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Abstract

We consider the problem of rapidly identifying, among a large set of candidate parame-

ter fields, a subset of candidates whose responses computed by accurate forward flow and

transport simulation match a reference response curve. In order to keep the number of calls

to the flow simulator computationally tractable, a recent distance-based approach relying

on fast proxy simulations is revisited, and turned into a non-stationary Kriging method.

The covariance kernel is obtained by combining a classical kernel with the proxy function,

hence generalizing the idea of random field deformation to high-dimensional Computer Ex-

periments. Once the accurate simulator has been run for an initial subset of models and a

Kriging metamodel has been inferred, the predictive distributions of misfits for the remain-

ing geological models can be used as a guide to solve the inverse problem in a sequential

way. The proposed algorithm, Proxy-based Kriging for Sequential Inversion (PROKSI), re-

lies indeed on a variant of the Expected Improvement, a popular criterion for Kriging-based

global optimization. A statistical benchmark of ProKSI’s performances finally illustrates

the efficiency and the robustness of the approach when using different kinds of proxies.
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1. Introduction

Inverse techniques are one of the corner stones of groundwater modeling. In broad

terms, their aim is to identify model structure and model parameter values from observed

state variables. In practice, a wide range of approaches have been developed [1, 2, 3, 4, 5].

Most often, the inverse problem is formulated in a least-square manner. A data misfit

quantifies the difference between measured and calculated state variables, it is a function

of the unknown parameter values. The aim is then to find models minimizing the misfit.

To avoid unrealistic parameter sets, various model regularization schemes can be employed.

Less frequently, the problem is solved in a Bayesian framework, and instead of providing a

single unique solution (the best estimate), the aim is to recover the posterior probability

distribution of the model parameters knowing the values of the state variables. When the

problem is non-linear and when the prior distributions for the parameter fields are not Gaus-

sian, it is generally not possible to provide an explicit analytical expression of the posterior

distribution. In such situations, one must rely on computational resources and statistical

sampling techniques [6, 3, 7, 8] to get a representative sample (ensemble of parameter fields)

of the posterior distribution. The most advanced techniques are based on Markov Chain

Monte Carlo (MCMC) approaches [9, 10, 11, 8]. They consist in generating samples from the

prior distribution of parameters and running the forward flow and transport model on those

samples to evaluate the misfit and consequently the likelihood of each particular sample (by

comparing the computed state variables with the actual measurements) before accepting

the sample or not in the posterior ensemble. The practical difficulty involved with MCMC

is that the calculation of the likelihood function is often computationally very demanding

and this inhibits the user to let the MCMC algorithm run for a sufficiently large number of

iterations to enable convergence [12, 11]. Similar computational issues arise in optimization

problems related to groundwater management: if each evaluation of the objective function

that has to be minimized requires a significant amount of computational resources, it may

become infeasible to reach the optimum in a reasonable time and special techniques must

be developed.

2



To reduce the computational demand, one can use the concept of response surface, or

metamodel. The response (misfit or objective function) of the flow simulator is computed for

a small set of candidate parameter fiels and predicted by the metamodel in the remaining part

of the parameter space. Various interpolation techniques can be employed such as radial

basis functions, splines, or kriging [13, 14, 15, 16, 17, 18]. The main advantage of using

kriging is its ability to provide both a prediction of the possible response (kriging mean m)

and a corresponding prediction uncertainty (kriging variance s2). The prediction uncertainty

drops to zero where the response has actually been computed with the numerical model

and increases when moving away from those points. If we consider a global optimization

problem consisting in finding parameter values minimizing the model response, one can use

m and s2 to express a trade-off between the exploitation of the response function (finding

locations where the estimated values m are low) and exploration of the design space (finding

locations where the prediction is the most uncertain). Combining these two ideas gave birth

to the Expected Improvement (EI) criterion [19]: at every location (within the parameter

space), the kriged response surface is used to estimate the expected value of the possible

improvement (difference between the possible value at that location and the value of the

current minimum obtained with the numerical model). The value of the input parameter

vector with the highest EI is then chosen to run the numerical model again and update the

response surface. Such approaches based on kriging metamodels have been very successfully

used for sequential design of computer experiments since the development of the Efficient

Global Optimization algorithm [20] in the late 1990’s. Several other criteria were later

proposed (see [21] for an overview).

Another approach to reduce the computational demand is to use a concept of distance

between parameter fields [22, 23, 7]. Several types of distances can be defined, but the im-

portant point is that the distance should be defined such that it can be computed rapidly and

used as a guide to predict if two parameter fields will lead to similar or different responses.

For example, Suzuki et al. [24] used the Hausdorff distance to quantify the differences in the

geometry of complex 3D models (having different fault systems, horizon geometries, etc.),

coupled with the neighborhood algorithm [25] to search efficiently, within the prior ensemble,
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the models that match field observations of oil production. Scheidt and Caers [23] propose

a general framework based on the concept of distance to quantify uncertainty. In their ex-

ample, the problem consists in estimating oil recovery in a production well. The models all

have the same geometry, but very different parameter fields (obtained using multiple-point

statistics with different training images). The prior ensemble is large and the aim is to obtain

rapidly a good estimation of the uncertainty on the forecast. For that purpose, Scheidt and

Caers [23] define the square distance between two parameter fields as the integrated square

difference between the responses computed for the two models with a fast streamline solver.

The distances between every pair of models is computed and used as the base for mapping

all the models in an abstract metric space in which it is possible to select a small number

of parameter fields covering comprehensively the variability of the complete ensemble. Run-

ning the forward two-phase flow numerical simulator only on this small number of selected

models allows a fast and rather accurate estimation of the uncertainty. Going a step further,

Caers et al. [26] use the same framework to formulate the inverse problem. They propose to

solve a so called pre-image and post-image problems which consist in generating parameter

fields which are located at a pre-specified location in the metric space corresponding to the

solution of the inverse problem.

A final direction that seems promising to reduce the computational demand is the joint

use of a pair of complex and simple models [27, 28, 29]. The distinction between the complex

and simple models is not straightforward, but to remain general we can state that the

complex model tends to account for all the important and relevant physical processes as

well as all the necessary geometrical complexity of the reservoir. On the opposite, the

simple model neglects some aspects of this complexity with the aim of being much more

computationally efficient. The simplification may be based on neglecting some physical

processes, it may be based on reducing the space dimension of the problem (2D instead

of 3D), it may also be based on a coarse spatial or temporal resolution. In the remaining

of this paper, we will use the terminology accurate model for the complex one, and proxy

for the simple one. To use a combination of accurate and proxy models in practice, one

needs to establish a link between the two. Several approaches can be devised. For example,
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Doherty and Christensen [29] identify some parameters of the proxy model by solving an

inverse problem where the results of the accurate model have to be reproduced.

In this paper, we propose to link an accurate and a proxy model using a distance-based

kriging metamodel. It allows to forecast the possible response of the accurate model as it is

done with traditional kriging metamodels. However, those methods are usually limited to

parameter spaces of small dimensions. This makes their application for the identification of

complete parameter fields impossible. The novelty of the proposed approach lies therefore in

the way we define the covariance kernel at the core of the kriging metamodel. The concept

is simple, we assume that the same parameter fields can be used as input data for the proxy

and the accurate model. As suggested by Caers and his collaborators [22, 23, 26, 7] we

use the distance in proxy responses, but we include that distance into the covariance kernel

of the kriging equations. The consequence is a drastic reduction of the dimensions of the

problem allowing to infer the statistical parameters of the covariance. Once the statistical

relation between the proxy and the accurate model is established, it can be used to predict

the accurate response and its uncertainty for any model whose proxy response is known. It

can also be updated when new runs of the accurate model become available. This general

idea can be applied for a very wide range of problems.

The main aim of this paper is therefore to describe the concept of the distance-based

kriging technique. We also illustrate how this technique can be used in a sequential algorithm

aiming at quickly identifying a set of parameter fields whose responses computed with an

accurate model match some reference data. Because the purpose, in an inverse problem,

should not only be to find the global minimizer(s) but more to sample from a posterior

distribution, we propose a variant of the EI criterion meant to spend more time exploring

the possible various minima of the misfit function than EI.

For illustration purpose, we consider a simple flow and solute transport problem. The

geological heterogeneity is modeled using a multiple-point statistics technique [30] allowing

to account for prior geological knowledge typical for a fluvio glacial environment. Numerous

experiments with a randomization procedure are conducted to test the robustness of the

method.
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The paper is organized as follows. In section 2 we first give an overview of the sequential

algorithm used to solve the inverse problem. Then we describe in detail the proposed kriging

metamodel in section 3. The equations of ordinary kriging are recalled, with a focus on the

crucial role of the covariance kernel. The original kernel underlying our work is introduced,

followed by a discussion on its interpretation as well as its mathematical foundations. To

close the section, we give practical details concerning the estimation of covariance param-

eters. We then end the presentation of the method in section 4 by describing how the

sequential search is driven. Section 5 and 6 are dedicated to results and discussion. We first

introduce a case study to illustrate the methodology. Then we present the obtained experi-

mental results and statistically assess the performance of the method based on a benchmark

of 100 randomly chosen reference curves. We finally conclude and propose a few theoretical

and practical perspectives in section 7.

2. Overview of the sequential algorithm

The proposed sequential algorithm is named Proxy-based Kriging for Sequential Inversion

(ProKSI). Its aim is to identify rapidly, within a large ensemble of parameter fields, the ones

whose responses computed with the accurate model fit some reference curve. In practice,

the algorithm consists in sequentially selecting among all the available models which one

will be used as input for the accurate numerical model at the next iteration (Fig. 1 to 2).

Before sketching the key phases of the algorithm, let us set a few notations.

Each candidate parameter field is denoted xi ∈ E (1 ≤ i ≤ N), where E is a vector

space, typically of dimension 104 to 106 when representing a discretization of the subsurface.

In the following examples, xi represents a categorical field obtained from multiple-point

statistics simulation. But the proposed methodology is more general and can be applied

without much modifications to models having various geometries or even based on different

conceptual assumptions. The only requirement is that it is possible to compute the accurate

and proxy responses for any of those input models.

The accurate numerical simulator is considered as a function f returning a vector of

values. In the example, we assume more specifically that f returns a breakthrough curve

6



(concentration versus time):

fx : t ∈ [0, T ] → fx(t) ∈ R+ (1)

for any input x ∈ E, where t represents the time. The space of such curves is denoted by F .

Now, given a reference curve fref ∈ F , the goal is to recover in a limited time which xi’s

(1 ≤ i ≤ N) minimize the misfit g◦(x) := d(fref, fx), where d is some metric on F . For

example, if we use the L2 norm, the misfit will be expressed as:

g◦(x) =

∫ T

0

(fref(t)− fx(t))
2 dt (2)

Ideally, one wishes to get a good picture of the subset of input fields leading to a good fit,

relying on a fixed number of evaluations k < N dictated by computation time constraints.

In addition to the costly f , we assume that a ”proxy” p : E → F is available, providing

an approximate solution to the flow and transport equations significantly faster than f .

Depending on the context, p may stem for instance from an auxiliary simulator solving

similar equations with simplified physics, or from degrading the accurate simulator f by

reducing the time or spatial resolution.

N 

candidate 

models

Distance 

matrix

D

proxy

simulations

clustering

(optionally with MDS)
 initial models 

for ProKSI

Figure 1: Initialization steps of the ProKSI algorithm.

The ProKSI algorithm starts with a series of initialization steps (Fig. 1):

1. A large number N of xi’s are generated (e.g., by multiple-points statistics simulation).

2. The proxy responses p(xi, t) are computed for all xi’s (1 ≤ i ≤ N). The distances di,j

between the proxy responses of any pair of input fields are then computed:

di,j =

∫ T

0

(p(xi, t)− p(xj, t))
2 dt (3)

This allows assembling the distance matrix D between all proxy responses.
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3. A clustering technique (k-means) is used to group the models in n0 classes. For each

class, the models that are the closest to the centröıd are selected to get a subset

Xn0
= {xi1 , . . . ,xin0

} of n0 initial models (See Fig. 6(a)). Multi Dimensional Scaling

(MDS) is optionally used to map all the input parameter fields in a small-dimensional

euclidean space (Fig. 6(a)).

For each of those n0 models, the accurate response fij is computed with the accurate

numerical solver. We obtain a vector g◦ = {g◦i1 , . . . , g
◦
in0

} (g◦ij := g◦(xij), 1 ≤ j ≤ n0)

containing the misfits for the n0 models. The values of g◦ are transformed using a power-

law gij =
[
g◦ij

]a
to obtain a sample g with a close-to-Gaussian distribution. Note that here

and in the sequel, the value of a is obtained by minimizing the skewness of the sample of

transformed values {gij , 1 ≤ j ≤ n0}.

Kriging 

Metamodel

misfit transformation 

and kriging 

metamodel fitting

predictions for all 

candidate models

misfit calculation

and concatenation

init

Evaluate f for the  

candidate            

maximization

not yet
evaluated

update

Calculation of EIα for all 

remaining candidates

Figure 2: Sequential loop of the ProKSI algorithm.

A sequential loop (Fig. 2) then allows to select a new candidate model at each iteration

on which to run the accurate solver. This enables building progressively a set of parameter

fields with low misfit values. The steps in that loop are the following (n is first set to n0):

1. If not already done, apply a normalizing transform to the sample of misfits (See detail
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above). Estimate the covariance parameters τ , θ, and σ2 by Maximum Likelihood as

described in section 3. Compute the kriging mean m(xi) and the variance s2(xi) for

all inputs xi /∈ Xn.

2. After having computed the value of the modified expected improvement criterion

EIα(xi) (see section 4 for its definition) for all the remaining candidate models, Select

a model with maximal EIα value as next candidate, called xin+1
.

3. Set Xn+1 = Xn ∪ {xin+1
}. Compute fxin+1

with the accurate numerical solver. Cal-

culate the new corresponding misfit and append it to the vector of misfits: g◦
n+1 =

{g◦
n, g

◦
in+1

}. Go to step 1 and resume the search until a convergence criterion is met.

The algorithm stops when the EIα reaches a prescribed lower threshold, or a desired number

of evaluations has been done, for instance because the allocated search time is elapsed.

3. High-dimensional kriging with a proxy-based kernel

Kriging 

Metamodel

predictions for all 

candidate models

conditioning 

data

Distance 

Matrix

D

Covariance

Parameters

Maximum Likelihood 

Estimation

Figure 3: Overview of the main steps in proxy-based Kriging prediction (after misfit transformation).

The most important difference between the existing methods and what we propose here

is the distance-based kriging approach. It lies at the heart of sequential algorithm described

earlier in Figure 2. In this section, we will describe in detail how this step is performed. The

main idea is to integrate the distance between proxy responses within the covariance kernel

of the Kriging metamodel (Fig. 3).
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3.1. Kriging for Computer Experiments

We adopt the framework of Gaussian Processes [17] to model the misfit between fref and

the response of the accurate numerical model. The misfit g is assumed to be one realization

of a Gaussian Process (Gx)x∈E, with mean function µ and covariance kernel k. We assume

that µ is an unknown constant, as in the case of Ordinary Kriging. We denote g the vector

of the known values of the misfit at the current design of experiments Xn := {xi1 , . . . ,xin}

(n ≥ n0), the Kriging mean m(x) = E
[
Gx|Gxi1

= g(xi1), . . . , Gxin
= g(xin)

]
and Kriging

variance s2 of the same random process at any arbitrary point x ∈ E write:

m(x) = µ̂+ k(x)TK−1(g − µ̂1) (4a)

s2(x) = k(x,x)− k(x)TK−1k(x) +
(1− k(x)TK−11)2

1TK−11
(4b)

where K is a n×n matrix with entries Ki,j = k(xi,xj), referred to as the covariance matrix

of observations, k(x) := (k(x,x1), . . . , k(x,xn))
′ is a n×1 covariance vector, and µ̂ = 1TK−1g

1TK−11

is the Best Linear Unbiased Estimator of µ.

One of the attracting features of Kriging is that m interpolates the observations (i.e.

∀j ∈ {1, . . . , n}, m(xij) = g(xij)). Furthermore, s2 vanishes at the design points (s2(xij) =

0), and gives a quantification of the prediction uncertainty at unobserved points. A very

important feature is that both properties remain valid whatever the chosen covariance kernel

k. Hence, equations (4a) and (4b) give a potentially infinite set of interpolating metamodels,

and choosing a k adapted to the studied phenomenon appears to be a crucial issue in practice.

3.2. A new kernel for high-dimensional Kriging based on fast proxies

Designing a suitable covariance kernel over E×E is very challenging because E is a space

of parameter fields of typical dimensions ranging between 104 to 106. Hence, taking kernels

usually employed in d-dimensional (d ≈ 10) cases, e.g., an anisotropic power exponential

kernel, will a priori not make sense in the present framework. Alternatively, uncovering

features of the models x ∈ E leading to similar response curves would be ideal.

Here, we take advantage of the proxy responses in order to define a relevant measure of
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similarity. More precisely, we propose to use the following covariance kernel:

k(x,y) := σ2 exp

(
−

1

θ2

∫ T

0

(p(x, t)− p(y, t))2dt

)
+ τ 21x=y (5)

In words, the closer two proxy curves associated with two parameter fields x,y are, the

closer the fits to the reference are expected to be when running the accurate simulator with

those inputs. In addition to this transformed Gaussian kernel, the term τ 21x=y stands for

the nugget effect, and allows to model a possible dissimilarity between the accurate responses

of the inputs x,y, even if their associated proxy responses are close or even identical.

In fact, the proposed covariance kernel k can be seen as a standard stationary Gaussian

kernel over F × F , chained with the ”proxy operator”, that is with the function p:

k(x,y) := σ2 exp

(
−

1

θ2
||p(x)− p(y)||2F

)
+ τ 21x=y (6)

where ||f ||F :=
√∫ T

0
f(t)2dt (f ∈ F ) stands for the L2 norm over F (the functions of F

being further assumed continuous). This basic fact ensures that the proposed kernel is an

admissible covariance. k is indeed positive-semidefinite over E×E in virtue of the following

property, for which a proof is proposed in appendix:

Property Let E and F be two arbitrary spaces. Given a positive-semidefinite kernel kF

over F × F , the kernel kE defined by

kE(x,y) := kF (p(x), p(y)) (7)

is a positive-semidefinite kernel over E × E whatever the function p : E −→ F .

Note that in different contexts, similar methods relying on a change of variables within

a positive-semidefinite kernel were already proposed, for example in [31] and subsequent

works. Coming back to Eq. 5, the basis kernel kF corresponding to Prop. 7 is none other

than an isotropic Gaussian kernel kF (u,v) = σ2 exp
(
− 1

θ2
||u− v||2F

)
, parametrized by a sill

σ2 and a range parameter θ > 0.

The next subsection focuses in detail on the chosen methodology for estimating the three

parameters σ2, θ, τ 2 from available data.
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3.3. Parameter fitting for the proposed Kriging model

The approach chosen here for tuning the covariance parameters is Maximum Likelihood

Estimation (MLE). MLE for covariance parameters in Ordinary Kriging settings relies on

the assumption that g is one realization of a Gaussian vector with mean µ̂1 and covariance

matrix K with entries driven by the parametric kernel k above. MLE then consists in

maximizing the likelihood function for σ2, θ, τ 2 given g, or equivalently in minimizing:

l(σ2, θ, τ 2;g) := log(det(K)) + (g − µ̂1)TK−1(g − µ̂1), (8)

where K and µ̂ are functions of (σ2, θ, τ 2). When τ 2 = 0, it is known [32] that µ̂ = 1TR(θ)−1g

1TR(θ)−11
,

and the optimal value of σ2 can be expressed as a function of θ only:

σ2∗(θ) :=
1

N
(g − µ̂1)TR(θ)−1(g − µ̂1), (9)

where R(θ) := 1
σ2K(σ2, θ, 0) is the correlation matrix of GXn

. Minimizing l is equivalent to

the one-dimensional minimization over θ of the so-called concentrated log-likelihood :

lc(θ;g) := l(σ2∗(θ), θ, 0;g). (10)

When τ 2 > 0, Eq. (9) is unfortunately no longer valid. In that case, a rigorous option would

be to minimize l with respect to σ2, θ, τ 2. However, when τ is very close to 0 as is often the

case in practice (at least in the examples that we have investigated), it would be frustrating

to throw up eq. (9) and loose the benefit of reducing the problem dimensionality to one

because of tiny changes in the likelihood. Here we approach the problem sequentially, and

preserve the concentration step at the price of a minor approximation. First, an estimate

of τ 2 is derived based on variographic considerations. Then, a first guess of σ2, say σ2
0, is

made. Depending on the context, this guess could for instance stem from variographic tools,

or from a previous iteration in the case of a sequential design of experiments. Based on τ 2

and σ2
0, an approximate formula –analogue to eq. (9)– is proposed for the optimal variance

as a function of the range:

σ̃2∗(θ) :=
1

N
(g − µ̂(θ)1)T

(
R(θ) +

τ 2

σ2
0

I

)−1

(g − µ̂(θ)1), (11)
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where θ is finally tuned by optimizing the following approximate concentrated likelihood:

l̃c(θ;g) := l(σ̃2∗(θ), θ, τ 2;g) (12)

4. Sequential search driven by proxy-based Kriging

The Kriging model presented in the previous section allows to calculate the Kriging mean

m(xi) and variance s2(xi) for predicting the (transformed) misfit g(xi) for any candidate

model xi. We want then to use that information to select the candidate models on which the

accurate numerical model will be executed during the search procedure in order to identify

the ones with the lowest misfits. For that purpose, we propose to use a variant of the

Expected Improvement (EI) criterion, meant to spend more time exploring the basins of

optima than the genuine EI.

By definition, EI is intended to point towards promising points, but also to foster space

exploration. Hence, in EI algorithms like EGO [20], a typical behavior when evaluating the

objective function at a good point (i.e. at a point becoming the current best) is to spend

some additional iterations in its neighborhood, and then to get attracted by unexplored

regions with higher Kriging variances. This can be explained by coming back to EI’s formal

definition. Let us denote by g(Xn) the vector of (transformed misfit) observations after n

accurate evaluations of the misfit function, min(g(Xn)) is the minimum value of the misfit

found so far. The aim is now to find a location x in the high dimensional parameter space

E such that there is a high chance to find a smaller value of the misfit. Let us remind the

reader that the misfit is modeled as a Gaussian Process (Gx)x∈E, one can then express the

possible improvement (it is a random variable) in any location of E as the difference between

the current minimum and the possible value of the misfit min(GXn
) − Gx, of course only

positive values must be taken into account since we are not interested in regions with worse

misfit, the improvement is therefore equal to max(min(GXn
)−Gx, 0) = (min(GXn

)−Gx)
+.

The EI criterion for a candidate model x then writes as the expectation of the improvement

conditional to g(Xn):

EI(x) : = E
[
(min(GXn

)−Gx)
+ |GXn

= g(Xn)
]

(13)
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where conditioning on the event GXn
= g(Xn) turns min(GXn

) into min(g(Xn)), and leads

to the well-known Gaussian conditional distribution for Gx:

L(Gx|GXn
= g(Xn)) = N (m(x), s2(x)) (14)

Owing to this convenient property, the EI criterion offers the advantage of being analyti-

cally tractable (see [20]). Noting T = min(g(Xn)) and fN (m(x),s2(x)) for the density of the

N (m(x), s2(x)) distribution, we have indeed:

EI(x) =

∫ T

−∞

(T − u)fN (m(x),s2(x))(u)du

= (T −m(x))Φ

(
T −m(x)

s(x)

)
+ s(x)φ

(
T −m(x)

s(x)

)
,

(15)

where Φ and φ stand for the cumulative distribution function and the probability distribution

function of the standard Gaussian distribution, respectively. Here we propose a variant of

EI meant to put more emphasis on the exploration of basins of minimum while remaining

tractable. Indeed, the aim in our motivating applications is not only to find the global

minimizer(s) of g as quickly as possible, but also to find a representative subset of inputs

leading to a response curve close to the reference, i.e. to a small misfit. The proposed trick

to lower the repulsion effect of current best points is to replace min(g(Xn)) by a quantile of

g(Xn) in the definition of EI. Calling α the level of this quantile, we denote

EIα(x) = (qα −m(x))Φ

(
qα −m(x)

s(x)

)
+ s(x)φ

(
qα −m(x)

s(x)

)
(16)

where qα = qα(Xn) is the empirical α%-quantile of the sample of misfits {g(xij), 1 ≤ j ≤ n}.

Varying α allows tuning the criterion from normally explorative to very local. Indeed, when

α = 0, qα,n coincides with the minimum of g(Xn), so that EI0 ≡ EI. However, when tuning

α to a strictly positive value (obviously smaller than 1), the tendency of EI to vanish near

the observation points disappears. To prevent the algorithm from resampling at already

explored points, we exclude them from the search. However, we are interested in points very

close to the already explored points in terms of the proposed kernel, since they have similar

proxy responses but may be very different in terms of inputs. Different values of α will be

investigated in the application section, where the benefit of taking α > 0 will be illustrated.
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5. Illustration of the method through a case study

In order to test the proposed approach, we consider a relatively simple but realistic

example. It consists of a two-dimensional solute transport problem. The geology is based

on an aquifer analogue in a glacio-fluvial environment that has been mapped in detail in the

Herten site by Bayer et al. [33].

Solute concentration at 13.3 days

(c) accurate model

(d) proxy model

Breakthrough curves
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Figure 4: Illustration of the hydrogeological problem.
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5.1. Geological facies simulations

To start, 1000 stochastic vertical sections of geological media xi have been generated

using the Direct Sampling (DS) multiple-point statistics algorithm [30] with one of the

geological sections at Herten as training image [33]. The grid has a size of 320 by 140 pixels

and covers an area of 16m by 7m. A few realizations are represented in Figs. 4(a) and 5(a).

The realizations are constrained by a secondary variable (describing the main stratification)

in the training image and in the simulations to ensure that the main sedimentary structures

observed at the site are reproduced, following the approach used in 3D by Comunian et al.

[34]. The parameters that were used for the DS method are: a search neighborhood of 20

cells on each axis, a maximal number of neighboring nodes of 15, a distance threshold of

0.01, and a maximal scan fraction of 0.5.

The ensemble of those geological models constitutes a sample of the prior distribution of

the geological fields that are expected to occur in this environment. Fig. 5(a) displays 9 of

those realizations, in which the variability between representations is present only at small

scales within the main sedimentary bodies. The large scale structures are identical in all

simulations.

5.2. Flow and transport simulations

The spatial discretization for the flow and transport problem is kept identical to the

grid used for the geological simulations. The boundary conditions and parameters are sum-

marized in Table 1. A constant value of the hydraulic conductivity is assigned to each

facies (Fig. 4(b)) according to the mean values obtained from laboratory experiments and

described by Bayer et al. [33]. For the sake of simplicity, the porosity is considered ho-

mogeneous over all facies. The flow is uniform from left to right and in steady-state. A

constant head is prescribed on the left (0.1m) and right boundaries (0m). The upper and

lower boundaries are no flow boundaries. The initial distribution of the solute concentration

is set to zero everywhere in the domain. A fixed concentration of 1 is prescribed on the left

boundary. The advective-dispersive-diffusive transport is solved in transient regime by using

a finite volume matlab toolbox provided by I. Lunati [35, 36]. Figure 4(c) shows the map of
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the solute concentration for the realization shown in Fig. 4(a) after 13.3 days of simulations.

On the right boundary, the solute fluxes are integrated to compute the breakthrough curve

fx(t) representing the mean concentration at the outlet versus time (Fig. 4(e)).

Parameter Value

Porosity 0.35

Molecular diffusion 4.0× 10−9 m/s

Longitudinal dispersivity (along x axis) 0.1m

Transversely dispersivity (along z axis) 0.01m

Total simulation time 1.44× 107 s

Time steps length 1.44× 104 s

Table 1: Parameter values for the solute transport model

Despite the apparent small variability in the geological structure discussed above, a wide

range of tracer breakthrough responses are obtained on the prior ensemble (Fig.5(b)). This

illustrates the importance of the internal heterogeneity of the high permeability features

within the main sedimentary layers.

5.3. Two different proxies

A good proxy is faster than the accurate numerical model and allows to distinguish

models that have similar or different responses in terms of tracer breakthrough. Such a proxy

is generally not expected to provide an accurate simulation of the breakthrough or of solute

concentration states. It should simply be a fast approximation allowing to discriminate

models.

In this paper, we considered two different proxies and check their performances and

reliability. The first one, p1x(t), is based on simplified physics. We use the same solver

and the same spatial and temporal resolution as for the accurate model based on the full

physics, but we disregard diffusion and dispersion effects. The numerical simulation thereby

only accounts for advection and numerical dispersion phenomena. The second proxy, p2x(t),

is based on simply coarsening the time discretization of the accurate model. The number of
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Figure 5: (a) 9 realizations of the lithofacies. Because all the simulations are constrained by the large scale

structure data, only the internal architecture within the main layers is displaying some variability between

the simulations. (b) Ensemble of the breakthrough curves obtained with the accurate numerical model and

the two proxies (c and d) for the 1000 models. To make the figure more readable, some breakthrough curves

are represented in light gray color.
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time steps is reduced; their duration is increased to 2.88× 105 s (i.e. a division by 20 of the

number of time steps).

The breakthrough curves computed with the two proxies are displayed in Figs. 5(c) and

5(d). The first proxy gives breakthrough curves whose general shape resemble more the

accurate model than the second proxy: some of the curves display a sigmoidal shape like the

fine scale solution. The second proxy results in breakthrough curves that are more regular.

For this proxy, the first arrivals of the tracer are almost identical for all geological models

because of the coarse temporal resolution. The responses for p2x(t) present some variability,

but less than fx(t) and the first proxy. For both proxies, the computational time is reduced

by a factor of about 20. The accurate numerical solution takes about 7.5 minutes on a PC,

while the two proxies run in about 20 seconds each.

5.4. Results

Let us now apply our Kriging model to the problem of predicting the transformed misfit

between the breakthrough curves of a given reference and the responses associated with

the 1000 candidate geological media. The proxy used here is p1x(t), the one with simplified

physics. Here we arbitrarily choose one of the actual response curves (the realization with

index 800) for illustration purposes. Note that more general results will be presented in

section 6, where statistics will be derived based on 100 randomly chosen reference curves.

Among the 1000 considered inputs, 50 are chosen based on a clustering technique using

proxy-induced distance (Fig. 6(a)), in the flavor of Scheidt and Caers [23]’s approach. The

actual response curves are calculated by using the accurate numerical model with the latter

inputs, and the 50 corresponding values of misfit to the reference curve are calculated and

stored in a vector, denoted by g◦(X50) or g
◦, as in section 3.

As shown on Figure 7, a transformation is used to make the data misfits closer to

Gaussian. For simplicity, we restrict the transformation to be a power transform, g = (g◦)a.

The ad hoc approach proposed here to determine the coefficient of this transform is to set

the skewness of the transformed sample equal to zero. As will be presented in more detail in

section 6 (performance assessment), such transform significantly improves the predictivity

19



−
1

.0
−

0
.5

0
.0

0
.5

(a) MDS principal plane

0
.0

0
0

0
.0

0
5

0
.0

1
0

0
.0

1
5

0
.0

2
0

0
.0

2
5

0
.0

3
0

(b) Evolution of the misfit values

Iterations

m
is

fi
t 
v
a

lu
e

Worst rank: 298

Top 30

-1 0 1 2 3 4 0 20 30 40
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that were selected by the K-means algorithm for the initial design of experiments, and the radius of the

circles are proportional to the EIα criterion; (b) Monitoring of the misfit values obtained for the parameter

fields sequentially chosen by the ProKSI algorithm.

of the Kriging model, as well as the performances of the inversion algorithm proposed in the

next section.

In a second step, we estimate the kernel parameters by maximum likelihood (MLE) based

on the transformed sample of fits. We can see in Fig. 8 that the optimal value of θ is very

clearly defined since the log-likelihood curve has a large curvature at its minimum value.

The quality of the resulting Kriging estimates is then evaluated: we first use a standard

cross validation technique on the 50 samples used to infer the Kriging model (Fig. 9(a))

and then extend the comparison to an external validation on the complete ensemble of

1000 values (Fig. 9(b)). In both cases, the predicted values obtained by Kriging are in

good agreement with the true values; the regression line of predicted versus actual values

has in intercept B0 close to zero and a slope B1 close to 1 (Fig. 9), indicating that the

Kriging predictions are not notoriously biased. Furthermore, one can see that the leave-on-

out errors of (a) give a reasonable estimate of the prediction errors observed a posteriori on
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Figure 7: Samples of untransformed (left) and transformed (right) misfit values obtained at a 50-point initial

design of experiments in the case of a proxy with simplified physics. The histogram of the untransformed

sample is closer to a chi-square distribution, whereas the one obtained by a power transformation, although

remaining positive, is much more similar to the one of a Gaussian sample. The exponent used in the power

transformation (a ≈ 0.24 here) is obtained by setting the skewness of the transformed sample to 0.

the exhaustive validation set.

6. Performance assessment

The good results obtained in the illustrating example above (Fig. 8) are of course

conditioned by the chosen reference breakthrough curve fref (here with index 800) and do

not constitute a sufficient basis to appraise the ProKSI algorithm. Furthermore, the method

is proxy-dependent, and it would make sense to test the sensitivity of the performances to

both an improvement or a degradation in the proxy. In this section, we propose a more

systematic benchmarking of the algorithm’s performances by analyzing the results obtained

with 100 different fref ’s, and for three different proxies, with a comparison to Monte Carlo
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random search in the case of the worse proxy. In that last situation, we will use a completely

inadequate proxy model to test the robustness of the method. Furthermore, the effect of the

power transform applied to the misfit function, as well as the effect of the replacement of

the minimum by a quantile in the EI criterion are investigated. Before giving more details

about the benchmark and the obtained results, let us first present the main performance

evaluation metrics.

6.1. Performance evaluation metrics

EM1: current best model’s rank. One of the most natural way of evaluating an opti-

mization method consists in monitoring the evolution of the misfit as a function of the

number of iterations (Fig. 6(b)). One can also plot the smallest misfit value achieved

so far as function of the number of iterations. However, the curve obtained for such

a metric would have a scale (on the y-axis) depending on the considered fref , which

would prevent us from making comparisons between different tests. As a consequence,

we choose to focus on the evolution of the rank of the current best model among the

1000 candidates. This rank would normally be unknown but here we can compute

it because we evaluate the true misfit for all the candidate models (even those which

are not selected by the ProKSI algorithm) in order to be able to test the efficiency

of the method. Because, we then use multiple references and because we repeat the

numerical experiment, we can then plot some statistics of the rank as a function of

the number of iterations (Fig. 10(a)).

EM2: number of evaluated models from the top 30. The first metric (EM1) focuses

on the capacity of the method to find at least one model with a low misfit value, but

not on its ability to explore the set of models with low misfit values. EM2 is meant

to be a complement to EM1, by measuring the number of models of the top 30 (i.e.

the 3% best models in terms of misfit value) evaluated along the algorithm. Though

rather arbitrary, EM2 gives a good picture of the algorithm’s tendency to explore the

possible multiple peaks of the posterior distribution of models. Again, the statistics

of EM2 are plotted as a function of the number of iterations (Fig. 10(b)).
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EM3: probability that random search outperforms the proposed algorithm. It is

expected that an elaborated algorithm like ProKSI (relying on a metamodel) performs

better than random search, and at least not much worse in cases where the proxy is

misspecified. The metric EM2 is well-adapted to base a comparison of ProKSI to a

naive Monte Carlo (MC) algorithm, since the law of the number of points visited in

the top 30 can be analytically derived for the case of a random search (this number

then follows a hyper-geometric distribution). EM3 is a curve giving at each iteration

of ProKSI the probability that an MC algorithm finds more points in the top 30.

6.2. Benchmark: design and implementation

6.2.1. Design of the benchmark

The aim of the benchmark was to assess the global performances of the ProKSI algorithm

on the considered case study with the following specific questions in mind. How sensitive

are the performances to: (Q1) the chosen proxy, (Q2) the value of the quantile

α, and (Q3) the normalizing transform of the misfit values?

Consequently, we ran replications of the algorithm (by varying the reference curve) with

different proxies, with or without power transform of the misfit function, and with different

values of α. In order to have results based on solid statistical analysis, rather than on an

arbitrary set of examples with a potentially low generalization power, we ran the ProKSI

algorithm 100 times for each configuration (i.e. for each considered (proxy, transform, α)

combination). For each proxy considered (p1, p2, and a third mismatched one described

below), 50 models are chosen by Scheidt and Caers clustering technique based on Multi-

Dimensional Scaling, and 100 fref are randomly chosen among the 950 remaining models.

Then, for any given configuration (in terms of transform and/or α value), 75 iterations of

the ProKSI algorithm are run for the 100 chosen fref . The results are visualized in terms of

box-plot sequences representing the statistical distributions of 100 values for the considered

evaluation metric, evolving over the 75 iterations. Finally, for EM3, one sequence of 75

probabilities that a Monte Carlo algorithm would lead to more points in the top 30 than the

proposed approach (one probability per iteration) can be produced for each replicate. Then,
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in the same way as previously, one may sum up the results for any given configuration by

representing sequences of box-plots.

6.2.2. Implementation of the benchmark

All the benchmark algorithm runs and the performance evaluation calculations were done

using the open source statistical software R, based on the numerical simulation results

obtained for the 1000 multiple-statistics simulations (see implementation details in section

5). The R code, gathered in form of a package (ProKSI, forthcoming on the Comprehensive

R Archive Network), was called for each task of the following loop, forming the basic brick

of the benchmark for any fixed configuration:

Algorithm 1 Testing procedure for a proxy with a given algorithm configuration

1: Choose the initial design of experiment (50 points using Scheidt et Caers approach).

2: Choose 100 different simulations among the 950 remaining points.

3: for i = 1 to i = 100 do

4: Run 75 iterations of the algorithm on the ith reference.

5: Evaluate the 3 EM’s for each iteration of the ith run.

6: end for

6.3. Results

The first benchmark results, displayed on Figure 10, deal with the performances on the

ProKSI algorithm when applied to our test-case with proxy 1, and default settings con-

cerning the normalizing transform and the EI variant (power transformation done, and

α = 0.15). Figure 10(a) represents the evolution of the statistics (box-plot) of EM1 over

the 100 replicates, along the 75 iterations of the algorithm. We can see here that in 42

iterations, the actual best model has been found for more than 50% of the replications. Fig-

ure 10(b), the exploration performances are investigated in terms of EM2; it is found here

that 15 models among the 30 best ones (out of 1000) have been evaluated in median after

75 iterations of the algorithm. In total, these results show both how the proposed Kriging
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Figure 10: Performances of the ProKSI algorithm (based on proxy 1) with a power transform of the misfit.

(a) box-plot of the EM1 criteria over the 100 replicates of the numerical experiment. (b) box-plot of the

EM2 criteria.

metamodel helps reaching a fast convergence, and that ProKSI achieves a rather satisfying

exploration of the set of best models in a limited number of iterations.

6.3.1. Effect of the misfit transformation on the algorithm performances

Figure 11 represents the performances (in terms of EM1 and EM2) obtained by applying

the ProKSI algorithm to our case study with default settings concerning the EI criterion

(α = 0.15) but without normalizing power transform for the misfit function.

The results appear to be clearly inferior to the ones obtained with the transformation: here,

even after the 75 iterations, the median rank of the best evaluated model is strictly above

1, which expresses a significantly slower convergence of ProKSI as with the transformed

misfits. Similarly, the number of models forming the top 30 evaluated along the algorithm

stagnates around 8 in median after the 75 iterations. The normalizing transform has thus

clearly a positive effect on the efficiency of the algorithm, both in terms of fast convergence

to the best model, and in terms of global exploration of the nearly optimal models.

However, as illustrated on figure 12, the results in terms of EM2 are still good enough to

outperform a pure random search (upper right graphic). On the lower graphic, the evolution
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(b) Exploration performances
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Figure 11: Performances of the ProKSI algorithm (based on proxy 1) without power transform of the misfit.

(a) box-plot of the EM1 criteria over the 100 replicates of the numerical experiment. (b) box-plot of the

EM2 criteria.

of the median rank for the models evaluated by ProKSI with or without misfit transform

finally illustrate the trend of the algorithm with misfit transform to spend more time in the

nearly optimal regions.

6.3.2. Effect of an improved proxy on the algorithm performances

Let us now present the results obtained when using the second proxy, with default settings.

The most striking result when looking at figure 13 is the impressively fast convergence of

the algorithm in terms of EM1 criterion. Indeed, in 7 iterations, the minimizing model has

been found in all cases (100 replicates) considered. ProKSI successfully relies here on the

information given by proxy 2 for uncovering the best point, only based on slightly more

than the misfit values for the set of 50 initial models. What seems really outstanding in that

case is that such a result is uniformly obtained for the 100 reference curves. To milden this

success a bit, let us remark that the performances in terms of exploration are comparable

to the first proxy, that is one half of the top 30 models were evaluated in median after

termination.
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Figure 12: Effect of the misfit transformation on the performances of the ProKSI algorithm in terms of its

superiority with respect to a Monte-Carlo search and median rank of the evaluated models.

6.3.3. Effect of the α parameter (from EIα) on the algorithm performances

We investigate here the effect of the parameter α, tuning the quantile level in the proposed

generalization of EI, on the performances of the algorithm. We obtained very different

results for the two proxy. Indeed, the performances of ProKSI were not very sensitive to α

when using the first proxy, so that we do not discuss this case here, and refer the interested

reader to the appendix for more detail. However, α was found to be strongly influencing the

algorithm’s performances when using the second proxy, as illustrated on Figure 14.

It is indeed observed on Figure 14 (a and b) that using proxy with the standard EI criterion

(α = 0) is less efficient compared to the considered default value α = 0.15: even though the
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Figure 13: Performances of the ProKSI algorithm (based on proxy 2) with default settings.

algorithm convergence to the minimum is always comparably fast, the exploration perfor-

mances are strongly affected by this change of criterion (median number of points in the top

30 after termination decreased from 15 to 10). On the other hand, increasing alpha to 0.6

was found to greatly improve the results in terms of exploration (again, without affecting

the minimization performances, see 14 (c)) since the median number of points in the top

30 jumped to 25, as can be seen on 14 (d). To sum up, introducing this parameter α was

found beneficial for the exploratoriness of the algorithm. Its optimal tuning is of course

problem-dependent. The rather arbitrary default value α = 0.15 chosen here gave improved

results in both cases considered, even though better performances could be reached by using

a larger α value in the case of the second proxy.

6.3.4. Effect of a non-informative proxy on the algorithm performances

Finally, we propose to test the performances of ProKSI when using a completely inadequate

proxy model. The idea is to see if the algorithm remains consistently applicable when the

simplified model is poorly (or not at all) informative, and how using ProKSI in such degraded

conditions would perform compared to a naive Monte Carlo search. In order to emulate a

non-informative proxy, we started from proxy 1, and randomly permuted the 1000 indices.

We then ran the ProKSI algorithm with this ”mismatched” proxy, and compared them to
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(a) Minimization performances, α = 0
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(b) Exploration performances, α = 0
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(c) Minimization performances, α = 0.6
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(d) Exploration performances, α = 0.6
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Figure 14: Effect of the α parameter on the performances when using the second proxy

trajectories obtained by Monte Carlo (the whole replicated for the 100 reference curves).

As illustrated on Figure 15, the performances of ProKSI with ”mismatched” proxy are

comparable to those of Monte Carlo in terms of exploration, and remain significantly better

in minimization. The algorithm hence appears reasonably robust to a proxy mispecification,

while being potentially very efficient for well-chosen proxies, as seen previously.
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(a) Minimization performances, Mismatched proxy

Iteration

E
M

1
: 
c
u

rr
e

n
t 
b

e
s
t 
m

o
d

e
l’s

 r
a

n
k

(b) Exploration performances, Mismatched proxy
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(c) Minimization performances, Monte-Carlo
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(d) Exploration performances, Monte-Carlo
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Figure 15: Effect of a non-informative proxy on the performances.

7. Conclusion

Handling complex solvers requiring heavy computational load while representing uncer-

tainty is often contradictory. Accurate complex solvers are too computationally demanding

to be used in the general framework of a Monte Carlo approach and analytical propaga-

tion of uncertainty is often intractable. Resolving this issue is an important research topic

both from a theoretical perspective and for a wide range of applications [37, e.g.], including

hydrogeology.

In this paper, we propose a contribution which consists in coupling a complex model (the
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accurate model), a simple model (the proxy), and a statistical metamodel. The statistical

metamodel is used to link the results of the proxy with those of the accurate model. More

precisely, this is achieved by developing a specific covariance kernel accounting for the dif-

ference in responses from the proxy models and allowing to predict statistically the response

of the accurate model using Kriging. One of the strengths of this idea is that the use of the

distance between proxy responses permits to drastically reduce the dimension of the Kriging

problem and allow an efficient inference of the parameters of the covariance kernel. The

quality of the relation between the accurate and the proxy models is also directly taken into

account via the covariance kernel. In addition, the chosen covariance kernel can be tailored

to the practical problem that has to be solved (through the proxy, the kernel kF , and more),

which makes the approach flexible.

In the example case study, we showed how such an approach can help in the case of

an inverse problem where the prediction refers to the misfit between observations and the

accurate model responses. As a first step, we propose here an iterative search algorithm. This

method is an extension of previous work done by Caers and colleagues [24, 23, 7] in which

we add a step based on the use the Kriging model described above to orient the search. We

propose to guide the selection of a model during the search by defining a modified Expected

Improvement criterion EIα such that the algorithm will explore potentially multiple minima

if they exist.

The systematic analysis of the case study showed the following results.

• When the proxy is informative, the method is extremely efficient in finding the model

parameters that minimize the misfit.

• When the proxy is less informative, the method efficiency decreases but is always much

better than a random search.

• The proposed modified expected improvement criteria allows both identifying the

global minimum and exploring the various basins of minimum when they exist.

• The method is more efficient when the misfit are properly transformed so as to get
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a close-to-Gaussian sample. This is not surprising, because otherwise the expected

statistical distribution of the misfit for a given model would not be properly predicted

and the value of the Expected Improvement criteria could be biased.

• The parameter α - defining the quantile of the misfit distribution below which a model

is considered as an interesting candidate - allows to control the degree of exploration

of the method. A low value of α will preferentially sample the regions around the

global minimum and let the algorithm behave like a maximum likelihood technique.

A higher value of α will sample preferentially in the whole range of areas of minimum

and will be more explorative.

We consider, that the results obtained so far are very encouraging and show that the use

of a Kriging technique to couple a complex and simple model will open a broad range of

new perspectives. The proposed technique can already be used directly to identify rapidly

maximum likelihood solutions. If one wants to obtain not only the best solution but an

ensemble of models, then the selection criterion and the iterative search procedure will have

to be modified in order to ensure that the final ensemble will be a representative sample of

the posterior distribution. The method can also be extended in a relatively straightforward

manner to allow generating new candidate models by coupling it, for example, with the

Iterative Spatial Resampling method [11]. Finally, it is also very clear that this type of

approach can be parallelized to improve the numerical performances [38].
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Appendix A. Proof that a p.d. kernel chained with a proxy is p.d.

Property Let E and F be two arbitrary spaces. Given a positive-semidefinite kernel kF

over F × F , the kernel kE defined by

kE(x,y) := kF (p(x), p(y)) (A.1)

is a positive-semidefinite kernel over E × E whatever the function p : E −→ F .

Proof. Let n ∈ N, x1, . . . ,xn ∈ E, and α1, . . . , αn ∈ R. Then

n∑

i=1

n∑

j=1

αiαjkE(xi,xj) =
n∑

i=1

n∑

j=1

αiαjkF (p(xi), p(xj))

=
n∑

i=1

n∑

j=1

αiαjkF (yi,yj) ≥ 0

by using the definition of positive-definiteness applied to kF with the points yi := p(xi) ∈ F

(1 ≤ i ≤ n) and the coefficients α1, . . . , αn as above.

Appendix B. Supplementary figures

36



(a) Minimization performances, α = 0
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(b) Exploration performances, α = 0
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(c) Minimization performances, α = 0.6
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(d) Exploration performances, α = 0.6

Iteration

E
M

2
: 
n

u
m

b
e

r 
o

f 
e

v
a

lu
a

te
d

 m
o

d
e

ls
 i
n

 t
h

e
 t
o

p
 3

0

1 5 10 20 30 40 50 60 70 7510 10 10 10 10 10 1 5 10 20 30 40 50 60 70 7510 10 10 10 10 10

0

10

20

5

15

25

0

10

30

20

40

Proxy 1

Figure B.16: Effect of α on the performances of the ProKSI algorithm for proxy 1.
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(c) Median of the visited rank
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Figure B.17: Comparison of the performances of ProKSi with a purely random sampling strategy in the

case of a wrong proxy.
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