In situ characterization of antibody grafting on porous monolithic supports
Résumé
The efficient immobilization of antibodies on monolithic support is one of the most critical steps when preparing immunoaffinity supports. In this work, the ADECA (amino density estimation by colorimetric assay) method was adapted to tridimensional supports (in a dynamic mode) and proved to be efficient to characterize the antibodies grafting efficiency on 15.3 ± 0.9 mg porous glycidyl methacrylate (GMA)-co-ethylene dimethacrylate (EDMA) monolithic columns. The amount of grafted antibodies measured in situ on the monolith by ADECA (8.2 ± 0.2 μg of antibodies per milligram of monolith) was consistent with values obtained by bicinchoninic acid assay (BCA) after crushing the monolith. ADECA was shown to be less time-consuming and more versatile than BCA. The ADECA method was further implemented to thoroughly study and optimize the antibody grafting conditions (influence of pH and kinetics of the grafting step) on GMA-based monoliths and to check the covalent nature of the antibody/surface linking and its stability. Using the total amount of grafted antibodies and the amount of recognized antigen, we found that 65 ± 6% of antibodies were able to capture their antigen. Finally, the grafting of Fab and F(ab′)2 fragments demonstrated that no significant improvement of the global binding capacity of the monolith was obtained.