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ABSTRACT: Determining the number of contributors to a forensic DNA mixture using maximum allele count is a common practice in many
forensic laboratories. In this paper, we compare this method to a maximum likelihood estimator, previously proposed by Egeland et al., that we
extend to the cases of multiallelic loci and population subdivision. We compared both methods’ efficiency for identifying mixtures of two to five
individuals in the case of uncertainty about the population allele frequencies and partial profiles. The proportion of correctly resolved mixtures was
>90% for both estimators for two- and three-person mixtures, while likelihood maximization yielded success rates 2- to 15-fold higher for four- and
five-person mixtures. Comparable results were obtained in the cases of uncertain allele frequencies and partial profiles. Our results support the use of
the maximum likelihood estimator to report the number of contributors when dealing with complex DNA mixtures.
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Interpretation of forensic DNA mixtures is a challenging task in

forensic casework. Mixtures arise when more than one individual

contributes to the DNA stain. This is common in cases of sexual

assault where the source of DNA evidence can include the victim,

the perpetrator(s), and the consensual partner(s) of the victim.

The interpretation of DNA evidence is even more challenging

when competing hypotheses are weighted using likelihood ratios

because it is implicitly assumed that the number of contributors is

known. As misclassified DNA mixtures can lead to dramatic

effects on the result of a police investigation, several attempts have

been made to assess this problem. Weir (1), Brenner et al. (2),

Buckleton et al. (3), and Lauritzen and Mortera (4) have all sug-

gested bounds on likelihood ratios. None of these authors consid-

ered the matter of inferring the number of contributors from the

data although this is a prevalent line of questioning in court.

It is common laboratory practice to set the lower bound on the

number of contributors to the minimum required to explain the

observed set of alleles. This bound is based on the maximum allele

count throughout the analyzed loci, i.e., the locus showing the max-

imum number of alleles determines the bound. This method is

believed to be an unreliable predictor because of the effect of allele

sharing between contributors to the mixture known as the masking

effect (5,6). Setting a lower bound is obviously different from

attempting to estimate the most supported number of contributors

from the data alone. Egeland et al. (7) proposed to overcome this

issue by making explicit use of the available allele frequencies of

the target population. They suggested a likelihood-based estimator

of the number of contributors using diallelic markers when condi-

tions for Hardy–Weinberg equilibrium are met in the population.

This method was shown to perform rather well for at least 200

diallelic markers and for mixtures of two and three contributors.

DNA stains from crime scenes are usually characterized through

multiallelic short tandem repeat (STR) loci, so there is a need to

investigate which approach is the most efficient in determining the

number of individuals involved in a mixture. Moreover, several

studies have shown that longer DNA fragment lengths carry a

greater probability of lost information from allelic drop out (8),

leading the forensic expert to conclude that the DNA evidence has

partial profiles.

In this paper, we aim to (i) extend the work of Egeland et al.

(2003) to an arbitrary number of alleles per locus and to dependen-

cies between alleles because of population subdivision and (ii)

investigate through simulations the performance of two methods for

estimating the number of contributors to a DNA mixture from the

genetic data alone and irrespective of background information that

may affect this estimation: the maximum allele count and the maxi-

mum likelihood estimator.

We investigate the methods’ properties in three distinct situa-

tions: in the first situation, all contributors to the mixture belong to

the same population with known allele frequencies; in the second

situation, we take into account the effect of not knowing with cer-

tainty the allele frequencies of the contributors’ population, a situa-

tion that may arise from population subdivision; in the third
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situation, we seek to identify the effects of partial profiles on the

estimation accuracy for both the maximum allele count and the

likelihood-based estimators.

To facilitate reproducibility of our results and extension to other

situations, our method is freely available in the package forensim

for the R statistical software (9).

Methods

Extending the Likelihood Estimator to the Cases of Multiallelic

Loci and Population Subdivision

Let A be a specific locus with alleles A1,..., Ak with frequencies

p1,..., pk in a given population. Let m be the set of observed alleles

in a DNA stain from a crime scene. We are interested in estimating

the probability of observing m knowing that there are x individuals

contributing to the mixture. This is the likelihood of the data m

conditional on x, denoted: LA(x).

Example—Suppose that a crime scene stain shows alleles A1
and A2 at locus A, the forensic expert wants to determine the likeli-

hood that two contributors supply these alleles. Combining the

observed alleles into two individual genotypes yields seven distinct

pairs of possible genotypes for the two contributors: (A1A1, A2A2),

(A2A2, A1A1), (A1A1, A1A2), (A2A2, A1A2), (A1A2, A1A1), (A1A2,

A1A2), and (A1A2, A2A2).

Under the hypothesis that the contributors to the DNA stain are

not related, the estimation of each genotype proportion can be

obtained as a product of the allele frequencies using the Hardy–

Weinberg formula. This assumes the independence of alleles

between and within individuals. This simplifying hypothesis as a

means to determine the genotype proportions from allele frequen-

cies is termed the ‘‘product rule’’ (10).

The probability of observing the pair of genotypes (A1A1, A1A2),

denoted Pr(A1A1, A1A2), corresponds to the probability of observing

one homozygote for A1 and one heterozygote A1A2, which is

p21 · 2p1p2. By adding the probabilities for each possible genotype

pair, we finally obtain:

LAðx ¼ 2Þ ¼ 4p
3
1p2þ6p21p

2
2þ4p1p

3
2

These results could be derived analytically in a simple case (one

locus and two hypothetic contributors), but the complexity of the

likelihood computation increases dramatically with the numbers of

loci and contributors; hence, there is a need for a general formula-

tion of the likelihood function. To achieve this generalization, we

follow the work of Curran et al. (11) who gave a general frame-

work for interpreting DNA mixtures that can take population sub-

division into account. In their paper, a general formula for mixture

interpretation evaluation was given in the form: Pr(E|H), where E

is the DNA evidence and H is the hypothesis under which the data

is being considered, for example, the prosecution hypothesis.

When only genetic data is considered, the evidence E is com-

posed of the set of alleles observed in the mixture, denoted C. This

set of alleles is composed of the following: (i) the set of alleles

found in the typed individuals who are known to have contributed

to the mixture, denoted T; (ii) the set of alleles found in the typed

individuals known to be noncontributors to the mixture, denoted V;

and (iii) the set of alleles carried by the unknown contributors,

denoted U. For instance, in the case of a DNA stain from a rape

case, T is the set of alleles carried by the victim, her consensual

partner(s), and potentially the suspect(s); V is the set of alleles

carried by cleared suspects; and U is the set of alleles carried by

the unknown contributors to the mixture.

The general formula of the likelihood can thus be derived from

the particular case where all contributors to the mixture are

unknown and there are no typed individuals. This corresponds to

T = V = B and C = U. Note that the equality C = U does not cor-

respond to the degenerate case evoked in (11) where unknown con-

tributors can have any genotypes in C. In our case, the x unknown

contributors’ genotypes must explain all alleles in C; thus, all possi-

ble genotypes attributable to the unknown individuals must explain

the alleles present in the mixture, and they must all be taken into

account in the likelihood calculation.

General Formulation of the Likelihood Function—Before

giving the general formulation of the likelihood function, we first

specify the notations used in this paper, following Curran et al.

(11): x: The unknown number of contributors to the DNA mixture;

c: The distinct number of alleles observed in the DNA stain; r:

The number of unconstrained alleles, r = 2x ) c; ri: The unknown

number of copies of allele Ai among the r unconstrained alleles of

the stain; ui: The unknown number of copies of allele Ai in the

stain, with
Pc

i¼1

ui ¼ 2x and ui = ri + 1; h: Wright’s FST coefficient,

which gives the probability of identity by descent of two alleles

taken at random from a subpopulation in two distinct individuals.

In our case, all contributors are unknown. Consequently, the

DNA evidence, E, is only composed of the alleles present in

the stain, C, and all other quantities defined in (11) and related to

the typed individuals, whether they are known to have contributed

to the mixture, are set to zero. The likelihood of having x individu-

als giving the alleles observed at a locus A in the case of all indi-

viduals belonging to the same subpopulation is given by the

general formula:

LAðxÞ ¼
Xr

r1¼0

Xr�r1

r2¼0

:::

Xr�r1�r2�:::�rc�2

rc�1¼0

ð2xÞ!
Qc

i¼1

ui!

Qc

i¼1

Qui�1

j¼0

½ð1� hÞpi þ jh�

Q2x�1

j¼0

½ð1� hÞ þ jh�

ð1Þ

Equation (1) takes into account the variation in the subpopulation

allele frequencies. When there is no need to consider population

subdivision, the likelihood of the data is simply obtained by setting

h to zero.

The Likelihood Estimator—The maximum likelihood estimation

of x, when a single marker A is considered, satisfies:

max
j¼1;2;3;:::

LAðx ¼ jÞ ð2Þ

When multiple loci are considered simultaneously, the likelihood

is calculated as the product of the likelihoods of each locus:

max
j¼1;2;3;:::

Y

A

LAðx ¼ jÞ ð3Þ

The result in Eq. (3) is straightforward for the case of a homoge-

neous population, that is when h = 0 in Eq. (1). When there are

allele dependencies in the general population because of subdivi-

sion, the overall loci likelihood (in the subpopulation) is still, to a

close approximation, the product of the single locus probabilities,

because the dependencies between alleles at different loci are

corrected through h (12).

In fact, the likelihood estimator defined by Eqs. (2) and (3)

extends the likelihood-based estimator derived by Egeland et al. (7)

to the case of multiallelic loci and allows population subdivision to
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be taken into account through h. Thus, the value for h must be cho-

sen according to the level of subdivision of the population. Typi-

cally, h is chosen in the interval [0,0.03] when dealing with human

populations (13).

Most forensic DNA mixtures consist of two-person mixtures

(14); thus, for the estimator to be biologically meaningful, estimates

were searched in the discrete interval [1,6]. This is a sensible upper

limit for the number of contributors that can be analyzed in

practice.

Evaluation of the Methods’ Performance

Known Allele Frequencies Case—We used a published data

set of allele frequencies in three U.S. populations (15): African-

Americans, Caucasians, and Hispanics. These populations were

characterized by 15 STR loci, of which 13 correspond to the core

CODIS loci.

Genotypes were simulated by drawing alleles independently at

their relative frequencies from each population data base. Mixtures

were then simulated by randomly drawing genotypes at each locus.

The performances of the likelihood-based estimator and maximum

allele count were compared on 1000 simulated mixtures comprising

two to five contributors.

Uncertain Allele Frequencies Case—Generally, in the case of

population subdivision, allele frequencies of the subpopulations are

not known with certainty. This is because of the difficulty of defin-

ing the subpopulation of an individual (16). In this paper, we ana-

lyze the effect of uncertainty on allele frequencies by modeling the

differences in allele frequencies between the global population and

a subpopulation through a Dirichlet model. The term ‘‘subpopula-

tion’’ means that the allele frequencies in the target population are

not known with certainty and does not imply allele dependencies

between and within loci.

The allele frequencies for a given locus in a given subpopulation

are generated as random deviates from a Dirichlet distribution

(17,18). Each allele frequency is a random variable with a parame-

ter ai = pi(1 ) h) ⁄h, where h is the FST coefficient. Denoting p0i the

frequency of allele Ai in the subpopulation, the allele frequencies

are modeled as:

p01; . . . ; p
0
k ! Dirichletða1; . . . ; akÞ

The global allele frequencies were taken from the African-Amer-

ican population (15).

We chose to set h = 0.03 in the variance parameter ai. This

value corresponds to the correction factor suggested by the National

Research Council (19) for dealing with highly subdivided human

populations. Because we were only interested in studying the effect

of uncertainty on the subpopulation allele frequencies, all loci were

simulated independently within the subpopulation.

We compared the results of the maximum allele count to the

likelihood-based estimator on 1000 simulated mixtures of two to

five contributors. We investigated the differences between results

when the uncorrected form of the likelihood-based estimator is used

(h = 0) and compared them to the results obtained using the cor-

rected form by setting h = 0.03.

Evaluation of the Methods’ Robustness to Partial

Profiles—We analyzed the effect of successively removing loci

while estimating the number of contributors on 1000 simulated

mixtures of two to five individuals. The markers were successively

removed according to their alleles’ expected median length (20).

This corresponds to what happens in the case of a degraded DNA

sample: Longer DNA fragments drop out first (8).

All programs used for the simulations were implemented in the

forensim package for the R statistical software, available at http://

forensim.r-forge.r-project.org/.

Results

Known Allele Frequencies Case

The accuracy of estimations decreased with the number of

contributors for both the maximum allele count and the maximum

likelihood estimators (Table 1). The probability of a correct estima-

tion was always >90% for mixtures of two or three individuals.

Maximum allele count produced better estimates for three-person

mixtures, but the efficiency of this method decreased dramatically

for complex mixtures of four or five individuals, while maximum

likelihood gave a correct classification rate ranging from 64% to

79% in the three populations.

Uncertain Allele Frequencies Case

The effect of uncertainty on allele frequencies was investigated

for the case where the real allele frequencies deviate greatly from

those used in the estimator (FST = 0.03, Table 2). Accurate esti-

mates were obtained with the maximum allele count for mixtures

with two or three contributors (success rate >90%). The percentage

TABLE 1—Percentages of correctly identified mixtures for all three studied

populations. The first column gives the true number of contributors, x. The
second and third columns give the percentages of mixtures correctly

identified by the two methods: the maximum allele count and the maximum

likelihood estimator.

x Maximum Allele Count (%) Likelihood Estimator (%)

African-Americans

2 100 100
3 99 94
4 45 79
5 5 67
Caucasians

2 100 99
3 97 92
4 34 77
5 2 64
Hispanics

2 100 100
3 98 93
4 45 79
5 2 67

TABLE 2—Percentages of correctly identified mixtures in the uncertain

allele frequencies case. The first column gives the true number of

contributors, x. The next two columns give the percentages of accurate

estimation for the maximum allele count and the maximum likelihood

methods. For the latter, two estimates are displayed corresponding to the

form used in the estimator: the uncorrected form (h = 0) and the corrected

form (h = 0.03).

x

Maximum Allele
Count (%)

Likelihood Estimator (%)

Uncorrected Form Corrected Form

2 100 99 99
3 94 95 91
4 21 56 76
5 0.7 27 60
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of correctly identified stains was lower when dealing with four or

five contributors. For instance, only 21% of five-person mixtures

were correctly identified.

The corrected (h = 0.03) and uncorrected forms (h = 0) of the

likelihood-based estimator produced similar results for mixtures of

two or three individuals. The corrected form was more efficient in

cases of a greater number of contributors: 60% of five-person mix-

tures were correctly identified, which was more than twofold the

maximum allele count success rate.

Method Robustness to Partial Profiles

The effects of partial profiles on the estimators’ accuracy are

shown in Fig. 1. Only mixtures simulated from African-American

allele frequencies are shown here in the known allele frequencies

case. Similar results were obtained for the other two populations

(Caucasians and Hispanics) as well as in the uncertain allele fre-

quencies case for all three populations (results not shown). Consis-

tent with previous results (Tables 1 and 2), the accuracy of both

methods decreased with the number of contributors. The relative

performance of both methods changed with the number of contrib-

utors in the mixture. The maximum allele count was revealed to be

more efficient for mixtures of two or three persons, while the likeli-

hood-based estimator performed better for mixtures of more than

three individuals (see Fig. 1). A 90% success rate was reached

using the maximum allele count for a two-person mixture when

exploring only two loci, while five were needed for the maximum

likelihood estimator. For three-person mixtures, the loci number

increased to 10 and 14, respectively. For complex mixtures of four

or five contributors, the success rates fell to 63% for the likeli-

hood-based estimator and to 0.042% for the maximum allele count

using all 15 loci.

Finally, to further our understanding of the aforementioned

results, we looked at the characteristics of the profiles responsible

for the biased estimations with the maximum likelihood estimator

(Tables 1 and 2, Fig. 1). We analyzed the sensitivity of the estima-

tor to allele frequencies. An illustration of our results is shown in

Fig. 2 for a three-person mixture characterized by one locus. The

FIG. 1—Percentages of correctly identified mixtures for x contributors, where x ranges from 2 to 5 in the case of partial profiles, for the maximum allele

count and the maximum likelihood methods.
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maximum allele count can only give a lower bound to the real

number of people involved in the mixture; thus, it cannot give

overestimates. In contrast, maximizing the likelihood can lead to

either underestimation or overestimation. Underestimation occurred

when there are rare alleles in the mixture, while mixtures with fre-

quent alleles also tended to be misclassified.

Discussion

We compared the efficiency of the commonly used maximum

allele count and an estimator based on likelihood maximization in

inferring the number of contributors to forensic DNA mixtures.

Globally, maximizing the likelihood did not perform better than

the maximum allele count for mixtures of two or three individuals.

When all loci were documented and all mixture contributors

belonged to the same population with known allele frequencies, the

maximum allele count gave lower misclassification rates (varying

from 1% to 3%) than the likelihood-based estimator (varying from

6% to 8%). These results corroborate previous findings for the for-

mer estimator (5).

Maximum allele count gives correct estimates for mixtures com-

prising x individuals when there are at least 2x ) 1 alleles at one

of the considered loci in the stain. While this condition is often

met in two- or three-person mixtures, it is unlikely to find as many

distinct alleles in mixtures of high order because of allele sharing

(6). For instance, five-person mixtures are unlikely to show nine

distinct alleles at any of the considered loci, even if very

polymorphic markers are used. Consequently, the maximum allele

count method, which tends to underestimate the real number of

contributors in mixtures of high order (x > 3), still gives satisfac-

tory results for two- and three-person mixtures. Maximum likeli-

hood estimator can either over- or underestimate the real number

of contributors for all mixture types.

As expected, the uncertainty of estimations increased with the

number of contributors for both methods, while four- and five-per-

son mixtures were more accurately identified by maximizing the

likelihood. This is owing to allele sharing between contributors. As

maximum allele count relies only on the number of distinct alleles,

mixtures with greater numbers of contributors have greater amounts

of allele sharing, which leads to the underestimation of the number

of contributors.

Previous studies showed that using maximum allele count in the

case of substantial allele sharing leads to biased estimates (5). The

bias is likely to increase in cases of population subdivision. Here,

we were more interested in one of the consequences of subdivision

on the likelihood-based estimator, namely, the uncertainty on allele

frequencies of the subpopulation, because the estimator explicitly

makes use of the allele frequencies. In the case of uncertain allele

frequencies, we observed that the corrected form of our estimator

performed better than the uncorrected one only for mixtures

consisting of four or five contributors. Mixtures involving two or

three individuals were more accurately classified with the uncor-

rected form of the estimator. The correction for subdivision was

thus efficient in the uncertain allele frequencies case only for com-

plex mixtures, but this might not be the case in highly subdivided

populations, where the independence of individual genotypes might

not be realized.

In the case of partial profiles, both of the estimators showed a

similar decrease in precision for two- and three-person mixtures,

while the likelihood-based estimator was clearly more robust to

partial profiles when dealing with four- and five-person mixtures.

The lack of robustness of maximum allele count is explained by

the fact that decreasing the number of loci decreases the chance of

encountering in the mixture a locus that shows enough distinct

alleles to allow a correct estimation using only the maximum allele

count. This effect is likely to be increased when dealing with com-

plex mixtures of more than three contributors.

Overall, it is difficult to specify the minimum number of loci

needed to accurately resolve a mixture because this number

depends on the tolerated error rate that relies on the forensic

expert’s experience; however, even with all 15 STR loci, five-per-

son mixtures could not be resolved satisfactorily: The maximum

allele count yielded an error rate of more than 95%, while maxi-

mizing the likelihood misclassified more than 30% of the mixtures.

The bias in estimations is due in part to profiles with multiple

masked alleles. This problem could be circumvented using quantita-

tive data given by the mixture profiles’ peak heights or areas (21).

In fact, our estimator only takes into account qualitative informa-

tion consisting of the allele types present in the stain. We assumed

that the forensic expert had already determined the alleles present

in the mixture and that there was no ambiguity during this stage of

the evidence analysis. Further work could thus include the use of

quantitative information to help in revealing masked alleles.

Most forensic laboratories use the maximum allele count

method to specify the number of contributors to mixed stains.

Complex mixtures comprising multiple masked alleles are likely

to be misclassified by this method. This issue could have dramatic

consequences especially when the number of contributors is deter-

mined solely on genetic data. This might be the case when dealing

with DNA casework. Very often no suspect is available in such

FIG. 2—Sensitivity of the maximum likelihood estimations of the number

of contributors to variations in allele frequencies for a simulated three-

person mixture. A single locus, ‘‘vWA,’’ was considered. At this locus, the

mixture included alleles ‘‘16,’’ ‘‘17,’’ ‘‘18,’’ and ‘‘19,’’ with initial allele fre-

quencies taken as 0.25, 0.24, 0.15, and 0.06 from the African American

population. We varied the frequency of the less frequent allele ‘‘19’’ from 0

to 1 (x-axis), values of the three other alleles being also varied by keeping

their relative frequencies constant. Each point on the plot represents the

estimation yielded by the maximum likelihood estimator (yaxis). Correct

estimates are obtained with the original allele frequencies (origin of the

x-axis), and when the frequency of allele ‘‘19’’ varies between 0.24 and

0.52. Underestimation of the number of contributors occurs when frequency

of allele ‘‘19’’ is under 0.24, while overestimations occur when its frequency

is greater than 0.52.
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stains. Consequently, having an estimate of the number of contrib-

utors could help investigators when new elements emerge in the

case. Therefore, it appeared to us that in case the number of con-

tributors is determined on genetic data, maximizing the likelihood

should be preferred to maximum allele count especially when

dealing with stains suspected to be mixtures of three or more

individuals.

To conclude, we would like to point out that we do not recom-

mend one method over the other. Our work is intended to provide

insight into forensic practitioners on the differences in efficiency

between the two estimators with respect to situations frequently

encountered in forensic casework, namely, uncertainty about the

population allele frequencies and partial profiles. Our methodology

is freely available in the package forensim for the R statistical soft-

ware to allow investigations in contexts not explored here.
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