
HAL Id: hal-00698609
https://hal.science/hal-00698609v2

Preprint submitted on 22 May 2012

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

On the discriminating power of tests in resource
lambda-calculus

Flavien Breuvart

To cite this version:
Flavien Breuvart. On the discriminating power of tests in resource lambda-calculus. 2012. �hal-
00698609v2�

https://hal.science/hal-00698609v2
https://hal.archives-ouvertes.fr


On the discriminating power of tests in resource

λ-calculus

May 22, 2012

Abstract

Since its discovery, differential linear logic (DLL) inspired numerous
domains. In denotational semantics, categorical models of DLL are now
commune, and the simplest one is Rel, the category of sets and relations.
In proof theory this naturally gave birth to differential proof nets that are
full and complete for DLL. In turn, these tools can naturally be translated
to their intuitionistic counterpart. By taking the co-Kleisly category asso-
ciated to the ! comonad, Rel becomes MRel, a model of the λ-calculus that
contains a notion of differentiation. Proof nets can be used naturally to
extend the λ-calculus into the lambda calculus with resources, a calculus
that contains notions of linearity and differentiations. Of course MRel is
a model of the λ-calculus with resources, and it has been proved adequate,
but is it fully abstract?

That was a strong conjecture of Bucciarelli, Carraro, Ehrhard and
Manzonetto in [4]. However, in this paper we exhibit a counter-example.
Moreover, to give more intuition on the essence of the counter-example
and to look for more generality, we will use an extension of the resource
λ-calculus also introduced by Bucciarelli et al in [4] for whichM∞ is fully
abstract, the tests.

1 Introduction

The first extension of the λ-calculus with resources, by Boudol in 1993 [1], was
introducing a special resource sensitive application that may involve multisets
of affine arguments (each one has to be used at most one time). This was a
natural way to export resource sensitiveness to the functional setting. However,
gathering no known and interesting properties (confluence, linearity...), it was
not fully explored.

Later on, Ehrhard and Regnier, working on functional interpretation of dif-
ferential proof nets, discovered a calculus similar to Boudol’s one, named dif-
ferential λ-calculus [10]. By adding to the λ-calculus a derivative operation
∂M
x
(N), which syntactically corresponds to a linear substitution of x by N in

M , it recovers the resource-sensitiveness. This is done through the translation

1



(λx.M) [N1, ...,Nn;N
!] ≃ (λx.∂

(n)
M

x
(N1,...,Nn)) N where Ni are the linear ar-

guments and N is the non linear one. This more semantical view even allow
for the generalisation of the operation and recover excellent semantical prop-
erties (confluence, Taylor expansion...). We will adopt the syntax of [13] that
re-implements improvements from differential λ-calculus into Boudol’s calculus,
and we will call it ∂λ-calculus.

The category Rel of set and relations is known to model the linear logic,
and, despite its high degree of degeneration (Relop = Rel), it is a very natural
construction. Indeed, what appeared to be a degeneration is in reality a natural
choice that preserves all proofs, i.e. the interpretation function from proof to
MRel is injective up to isomorphism ([8]). But our principal interest for this
category is that it models the differential linear logic, and of known such category
it is the simplest and more natural.

As for every categorical model of linear logic, the interpretation of the ! in-
duced a comonad. From that comonad we can construct the co-kleisly category.
In the case of Rel, this new category, MRel, corresponds to the category of sets
with, as morphisms from A to B, the relations fromMf(A) (the finite multisets
over A) to B. It is then a model of the λ-calculus and of the ∂λ-calculus. This
construction being the most natural we can do, MRel is, a priori, one of the
most natural models of the ∂λ-calculus (even if non well pointed [6]).

It is only natural, then, to question on the depth of the link among the
reflexive elements of MRel and the ∂λ-calculus. And more precisely among
MRel’s canonical reflexive elementM∞ and the ∂λ-calculus. Until now we knew
thatM∞ ([6]) was adequate for the λ-calculus, i.e. that two terms carrying the
same interpretations in MRel behave the same way in all contexts. But we did
not know anything about the counterpart, named full abstraction.

This question has been thoroughly studied, however, since M∞ has been
proved (resp. in [12], [5] and [4]) fully abstract not only for both of the principal
sub-calculi of ∂λ-calculus, namely the usual λ-calculus and Kfoury’s linear cal-
culus of [11], but also for the extension with tests of [4] (denoted τ∂λ-calculus).
Therefore Bucciarelli et al emit in [4] a strong conjecture of full abstraction for
the ∂λ-calculus.

However, and it is our purpose here, a counter example can be found. In
order to exhibit this counter example, we will take an unusual shortcut using
full abstraction result for τ∂λ-calculus. Indeed, we will prove a slightly more
general theorem: the failure of full abstraction for ∂λ-calculus of any model that
is fully abstract for τ∂λ-calculus. Due to this generalization we will not have to
introduce the full description ofM∞ in the core of the article (it is available in
annexes).

Additionally to be considerably easier and more intuitive than the direct and
usual method, this way of proceeding is part of a larger study of full abstraction.
Indeed, we are looking for a mechanical way to tackle full abstraction problems
in two steps. First we extend the calculus with well chosen semantical objects
in order to reach the definability of compact elements. Then we study the full
abstraction question indirectly via the link between the operational equivalence

2



of the original calculus and of its artificial extension. This reduces our mix of
semantic and syntactic question to a purely syntactic one, allowing us to use
powerful syntactic constructions.

Tests where introduced in [2] to have a full abstraction theorem for Boudol
λ-calculus with resources. Later on, the principle was improved in [4], imple-
menting semantic objects in the syntax in order to get full abstraction ofM∞,
following an idea of [9]. This extension can, in our context, be compared to a
basic exception mechanism. The term τ̄(Q) is raising the exception (or test)
Q, absorbing all its non resources-limited applications and the exception τ(M)
is catching any exception in M by annihilating all the head-λ-abstraction. The
most important here being the scope of the τ(M) that act as an infinite appli-
cation over M .
Notations: λx̄n will be used for λx1, ..., xn (n is not specified when it can be
any integer) and I will denotes the identity λx.x.

2 Background

2.1 ∂λ-calculus

As explained, this article is directly following [4]. For this reason we need to
introduce the ∂λ-calculus and then the tests. In the ∂λ-calculus , the notion of
linearity is capital. Any term in linear position will never suffer any duplication
or erasing regardless the reduction strategy. Linear subterms are subterms that
are either the first subterm of a lambda abstraction in linear position, the left
side of an application that is in linear position, or in the linear part of its
right side. The last case is the real improvement and asks for arguments to be
separated in linear and non linear arguments. Therefore, the right side of the
applications will be replaced by a new kind of expression different from terms,
the “bags”. Bags are multisets containing some linear (non banged) arguments
and exactly one non linear (banged) argument:

(terms) M,N ∶ λx.M ∣ M B ∣ M+N ∣ 0
(bags) B,C ∶ [M1, ...,Mn;M

!] ∣ B +C ∣ 0

This is the syntax of [4] modulo the macro M+N = (λx.x) [{M+N}!].
For convenience, the finite sums will be denoted ΣiQi and the different 0’s are
just the neutral elements of the different sums. This demonic sum had to be
implemented since we want the calculus to be resource sensitive and conflu-
ent, thus there is no other choice than to considere the sum of all the possible
outcomes. Sums distribute with any linear context:

λx.(ΣiMi) = Σi(λx.Mi) (ΣiMi) (ΣjNj) = Σi,j(Mi Nj)
([(Σi1≤k1

M1
i1
), ..., (Σin≤kn

Mn
in
);M !]) = Σ(ij)j≤(kj)j [M

i
i1
, ...,Mn

in
;M !]

In the application, each linear argument will replace one and only one occurrence
of the variable, thus the need of two kinds of substitutions, the usual one,
denoted {.}, and the linear one, denoted ⟨.⟩. This last will act like a derivation
M⟨N/x⟩ ∼ ∂M

∂x
(N):

3



x⟨N/x⟩ =N x⟨N/y⟩ = 0 (λy.M)⟨N/x⟩ = λy.(M⟨N/x⟩)
([M1, ...,Mn;M

!])⟨N/x⟩ = (Σn
i=1[M1, ..,Mi⟨N/x⟩, ...Mn;M

!]) + [M1, ...,Mn,M⟨N/x⟩;M
!]

(M P )⟨N/x⟩ = (M⟨N/x⟩ P ) + (M P ⟨N/x⟩)

This enables us to describe the β-reduction:

(β) (λx.M)[N1, ...,Nn;N
!] →M⟨N1/x⟩⋯⟨Nn/x⟩{N

!/x}

In other words (λx.M)[N1, ...,Nn;N
!]→ ∂nM

∂nx
(N1, ...,Nn)(N)

2.2 τ∂λ-calculus

In differential proof nets the 0-ary tensor and the 0-ary par can be added freely
in the sense that we still have a natural interpretation in MRel andM∞. These
operations can be translated in our calculus as an exception mechanism. With
on one side a τ(Q) that “raises” the exception (or test) Q by burning its ap-
plicative context (whenever these applications do not have any linear compo-
nent, otherwise it diverges). And with on the other side a τ̄(M) that “catch”
the exceptions in M by burning the abstraction context of M (whenever this
abstraction is dummy). The main difference with a usual exception system is
the divergence of the catch if no exception are raised.
We introduce a new operators and a new kind of expression that will play the
role of exception, the tests:

(terms) M,N ∶ τ̄(Q)

(test) Q,R ∶ ǫ ∣ Q∣R ∣ τ(M) ∣ Q+R ∣ 0

New operator immediately imply new distribution rules for the sum and the
linear substitution:

τ(ΣiMi) = Σiτ(Mi) τ̄(ΣiQi) = Σiτ̄(Qi) ∥jΣiQi(j) = Σi∥jQi(j)

τ(M)⟨N/x⟩ = τ(M⟨N/x⟩) τ̄(Q)⟨N/x⟩ = τ̄(Q⟨N/x⟩)
(Q+R)⟨N/x⟩ = Q⟨N/x⟩+R⟨N/x⟩ (Q∣R)⟨N/x⟩ = Q⟨N/x⟩∣R⟨N/x⟩

Here is the corresponding operational semantics:

(γ) τ[τ̄(Q)] → Q

(τ) τ(λx.M) → τ(M{0/x})

(τ̄1) (τ̄(Q)) [M !] → τ̄(Q)

(τ̄2) (τ̄(Q)) [M1, ...,Mn≥1;M
!] → 0

(ǫ) ǫ∣ǫ → ǫ

The intuition of τ̄(Q) is an operator that take a test (a Boolean value), compute
it and returns an infinite λ-abstraction with no occurrence of the abstracted
variables. The test τ(M) is taking a term and returns a successful test if the
term is converging in a context that consists of an infinite empty application.

4



2.3 Observational order and full abstraction

In order to ask for full abstraction, one has to specify a reduction strategy. A
natural choice would be the head reduction, but this would make (λx.x [0,0]) a
normal form while no applicative instantiation of x allow the convergence of this
term. Therefore, the reduction strategy we are considering will not be head-
reduction, but the outer-head-reduction. This reduction will reduce subterms
in linear position after the subterms in head positions ([14]). The corresponding
normal forms are terms and tests of the form:

M + λx̄.y [N1,1, ...,N1,k1
;L!

1] ⋯ [Nn,1, ...,Nn,kn
;L!

n]
M + λx̄.τ̄(Q)
Q + (∥τ(Ni))

Where every N and Q must be in outer-head normal forms and can’t be a sum
(but the Li are of any kind).

Definition 1 M is observationally below N , if for all context CL.M, we have
CLNM which is outer-head-converging whenever CLMM is outer-head-converging.
They are observationally equivalent if moreover N is observationally below M

In the particular case of the τ∂λ-calculus , we can easily restrict contexts to
test-contexts, which is contexts whose output is a tests. This will be applied
systematically for simplification.
We will denote ≤τ∂ and ≡τ∂ the observational order and equivalence of the τ∂λ-
calculus and ≤∂ and ≡∂ those of the ∂λ-calculus .

Bucciarelli, Carraro, Ehrhard and Manzonetto were then able to prove a
strong theorem relating the model to the calculus:

Theorem 1 M∞ is fully abstract for the Λ-calculus with resources and tests:
for all closed terms M,N with resources ans tests,

JMK = JNK ⇔ M ≡τ∂ N

3 The counter-example

In order to exhibit our counter-example we will use the following property:

Fact 1 Let B a calculus and A a super-calculus. Let M a model that is fully
abstract for A. M is fully abstract for B iff the operational equivalences of B
and A are equal on their domain intersection.

In our context it means that, in order to prove the non full abstraction for the
∂λ-calculus , it is sufficient to find two terms of the ∂λ-calculus that cannot be
separated by any context of the ∂λ-calculus but that are separated by a context
of the τ∂λ-calculus . This makes the research and the proof quite easier when
the terms of the ∂λ-calculus involved are complex but not the context of the
τ∂λ-calculus .

5



We are firstly exhibiting a term A of the ∂λ-calculus that is observationally above
the identity in the ∂λ-calculus ’, but not in the τ∂λ-calculus ’s observational order:

A = Θ [λuvw.w [I [v!]] , (λuvw.u [(v [w!])!])!] (1)

where Θ is the Turing fix point combinator:

(λgu.u[(g [(g [u!])!])!]) [(λgu.u[(g [(g [u!])!])!])!]

This term seems quite complex, but, modulo η-equivalence, A reduces exactly to
any of the elements of the following sum, and thus can be think as an equivalent:

Σn≥1Bn = Σn≥1λū
nw.w [I [u!

1] [u
!

2] ⋯ [u
!

n]] (2)

This is due to the following property:

Lemma 1 If Ai = λx̄
i+1.A (x1 [x

!
2] ⋯ [x

!

i+1]) then A0 →η A and for all i,

Ai → Ai+1 +Bi+1

Proof. Simple reduction unfolding the Θ once. ◻

In absence of tests, this term has a comportment similar to ǫ0 in the sense that
it will converges in any applicative context provided that these applications do
not carry linear components. In particular it converges more often than the
identity:

Lemma 2 For all context CL.M of the ∂λ-calculus , if CLIM converges then CLAM
converges, i.e. I ≤∂ A

Proof. Let CL.M a context that converge on I

With the context lemma ([14]), and since neither I nor A has free variables, we
can assume that CL.M = L.M P1 ⋯ Pk, thus by lemma 1, we have A →∗ U + Bk

and
CLAM →∗ U ′ + λw.w [I P1 ⋯ Pk] = U

′
+ λw.w [CLMM]

converges. ◻

But in presence of real tests, its comportment appeared to be different that ǫ0
in the sense that it diverges under a τ̄ . In particular it is not observationally
above the identity in τ∂λ-calculus :

Lemma 3 In the τ∂λ-calculus , τ(A [ǫ!0]) diverges, while τ(I [ǫ!0]) converges,
i.e. I /≤τ∂ A

Proof. For all i, τ(Ai [ǫ
!
0]) diverges since, by co-induction:

τ(Ai [ǫ0]) → τ((Ai+1 + (λx̄
i+1y.y [I [x!

1] ⋯ [x
!

i+1]])) [ǫ0])

= τ(Ai+1 [ǫ0]) + τ((λx̄
i+1y.y [I [x!

1] ⋯ [x
!

i+1]]) [ǫ0])

→ τ(Ai+1 [ǫ0]) + τ(λx̄
iy.y [ǫ0 [x

!

1] ⋯ [x
!

i+1]])

→∗ τ(Ai+1 [ǫ0]) + τ(0 [ǫ0 [0
!] ⋯ [0!]])

The non outer-head convergence comes with the co-induction hypothesis for the
first term, and is trivial for the second. ◻

Hence, we have broken the conjecture concerning the equality between the ob-
servational and denotational orders. Let’s break the whole conjecture:

Theorem 2 M∞ is not fully abstract for the λ-calculus with resources

6



4 Further works

First a diligent reader will remark that we have a critical use of the demonic
sum which is very powerful in this calculus. And an even more diligent one will
remark that an arbitrary choice have been made concerning this sum: we could
differentiate terms and reduced of terms and remove sums from the original syn-
tax (they just have to appear in reductions of terms). The choice we made here
corresponds to the one of [4] and carries an understandable counter-example.
But we claim that another equivalent counter-example arises for the case with
limited sum. This counter-example is, however, a little more complicated and
make it necessary to rework the material of [4] (even if everything works exactly
the same way).

Our counter-example can be translated to some related cases. In particular,
to prove non full abstraction of Scott’s D∞ for the λ-calculus with angelic and
demonic sums (conjectured in [7]). For this calculus the extension with tests
exists and is fully abstract for D∞, this is a trivial modification of the tests
of [3] (using general demonic and angelic sums). In this framework the term
θ(λxy.x + y) plays exactly the role of A in our example with the same output.

In the end, from a unique object that is DLL, we exhibit two natural con-
structions, one in the semantical world, the other in the syntactical one, but
they appeared do not respect full abstraction. One would say that they are not
that natural and that more natural one may be found. But this would be to
easy, from the state of art we don’t known more natural construction. The mis-
understanding comes with the concept of naturality, it seems that the syntactic
idea of “convergence” does not really correspond to the equivalent in seman-
tical word. One being a lowest fix point and the second a largest one. This
difference appears when working with the demonic sum that allow to check the
convergence in unbounded applicative context.

Finally we presented tests as a general tool whose importance is above the
role we gave them here. This result is interesting and important as it presents
tests as useful tools to verify that full abstraction fails. But it remains a negative
result that does not justify alone any real interest for them. Further works will
then focus on presenting positive proofs of full abstractions that are using tests.
Following this way we already submitted a revisited proof of full abstraction of
the Scott’s D∞ for the usual λ-calculus [3].

References

[1] Gerard Boudol (1993): The lambda-calculus with multiplicities. INRIA
Research Report 2025.

[2] P. Boudol, P.-L. Curien & C. Lavatelli (1999): A semantics for lambda
calculi with resources. Mathematical Structures in Comput. Sci. (MSCS)
Vol. 9, pp. 437–482.

7



[3] Flavien Breuvart (2012): A new proof of the Hyland/Wadsworth full ab-
straction theorem. Submited.

[4] Antonio Bucciarelli, Alberto Carraro, Thomas Ehrhard & Giulio Man-
zonetto (2011): Full Abstraction for Resource Calculus with Tests. In
Marc Bezem, editor: Computer Science Logic (CSL’11) - 25th International
Workshop/20th Annual Conference of the EACSL, Leibniz International
Proceedings in Informatics (LIPIcs) 12, Schloss Dagstuhl–Leibniz-Zentrum
fuer Informatik, Dagstuhl, Germany, pp. 97–111.

[5] Antonio Bucciarelli, Alberto Carraro, Thomas Ehrhard & Giulio Man-
zonetto (2012): Full Abstraction for Resource Lambda Calculus with Tests,
throught Taylor expansion. Accepted.

[6] Antonio Bucciarelli, Thomas Ehrhard & Giulio Manzonetto (2007): Not
Enough Points Is Enough. In Jacques Duparc & Thomas A. Henzinger,
editors: CSL’07: Proceedings of 16th Computer Science Logic, Lecture
Notes in Computer Science 4646, Springer, pp. 268–282.

[7] Antonio Bucciarelli, Thomas Ehrhard & Giulio Manzonetto (2009): A
relational model of a parallel and non-deterministic lambda-calculus. In
Sergei N. Artëmov & Anil Nerode, editors: Logical Foundations of Com-
puter Science, International Symposium, LFCS 2009, Lecture Notes in
Computer Science 5407, pp. 107–121.

[8] Daniel de Carvalho & Lorenzo Tortora de Falco (2010): The relational
model is injective for Multiplicative Exponential Linear Logic (without
weakenings). CoRR abs/1002.3131.

[9] T. Ehrhard & O. Laurent (2010): Interpreting a finitary pi-calculus in
differential interaction nets. Inf. Comput. 208(6), pp. 606–633.

[10] Thomas Ehrhard & Laurent Regnier (2004): The differential lambda-
calculus. Theoretical Computer Science, Elsevier.

[11] A. J. Kfoury (2000): A linearization of the Lambda-calculus and
consequences. J. Log. Comput. 10(3), pp. 411–436. Available at
http://dx.doi.org/10.1093/logcom/10.3.411.

[12] Giulio Manzonetto (2009): A general class of models of H⋆. In: Math-
ematical Foundations of Computer Science (MFCS’09), Lecture Notes in
Computer Science 5734, Springer, pp. 574–586.

[13] M. Pagani & Tranquilli P. (2009): Parallel reduction in resource lambda-
calculus. APLAS’09 5904 LNCS, pp. 226–242.

[14] Michele Pagani & Simona Ronchi Della Rocca (2010): Linearity, Non-
determinism and Solvability. Fundamenta Informaticae 103(1-4), pp. 173–
202. Available at http://dx.doi.org/10.3233/FI-2010-324.

8



A The model M∞

A.1 Categorical model

The category Rel of sets and relations is known to be a model of linear logic
as it is a Seely category (we are giving the interpretation, but we will let the
comutative diagrams to the reader since their comutations are trivial or like):

It is monoidal with tensor functor given by A ⊗ B = A × B, f ⊗ g =

{((u,x), (v, y))∣(u, v) ∈ f, (x, y) ∈ g} and with the arbitrary unit 1 = {∗}. It
is symetric monoidal close with (A ⊸ B) = A × B if we take the evaluation
ev = {(((a, b), a), b)∣a ∈ A, b ∈ B} ∈ Rel((A⊸ B) ⊗A,B). So it is star autono-
mus with 1 as dualising object (for a trvial duality).
This give us the interpretation of multiplicatives: A⊗B = A`B = A⊸ B = A×B

The category is cartesian, with catesian product
˘

Ai = {(i, x)∣i ∈ I, x ∈
si}, projections πi = {((i, a), a)∣a ∈ Ai} and product of morphisms

˘
i fi =

{(b, (i, a))∣(b, a) ∈ fi}. The terminal object is ⊺ = ∅.
This give us the interpretation of additives: ⊕i∈I Ai =

˘
i∈I Ai = {(i, a)∣i ∈ I, a ∈

Ai}
We can add a comonade (!, d, p) where the functor is define by !A =Mf(A),

!f = {([a1, ..., ak], [b1, ..., bk)∣∀i ≤ k, (ai, bi) ∈ f}, the deriliction by dA =

{([a], a)∣a ∈ A} and the digging by pA = {(m1+⋯+mk, [m1, ...,mk])∣m1, ...,mk ∈

MF (a)}.
This give us the interpretation of exponentials: !P =?P = Mf(P )

This is a Seely category and a model of linear logic since the isomorphismes
1 ≃ [] is trivial and !A⊗!B ≃!(A & B) is defined by ([a1, ..., al], [b1, ..., br]) ≃
[(1, a1), ..., (1, al), (2, b1), ..., (2, br)].

But it can even be seen as a categorical model of differential linear logic. By
defining the co-dereliction natural transforamtion d̄A = {(a, [a])∣a ∈ A} ∈ A →
!A, we are fixing the contraction cA = {(l+r, (l, r))∣l, r ∈!A} the co-contraction
c̄A = {((l, r), l+r)∣l, r ∈!A}, the weakening wA = {([],∗)} and the co-weakening
w̄A = {(∗, [])}. So that we can define the derivative ∂X = (id!X ⊗dX)○ cX ∶!X →
!X⊗X and the co-derivative ∂̄X = c̄X ○(id!X⊗d̄D) ∶!X⊗X →!X . This derivatives
are Taylor, i.e. if two morphisms f1, f2 ∶!A → B are such that f1 ○ ∂̄A = f2 ○ ∂̄A
then f1 + (f2 ○ w̄X ○ wX) = (f1 ○ w̄X ○ wX) + f2. Finally the exponential acept
anti-derivatives, since it is bi-comutative and JA = IdA + ∂̄A∂A = IdA is an
isomorphism. For more detail about models of DLL see ??.

As for every categorical model of linear logic, the exponential is a comonade
and induced a coKleisly MRel = Rel! whose objects are the set and whose
morphisms from P to Q are the relations between !P and Q. The identities are
the relations digP = {({x}, x)∣x ∈ P} and the composition f○g = {(X,z)∣∃(Y, z) ∈
f,∀y ∈ Y, (X,y) ∈ g}.

A.2 Algebraic model

In order to have an algebraic model of ∂λ-calculus we only need a reflexive
object, i.e. a triplet (M,app, abs) where M is an object of MRel, app ∶ (M →

9



(!M� ⊸ M) = (Mf(M) ×M)) and aps ∶ ((Mf(M) ×M) → M) such that
app ○ abs = Id. Such an object can a priory found by taking the lower fix
point of M ↦ M ⇒ M =?M ⊸ M =Mf(M) ×M . But this will just leads to
the trivial empty model. We will then resolve the more complicated fix point
M ↦ (?M)&N

= N ×Mf(M) where the exponent represent an infinit tensor
product. The lower fix point will be calledM∞.

An other way to see the fixpoint is to say that M have to be equal to
the set of quazi everywhere empty lists of finite substets of itself. Its element
are the recursively defined as being either ∗, the list of empty elements, or
a∶∶α with a ∈ Mf(M∞) and α ∈ M∞. The coresponding app and abs arise
imediatly from the functoriality: app = {(a∶∶α, (a,α))∣(a,α) ∈M∞} and abs =

{((a,α), a∶∶α)∣a,α ∈M∞}
In order to be understandable, we are presenting the interpretation of terms

via a type system with types living in M∞. The usual presentation of the
interpretation can be recoverd from the type system:
JMKx̄ = {(ā, α)∣x̄ ∶ ā ⊢M ∶ α}
JQKx̄ = {ā∣x̄ ∶ ā ⊢ Q}
The type system is the following:
Γ ⊢∆

x ∶ [],Γ ⊢∆ x ∶ [α] ⊢ x ∶ α
Γ ⊢M ∶ α

Γ ⊢M+N ∶ α
Γ ⊢ N ∶ α

Γ ⊢M+N ∶ α
Γ, x ∶ v ⊢M ∶ α

Γ ⊢ λx.M ∶ v∶∶α
Γ ⊢M ∶ w∶∶α Γ′ ⊢ B ∶ w

Γ + Γ′ ⊢M B ∶ α

⋀j≤n Γj ⊢ Lj ∶ βj ⋀i≥n Γi ⊢ L ∶ βi

(Σn+m
r=1 Γr) ⊢ [L1, ..., Ln;L

!] ∶ [β1, ..., βn+m]
Γ ⊢ Q

Γ ⊢ τ̄(Q) ∶ ∗

Γ ⊢M ∶ ∗
Γ ⊢ τ[M]

Γ ⊢ Q Γ′ ⊢ R

Γ + Γ′ ⊢ Q∣R
⊢ ǫ

10


