will be used for $\lambda x_{1}, \ldots, x_{n}$ (n is not specified when it can be any integer) and I will denotes the identity $\lambda x . x$.

2 Background

$2.1 \quad \partial \lambda$ calculus

As explained, this article is directly following [4]. For that reason we need to reintroduce the resources and then the tests. In the λ-calculus with resources, the notion of linearity is capital. Any term in linear position will never suffer any duplication or erasing regardless the reduction strategy. Linear subterms are subterms that are either the first subterm of a lambda abstraction in linear position, the left side of an application that is in linear position, or in the linear part of its right side. The last case is the real improvement and asks for arguments to be separated in linear and non linear arguments. Therefore, the right side of the applications will be replaced by a new kind of expression different from terms, the "bags". Bags are just multisets containing some linear (non banged) arguments and exactly one non linear (banged) argument:

$$
\begin{array}{lll}
\text { (terms) } & M, N: & \lambda x . M|M B| M+N \mid 0 \\
\text { (bags) } & B, C: & {\left[M_{1}, \ldots, M_{n} ; M^{!}\right]|B+C| 0}
\end{array}
$$

This is the syntax of [4] modulo the macro $M+N=(\lambda x \cdot x)[\{M+N\}!]$.
For convenience, the finite sums will be denoted $\Sigma_{i} Q_{i}$ and the different 0 's are just the neutral elements of the different sums. This demonic sum had to be implemented since we want the calculus to be resource sensitive and confluent, thus there is no other choice than to considere the sum of all the possible outcomes. It distributes with any linear context:

$$
\begin{array}{ll}
\lambda x .\left(\Sigma_{i} M_{i}\right)=\Sigma_{i}\left(\lambda_{x} \cdot M_{i}\right) & \left(\Sigma_{i} M_{i}\right)\left(\Sigma_{j} N_{j}\right)=\Sigma_{i, j}\left(M_{i} N_{j}\right) \\
\left(\left[\left(\Sigma_{i_{1} \leq k_{1}} M_{i_{1}}^{1}\right), \ldots,\left(\Sigma_{i_{n} \leq k_{n}} M_{i_{n}}^{n}\right) ; M^{!}\right]\right)= & \Sigma_{\left(i_{j}\right)_{j} \leq\left(k_{j}\right)_{j}}\left[M_{i_{1}}^{i}, \ldots, M_{i_{n}}^{n} ; M^{!}\right]
\end{array}
$$

In the application, each linear argument will replace one and only one occurrence of the variable, thus the need of two kinds of substitutions, the usual one, denoted $\{$.$\} , and the linear one, denoted \langle$.$\rangle . This last will act like a derivation$ $M\langle N / x\rangle \sim \frac{\partial M}{\partial x}(N)$:

$$
\begin{gathered}
x\langle N / x\rangle=N \quad x\langle N / y\rangle=0 \quad(\lambda y \cdot M)\langle N / x\rangle=\lambda y .(M\langle N / x\rangle) \\
\left(\left[M_{1}, \ldots, M_{n} ; M^{!}\right]\right)\langle N / x\rangle=\left(\sum_{i=1}^{n}\left[M_{1}, \ldots, M_{i}\langle N / x\rangle, \ldots M_{n} ; M^{!}\right]\right)+\left[M_{1}, \ldots, M_{n}, M\langle N / x\rangle ; M^{!}\right] \\
(M P)\langle N / x\rangle=(M\langle N / x\rangle P)+(M P\langle N / x\rangle)
\end{gathered}
$$

This enables us to describe the β-reduction:

$$
(\lambda x . M)\left[N_{1}, \ldots, N_{n} ; N^{!}\right] \rightarrow M\left\langle N_{1} / x\right\rangle \cdots\left\langle N_{n} / x\right\rangle\left\{N^{!} / x\right\}
$$

In other words $(\lambda x . M)\left[N_{1}, \ldots, N_{n} ; N^{!}\right] \rightarrow \frac{\partial^{n} M}{\partial^{n} x}\left(N_{1}, \ldots, N_{n}\right)(N)$

$2.2 \tau \partial \lambda$ calculus

In differential webs the 0 -ary tensor and the 0 -ary par can be added freely in the sense that we still have a natural interpretation in MRel and \mathcal{M}_{∞}. These operations can be translated in our calculus as an exception mechanism. With on one side a $\tau(Q)$ that "raises" the exception (or test) Q by burning its applicative context (whenever these applications do not have any linear component, otherwise it diverges). And with on the other side a $\bar{\tau}(M)$ that "catch" the exceptions in M by burning the abstraction context of M (whenever this abstraction is dummy). The main difference with a usual exception system is the divergence of the catch if no exception are raised.
We introduce our new operators and our new kind of expression that will play the role of exception, the tests:

$$
\begin{array}{rcc}
\text { (terms) } & M, N: \bar{\tau}(Q) \\
\text { (test) } & Q, R: & \epsilon|Q| R|\tau(M)| Q+R \mid 0
\end{array}
$$

New operator immediately imply new distribution rules for the sum and the linear substitution:

$$
\begin{array}{ccc}
\tau\left(\Sigma_{i} M_{i}\right)=\Sigma_{i} \tau\left(M_{i}\right) & \bar{\tau}\left(\Sigma_{i} Q_{i}\right)=\Sigma_{i} \bar{\tau}\left(Q_{i}\right) & \left\|_{j} \Sigma_{i} Q_{i(j)}=\Sigma_{i}\right\|_{j} Q_{i(j)} \\
\tau(M)\langle N / x\rangle=\tau(M\langle N / x\rangle) & \bar{\tau}(Q)\langle N / x\rangle=\bar{\tau}(Q\langle N / x\rangle) \\
(Q+R)\langle N / x\rangle=Q\langle N / x\rangle+R\langle N / x\rangle & (Q \mid R)\langle N / x\rangle=Q\langle N / x\rangle \mid R\langle N / x\rangle
\end{array}
$$

Here is the corresponding operational semantics:

$$
\tau[\bar{\tau}(Q)] \quad \rightarrow Q
$$

$$
\tau(\lambda x . M) \quad \rightarrow \tau(M\{0 / x\})
$$

$$
(\bar{\tau}(Q))\left[M^{!}\right] \quad \rightarrow \bar{\tau}(Q)
$$

$$
\begin{equation*}
\left(\bar{\tau}_{2}\right) \quad(\bar{\tau}(Q))\left[M_{1}, \ldots, M_{n \geq 1} ; M^{!}\right] \quad \rightarrow 0 \tag{1}
\end{equation*}
$$

$(\epsilon) \quad \epsilon \mid \epsilon \quad \rightarrow \epsilon$

The intuition of $\bar{\tau}(Q)$ is an operator that take a test (a Boolean value), compute it and returns an infinite λ-abstraction with no occurrence of the abstracted variables. The test $\tau(M)$ is taking a term and returns a successful test if the term is converging in a context that consists of an infinite empty application.

2.3 Observational order

In order to ask for full abstraction, one would need a reduction strategy. A natural choice would be the head reduction, but this would make $(\lambda x . x[0,0])$ a normal form while no applicative instantiation of x allow the convergence of this
term. Therefore, the reduction strategy we are considering will not be headreduction, but the outer-head-reduction. This reduction will reduce subterms in linear position after the subterms in head positions ([13]). The corresponding normal forms are terms and tests of the form:

$$
\begin{gathered}
M+\lambda \bar{x} . y\left[N_{1,1}, \ldots, N_{1, k_{1}} ; L_{1}^{!}\right] \ldots\left[N_{n, 1}, \ldots, N_{n, k_{n}} ; L_{n}^{!}\right] \\
M+\lambda \bar{x} . \bar{\tau}(Q) \\
Q+\left(\| \tau\left(N_{i}\right)\right)
\end{gathered}
$$

Where every $N_{\text {_ }}$ and Q must be in outer-head normal forms and can't be a sum (but the L_{i} are of any kind).

Definition $1 M$ is observationally below N, if for all context C(.), we have $C(N)$ which is outer-head-converging whenever $C(M)$ is outer-head-converging. They are observationally equivalent if moreover N is observationally below M

In the particular case of the $\tau \partial \lambda$-calculus, we can easily restrict contexts to test-contexts, which is contexts whose output is a tests. This will be applied systematically for simplification.
We will denote $\leq_{\tau \partial}$ and $\equiv_{\tau \partial}$ the observational order and equivalence of the $\tau \partial \lambda$ calculus and \leq_{∂} and \equiv_{∂} those of the $\partial \lambda$ calculus .

2.4 Results

Bucciarelli, Carraro, Ehrhard and Manzonetto were then able to prove a strong theorem relating the model to the calculus:

Definition 2 A model is fully abstract for its calculus whenever two terms are carrying the same interpretation iff they are converging on the same contexts:

$$
\llbracket M \rrbracket^{x}=\llbracket N \rrbracket^{x} \Leftrightarrow M \equiv_{o} N
$$

Theorem $1 \mathcal{M}_{\infty}$ is fully abstract for the Λ-calculus with resources and tests

3 The counter-exemple

In order to exhibit our counter-example we will heavily use the following property:

Proposition 1 Let \mathcal{B} a calculus and \mathcal{A} a super-calculus. Let \mathcal{M} a model that is fully abstract for $\mathcal{A} . \mathcal{M}$ is fully abstract for \mathcal{B} iff the operational equivalences of \mathcal{B} and \mathcal{A} are equal on their domain intersection.

In our context it means that to prove the non full abstraction for the $\partial \lambda$-calculus it is sufficient to find two terms of the $\partial \lambda$-calculus that cannot be separated by any context of the $\partial \lambda$-calculus but by a context of the $\tau \partial \lambda$ calculus. This make the research and the proof quite easier when the terms of the $\partial \lambda$-calculus involved are complex but not the context of the $\tau \partial \lambda$-calculus .

We are firstly exhibiting a term A in the $\partial \lambda$-calculus that is observationally above the identity in the $\partial \lambda$-calculus 's, but not in the $\tau \partial \lambda$-calculus 's observational order:

$$
\begin{equation*}
\left.A=\Theta\left[\lambda u v w \cdot w\left[I\left[v^{!}\right]\right],\left(\lambda u v w \cdot u\left[\left(v\left[w^{!}\right]\right)^{!}\right]\right)^{!}\right]\right] \tag{1}
\end{equation*}
$$

where Θ is the Turing fix point combinator:

$$
\left(\lambda g u . u\left[\left(g\left[\left(g\left[u^{!}\right]\right)^{!}\right]\right)^{!}\right]\right)\left[\left(\lambda g u . u\left[\left(g\left[\left(g\left[u^{!}\right]\right)^{!}\right]\right)^{!}\right]\right)^{!}\right]
$$

This term seems quite complex, but, modulo η-equivalence, A reduces exactly to any of the elements of the following sum, and thus can be think as an equivalent:

$$
\begin{equation*}
\Sigma_{n \geq 1} B_{n}=\Sigma_{n \geq 1} \lambda \bar{u}^{n} w \cdot w\left[I\left[u_{1}^{!}\right]\left[u_{2}^{!}\right] \cdots\left[u_{n}^{!}\right]\right] \tag{2}
\end{equation*}
$$

This is due to the following property:
Lemma 1 If $A_{i}=\lambda \bar{x}^{i+1} . A\left(x_{1}\left[x_{2}^{!}\right] \cdots\left[x_{i+1}^{!}\right]\right)$then $A_{0} \rightarrow_{\eta} A$ and for all i,

$$
A_{i} \rightarrow A_{i+1}+B_{i+1}
$$

Proof. Simple reduction unfolding the Θ once.

On one hand we have the following (clear from expression 2):
Lemma 2 In the $\tau \partial \lambda$-calculus , $\tau\left(A\left[\epsilon_{0}^{!}\right]\right)$diverges whenever $\tau\left(I\left[\epsilon_{0}^{!}\right]\right)$converges, i.e. $I \not \ddagger_{\tau \partial} A$
Proof. For all $i, \tau\left(A_{i}\left[\epsilon_{0}^{!}\right]\right)$diverges since, by co-induction:

$$
\begin{aligned}
\tau\left(A_{i}\left[\epsilon_{0}\right]\right) & \rightarrow \tau\left(\left(A_{i+1}+\left(\lambda \bar{x}^{i+1} y \cdot y\left[I\left[x_{1}^{!}\right] \cdots\left[x_{i+1}^{!}\right]\right]\right)\right)\left[\epsilon_{0}\right]\right) \\
& =\tau\left(A_{i+1}\left[\epsilon_{0}\right]\right)+\tau\left(\left(\lambda \bar{x}^{i+1} y \cdot y\left[I\left[x_{1}^{!}\right] \cdots\left[x_{i+1}^{!}\right]\right]\right)\left[\epsilon_{0}\right]\right) \\
& \rightarrow \tau\left(A_{i+1}\left[\epsilon_{0}\right]\right)+\tau\left(\lambda \bar{x}^{i} y \cdot y\left[\epsilon_{0}\left[x_{1}^{!}\right] \cdots\left[x_{i+1}^{!}\right]\right]\right) \\
& \rightarrow^{*} \tau\left(A_{i+1}\left[\epsilon_{0}\right]\right)+\tau\left(0\left[\epsilon_{0}\left[0^{!}\right] \cdots\left[0^{!}\right]\right]\right)
\end{aligned}
$$

By co-induction hypothesis, the first term is not outer-head reducing whenever the second is trivially not.
But, on other hand, we have this strange lemma:
Lemma 3 For all context $C($.$) of the \partial \lambda$-calculus, if $C(I)$ converges then $C(A)$ converges, i.e. $I \leq_{\partial} A$
Proof. Let $C($.$) a context that converge on I$
With the context lemma ([13]), and since neither I nor A has free variables, we can assume that $C(0)=.(.) \quad P_{1} \cdots P_{k}$, thus by lemma 1, we have $A \rightarrow{ }^{*} U+B_{k}$ and converges.

$$
C(A) \rightarrow^{*} U^{\prime}+\lambda w \cdot w\left[I P_{1} \cdots P_{k}\right]=U^{\prime}+\lambda w \cdot w[C(M)]
$$

Hence, we have broken the conjecture concerning the equality between the observational and denotational orders. Let's break the whole conjecture:

Theorem $2 \mathcal{M}_{\infty}$ is not fully abstract for the λ-calculus with resources

4 Further works

First a diligent reader will remark that we have a critical use of the demonic sum which is very powerful in this calculus. And an even more diligent one will remark that an arbitrary choice have been made concerning this sum: we could differentiate terms and reduced of terms and remove sums from the original syntax (it just have to appear in reductions of terms). The choice we made here correspond to the one of [4] and carry a clear and understandable counterexample. But we claim that another equivalent counter example arise for the case with limited sum. This counter-example is, however, a little less understandable and need to redo the all stuff of [4] (even if everything work exactly the same way).

This counter-example can be translated to some related cases. In particular, to prove non full abstraction of Scott's \mathcal{D}_{∞} for the λ calculus with angelic and demonic sums (conjectured in [7]). For this calculus the extension with tests exists and is fully abstract for \mathcal{D}_{∞}, this is a trivial modification of the tests of [3] (using general demonic and angelic sums). And the term $\theta(\lambda x y \cdot x+y)$ is exactly playing the role of A in our example with the same output.

In the end we claimed that this two naturals construction does not respect full abstraction. One would say that they are not that natural and that more natural one may be found. This counter-example being highly related to the demonic sum, we can already claim that we do not yet fully understand the semantical nature of non determinism.

Finally we presented tests as a general tool whose importance is above the role we gave them in this paper. This result is interesting and important as it presents tests as useful tools to discriminate the failing cases. But it remains a negative result that does not justify alone any real interest for them. Further works will then focus on presenting positive proofs of full abstractions that are using tests. Following this way we already submitted a revisited proof of full abstraction of the Scott 's \mathcal{D}_{∞} for the usual λ-calculus [3].

References

[1] Gerard Boudol (1993): The lambda-calculus with multiplicities. INRIA Research Report 2025.
[2] P. Boudol, P.-L. Curien \& C. Lavatelli (1999): A semantics for lambda calculi with resources. Mathematical Structures in Comput. Sci. (MSCS) Vol. 9, pp. 437-482.
[3] Flavien Breuvart (2012): A new proof of the Hyland/Wadsworth full abstraction theorem. Submited.
[4] Antonio Bucciarelli, Alberto Carraro, Thomas Ehrhard \& Giulio Manzonetto (2011): Full Abstraction for Resource Calculus with Tests. In Marc Bezem, editor: Computer Science Logic (CSL'11) - 25th International

Workshop/20th Annual Conference of the EACSL, Leibniz International Proceedings in Informatics (LIPIcs) 12, Schloss Dagstuhl-Leibniz-Zentrum fuer Informatik, Dagstuhl, Germany, pp. 97-111.
[5] Antonio Bucciarelli, Alberto Carraro, Thomas Ehrhard \& Giulio Manzonetto (2012): Full Abstraction for Resource Lambda Calculus with Tests, throught Taylor expansion. Accepted.
[6] Antonio Bucciarelli, Thomas Ehrhard \& Giulio Manzonetto (2007): Not Enough Points Is Enough. In Jacques Duparc \& Thomas A. Henzinger, editors: CSL'07: Proceedings of $16^{\text {th }}$ Computer Science Logic, Lecture Notes in Computer Science 4646, Springer, pp. 268-282.
[7] Antonio Bucciarelli, Thomas Ehrhard \& Giulio Manzonetto (2009): A relational model of a parallel and non-deterministic lambda-calculus. In Sergei N. Artëmov \& Anil Nerode, editors: Logical Foundations of Computer Science, International Symposium, LFCS 2009, Lecture Notes in Computer Science 5407, pp. 107-121.
[8] T. Ehrhard \& O. Laurent (2010): Interpreting a finitary pi-calculus in differential interaction nets. Inf. Comput. 208(6), pp. 606-633.
[9] Thomas Ehrhard \& Laurent Regnier (2004): The differential lambdacalculus. Theoretical Computer Science, Elsevier.
[10] A. J. Kfoury (2000): A linearization of the Lambda-calculus and consequences. J. Log. Comput. 10(3), pp. 411-436. Available at http://dx.doi.org/10.1093/logcom/10.3.411.
[11] Giulio Manzonetto (2009): A general class of models of \mathcal{H}^{\star}. In: Mathematical Foundations of Computer Science (MFCS'09), Lecture Notes in Computer Science 5734, Springer, pp. 574-586.
[12] M. Pagani \& Tranquilli P. (2009): Parallel reduction in resource lambdacalculus. APLAS09 5904 LNCS, p. 226242.
[13] Michele Pagani \& Simona Ronchi Della Rocca (2010): Linearity, Nondeterminism and Solvability. Fundamenta Informaticae 103(1-4), pp. 173202. Available at http://dx.doi.org/10.3233/FI-2010-324.

A The model \mathcal{M}_{∞}

A. 1 Categorical model

The category Rel of sets and relations is known to be a model of linear logic as it is a Seely category (we are giving the interpretation, but we will let the comutative diagrams to the reader since their comutations are trivial or like):

It is monoidal with tensor functor given by $A \otimes B=A \times B, f \otimes g=$ $\{((u, x),(v, y)) \mid(u, v) \in f,(x, y) \in g\}$ and with the arbitrary unit $1=\{*\}$. It is symetric monoidal close with $(A \multimap B)=A \times B$ if we take the evaluation $e v=\{(((a, b), a), b) \mid a \in A, b \in B\} \in \operatorname{Rel}((A \multimap B) \otimes A, B)$. So it is star autonomus with 1 as dualising object (for a trvial duality).
This give us the interpretation of multiplicatives: $A \otimes B=A \ngtr B=A \multimap B=A \times B$
The category is cartesian, with catesian product \& $A_{i}=\{(i, x) \mid i \in I, x \in$ $\left.s_{i}\right\}$, projections $\pi_{i}=\left\{((i, a), a) \mid a \in A_{i}\right\}$ and product of morphisms $\&_{i} f_{i}=$ $\left\{(b,(i, a)) \mid(b, a) \in f_{i}\right\}$. The terminal object is $\mathrm{T}=\varnothing$.
This give us the interpretation of additives: $\oplus_{i \in I} A_{i}=\&_{i \in I} A_{i}=\{(i, a) \mid i \in I, a \in$ $\left.A_{i}\right\}$

We can add a comonade (!, d, p) where the functor is define by $!A=\mathcal{M}_{f}(A)$, $!f=\left\{\left(\left[a_{1}, \ldots, a_{k}\right],\left[b_{1}, \ldots, b_{k}\right) \mid \forall i \leq k,\left(a_{i}, b_{i}\right) \in f\right\}\right.$, the deriliction by $d_{A}=$ $\{([a], a) \mid a \in A\}$ and the digging by $p_{A}=\left\{\left(m_{1}+\cdots+m_{k},\left[m_{1}, \ldots, m_{k}\right]\right) \mid m_{1}, \ldots, m_{k} \in\right.$ $\left.\mathcal{M}_{F}(a)\right\}$.
This give us the interpretation of exponentials: $!P=? P=\mathbb{M}_{f}(P)$
This is a Seely category and a model of linear logic since the isomorphismes $1 \simeq[]$ is trivial and $!A \otimes!B \simeq!(A \& B)$ is defined by $\left(\left[a_{1}, \ldots, a_{l}\right],\left[b_{1}, \ldots, b_{r}\right]\right) \simeq$ $\left[\left(1, a_{1}\right), \ldots,\left(1, a_{l}\right),\left(2, b_{1}\right), \ldots,\left(2, b_{r}\right)\right]$.

But it can even be seen as a categorical model of differential linear logic. By defining the co-dereliction natural transforamtion $\bar{d}_{A}=\{(a,[a]) \mid a \in A\} \in A \rightarrow$ $!A$, we are fixing the contraction $c_{A}=\{(l+r,(l, r)) \mid l, r \in!A\}$ the co-contraction $\bar{c}_{A}=\{((l, r), l+r) \mid l, r \in!A\}$, the weakening $w_{A}=\{([], *)\}$ and the co-weakening $\bar{w}_{A}=\{(*,[])\}$. So that we can define the derivative $\partial_{X}=\left(i d_{!X} \otimes d_{X}\right) \circ c_{X}:!X \rightarrow$ $!X \otimes X$ and the co-derivative $\bar{\partial}_{X}=\bar{c}_{X} \circ\left(i d_{!X} \otimes \bar{d}_{D}\right):!X \otimes X \rightarrow!X$. This derivatives are Taylor, i.e. if two morphisms $f_{1}, f_{2}:!A \rightarrow B$ are such that $f_{1} \circ \bar{\partial}_{A}=f_{2} \circ \bar{\partial}_{A}$ then $f_{1}+\left(f_{2} \circ \bar{w}_{X} \circ w_{X}\right)=\left(f_{1} \circ \bar{w}_{X} \circ w_{X}\right)+f_{2}$. Finally the exponential acept anti-derivatives, since it is bi-comutative and $J_{A}=I d_{A}+\bar{\partial}_{A} \partial_{A}=I d_{A}$ is an isomorphism. For more detail about models of DLL see ??.

As for every categorical model of linear logic, the exponential is a comonade and induced a coKleisly $M R e l=$ Rel! whose objects are the set and whose morphisms from P to Q are the relations between $!P$ and Q. The identities are the relations $\operatorname{dig}_{P}=\{(\{x\}, x) \mid x \in P\}$ and the composition $f \circ g=\{(X, z) \mid \exists(Y, z) \in$ $f, \forall y \in Y,(X, y) \in g\}$.

A. 2 Algebraic model

In order to have an algebraic model of $\partial \lambda$-calculus we only need a reflexive object, i.e. a triplet ($M, a p p, a b s)$ where M is an object of MRel, app : $(M \rightarrow$
$\left.\left(!M^{\perp} \multimap M\right)=\left(\mathcal{M}_{f}(M) \times M\right)\right)$ and aps $:\left(\left(\mathcal{M}_{f}(M) \times M\right) \rightarrow M\right)$ such that $a p p \circ a b s=I d$. Such an object can a priory found by taking the lower fix point of $M \mapsto M \Rightarrow M=? M \multimap M=\mathcal{M}_{f}(M) \times M$. But this will just leads to the trivial empty model. We will then resolve the more complicated fix point $M \mapsto(? M)^{\& N}=\mathbb{N} \times \mathcal{M}_{f}(M)$ where the exponent represent an infinit tensor product. The lower fix point will be called \mathcal{M}_{∞}.

An other way to see the fixpoint is to say that M have to be equal to the set of quazi everywhere empty lists of finite substets of itself. Its element are the recursively defined as being either *, the list of empty elements, or $a:: \alpha$ with $a \in \mathcal{M}_{f}\left(\mathcal{M}_{\infty}\right)$ and $\alpha \in \mathcal{M}_{\infty}$. The coresponding app and abs arise imediatly from the functoriality: $\operatorname{app}=\left\{(a:: \alpha,(a, \alpha)) \mid(a, \alpha) \in \mathcal{M}_{\infty}\right\}$ and $a b s=$ $\left\{((a, \alpha), a:: \alpha) \mid a, \alpha \in \mathcal{M}_{\infty}\right\}$

In order to be understandable, we are presenting the interpretation of terms via a type system with types living in \mathcal{M}_{∞}. The usual presentation of the interpretation can be recoverd from the type system:
$\llbracket M \rrbracket^{\bar{x}}=\{(\bar{a}, \alpha) \mid \bar{x}: \bar{a} \vdash M: \alpha\}$
$\llbracket Q \rrbracket^{\bar{x}}=\{\bar{a} \mid \bar{x}: \bar{a} \vdash Q\}$
The type system is the following:

$$
\begin{aligned}
& \frac{\Gamma \vdash \Delta}{x:[], \Gamma \vdash \Delta} \quad \frac{\Gamma:[\alpha] \vdash x: \alpha}{x \vdash-M: \alpha} \quad \frac{\Gamma \vdash N: \alpha}{\Gamma \vdash M+N: \alpha} \quad \frac{\Gamma, x: v \vdash M: \alpha}{\Gamma \vdash \lambda x \cdot M: v:: \alpha} \\
& \frac{\Gamma \vdash M: w:: \alpha \quad \Gamma^{\prime} \vdash B: w}{\Gamma+\Gamma^{\prime} \vdash M B: \alpha} \quad \frac{\bigwedge_{j \leq n} \Gamma_{j} \vdash L_{j}: \beta_{j} \quad \bigwedge_{i \geq n} \Gamma_{i} \vdash L: \beta_{i}}{\left(\Sigma_{r=1}^{n+m} \Gamma_{r}\right) \vdash\left[L_{1}, \ldots, L_{n} ; L^{!}\right]:\left[\beta_{1}, \ldots, \beta_{n+m}\right]} \\
& \frac{\Gamma \vdash Q}{\Gamma \vdash \bar{\tau}(Q): *} \quad \frac{\Gamma \vdash M: *}{\Gamma \vdash \tau[M]} \quad \frac{\Gamma \vdash Q \quad \Gamma^{\prime} \vdash R}{\Gamma+\Gamma^{\prime} \vdash Q \mid R} \quad \frac{1}{\vdash \epsilon}
\end{aligned}
$$

