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Lateral Dynamics Reconstruction for Sharp’71 Motorcycle Model with
P2I Observer

Chabane Chenane, Dalil Ichalal, Hichem Arioui and Said Mammar

Abstract— The main objective of this paper is the reconstruc-
tion of lateral dynamics and both roll angle and steering torque
of single track vehicles (motorcycle, scooter, etc.). For that
purpose, the well-known motorcycle model developed by Sharp
in 1971 is used. This model characterizes the lateral dynamics
of a motorcycle [16]. The roll angle is not observable in the
obtained structure, for overcoming this problem, the model is
transformed in order to take into account the roll angle as an
unknown input as well as the steering torque. A Proportional
two integrals (P2I) observer is then proposed for estimating
simultaneously all the variable states, the lateral forces and
both roll angle and steering torque. This study is a part of the
ongoing work of the research team on the design of preventive
safety systems for motorcycles users. Simulation results and
discussions are given in order to illustrate the effectiveness of
the proposed observer.

I. I NTRODUCTION

Recently, the park of single track vehicles is constantly
increasing, upsetting driving practices and road traffic. Un-
fortunately, this expansion resulted in a growth of traffic
fatalities. The statistics endorse this statement and riders are
considered as the most vulnerable road users. In 2010, the
French Agency of Road Safety made a finding of around
1000 deaths (25% of traffic fatalities), while the traffic
volumes of motorcycles does not exceed 1%, [14]. Many
research projects are initiated to fulfill this issue in order
to propose an enhancement in term of security through
preventive and / or active safety systems, [1], [3].

The achievement of safety systems depends on the proper
knowledge of: 1) the dynamics of single track vehicle, and
2) the evolution of its states (observation/estimation) , and
to lesser extent, 3) the road geometry. Regarding the first
point, several studies were carried out in order to understand
the motorcycle dynamics [17], [6], stability analysis (eigen-
modes) of PTW [2], optimal and safe trajectories [4] and
the proposition of risk functions [19], [8] to control loss
or equilibrium margins. These works are little sustainableif
they are not supported by an efficient sensor system helping
in the estimation of some dynamic states.

The use of sensors is not always possible for two main
reasons: 1) instrumentation can be very expensive and lead-
ing inevitably to expensive new bikes, and 2) according
to used technologies, the measurement noise can seriously
compromise the future safety systems. Accordingly, we sug-
gest the use of robust observation techniques to overcome
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the aforementioned shortcomings. Nevertheless, including all
methodologies (Luenberger observer, Takagi-Seguno based
observer, Extended Kalman filter), very few studies have
been conducted on the estimation of motorcycle dynamic
states [9], [20]. The present paper proposes a robust propor-
tional two integral (P2I) approach, [11], [10], [12], [15],help-
ing in states observation of linear motorcycle model and the
reconstruction of rider’s action (steering torque). Disturbance
and the rider action are assumed to be almost affine. This
assumption is quite realistic according to common variation
of roads profile. AnH∞ performance index is included during
the design in order to attenuate the effect of the second
derivative of the Unknown Input (UI) on the estimation error.

This paper is organized as follows: section III is dedicated
to the motorcycle model description. Section IV presents the
robust estimation of the motorcycle states and UI reconstruc-
tion. Finally, simulation results and conclusions complete the
paper.

II. OVERVIEW ON SAFETY QUANTIFICATION

One of the long-term objective of our studies is concern
with the problem of quantifying the risk of loss-of-control
over a motorcycle when cornering. To make a Safe Corner-
ing, riders should observe some wariness : 1) maintain an
appropriate speed when entering the corner, 2)choose a good
position on the road, 3) use Counter steering phenomenon
to lean the bike and 4) in curve, maintain a constant speed
and smoothly accelerate when exit.

These principles must be inflected with other factors that
may make the situation critical. Indeed, a road with limited
adhesion, 2) poor weather conditions are dangerous.

Regarding early warning systems, loss of control, for
standard cars, is expressed by the maximum speed at which
a vehicle can be kept on the road while moving at a constant
speed on a circular section giving by:

vmax =

√

g ·µlat

ρ
(1)

where, g is the acceleration due to gravity andµlat is
the maximum available side friction,vmax represents the
authorized longitudinal velocity in cornering situation and
ρ is the curvature of the road.

Other risk function are proposed by the National Highway
Traffic Safety Administration (NHTSA) which recommend a
maximum safe speed governed by the following equation:



vmax =

√

g
ρ

(

φr +µlat

1−φrµlat

)

(2)

where φr is the road super-elevation angle. Please refer
to [19] for more precise models adapted for motorcycles.

In general, computing the lateral frictionµlat involves all
the dynamic states of the bike and a good interpretation
of the tire-road contact. This makes the success of such
warning system strongly dependent on the availability of
dynamic states of the motorcycle (efficient sensors or robust
observers).

III. D YNAMIC DESCRIPTION AND MODEL OF

MOTORCYCLE

To study the dynamics of Two Wheels vehicle, often
it is assumed that overall vehicle and driver consists
of interconnected rigid bodies with the possibility of
rotation of each body around predefined axes[7]. According
to the assumed number of rigid bodies, a number of
corresponding degrees of freedom which characterizes
the system motion is considered. Then, motorcycle’s
motion can be characterized by two main modes: in-plane
mode representing movements in its plane of symmetry
(longitudinal and pitch displacements) and the out-of-plane
mode represented by the lateral dynamics when cornering
[17].

In this work we exploited the reference model Sharp’71
[16], which is a linear one when assuming both a constant
forward speed and Pacejka’s linear form of the lateral forces.
The study concerns the normal driving situation with where
the driver do not make high maneuvers (small roll and
steering angle) and not sudden movement (small variations
of the steering torque) which justifies all the linearizations
leading to a linear model.

The considered model of the motorcycle contains two
bodies: the rear bodyGr which includes the chassis, engine
and the rear wheel, the front bodyG f which represents the
steering assembly and the front wheel. This configuration
allows 4 degrees of freedom: the lateral displacementy, the
yaw rotation ψ, the roll inclination φ and the handlebar
steering angleδ with respect to the rider torque inputτ
applied on the motorcycle’s handlebar (Figure 1).

According to all these assumptions, The resulting set
of four second-order differential equations of motion is
compactly written as:
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A full description of all terms of matrices is given in the
Appendix.
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Fig. 1. Geometrical representation of the Sharp’s motorcyclemodel

Now we recast the equation of motion in state space formu-
lation as follows:

˙̃x(t) = A x̃(t)+Bτ (4)

The components of the state variable vector ˜x(t) are
motion coordinates lateral forces and velocities, such that
x̃(t) = [δ φ vy ψ̇ Fy f Fyr δ̇ φ̇ ]T .
The Linear Time Invariant matricesA andB are given by:

A =

[

0 I
−M−1P −M−1H

]

, B =

[

0
−M−1G

]

Measuring the roll angle ratėφ(t), one can note that it is
not possible to obtain directlyφ(t) by integration. Indeed,
computingφ(t) from its derivative requires the knowledge
of the initial conditions which are not necessarily known.
Then the second componentφ(t) of the state vector is
not observable. To overcome this limitation, the system’s
equations are rewritten by separating the observable and non
observable state variables. In the obtained new model, the
dimension of the state vector is reduced and it does not
contain the roll angleφ(t). The roll angle together with
the steering torque are considered as unknown inputs. One
obtains the following model:

ẋ(t) = Ax(t)+B1 φ +B2 τ (5)

y(t) = Cx(t) (6)

where the new state vectorx(t) is the state vector given by
[δ vy ψ̇ Fy f Fyr δ̇ φ̇ ]T .

A =

[

0 I
−M−1P(:,1) −M−1H

]

, B1 = P(:,1)

B2 =

[

0
−M−1G

]

C =
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As a conclusion, the motorcycle model, is expressed as
a state space linear model with two unknown inputs: the
roll angle and the steering torque. In the next section, a
Proportional two Integrals observer (P2I) is designed for
estimating simultaneously the state and unknown inputs.

IV. PROPORTIONALTWO INTEGRALS OBSERVERDESIGN

Observers design for linear models is a problem which
has been dealt with intensively since Luenberger’s work [13].
And Proportional-Integral (PI) observer is one of the exten-
sions based on adding an integral action of the estimation
error which makes it effective in estimating constant and
slowly time varying unknown inputs. The PI observer can
be extended for the estimation of non constant UI having a
polynomial form by the use of Proportional Multiple Integral
loops (PMI). Here it is assumed that the two inputs (roll angle
and steering torque) are unknown. The proposed observer
considers two integral actions which leads to a proportional
two-Integrals (P2I) observer which is able to estimate the two
inputs and their first derivatives. Consequently, The form of
the unknown inputs for which the asymptotic convergence
can be obtained are in first order polynomial form. This
correspond to the condition that the second derivatives of
the unknown inputs are zero. In order to extend the class of
unknown inputs which can be estimated by the P2I observer,
it is possible to relax the last condition by assuming that
the second derivatives of the UI are not zero but bounded.
The observer is then designed in such a way to estimate the
unknown inputs, their first derivatives and to minimize the
effect of the bounded second derivatives on the state and
unknown input estimation errors.

For that purpose the previous system (5) is augmented
by considering additional state variablesξ̇1 = φ̈ , ξ̇2 = ξ1 =
φ̇ ,ξ̇3 = τ̈, ξ̇4 = ξ3 = τ̇ which leads to the augmented system
described by state vector, ¯x =

[

xT ξ1 ξ2 ξ3 ξ4
]T

. The
new state space system is given by:

˙̄x(t) = Āx̄(t)+ B̄ū(t) (7)

y(t) = C̄x̄(t) (8)

with
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ū(t) =

[

χ(t)
α(t)

]

andC̄ =
[

C 0
]

whereχ(t) = φ̈(t) andα(t) = τ̈(t).
The P2I observer has the following form:






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
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


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







˙̂x(t) = Ax̂(t)+B1ξ̂2+B2ξ̂4+Kp(y(t)− ŷ(t))
˙̂ξ1(t) = Ki1(y(t)− ŷ(t))
˙̂ξ2(t) = ξ̂1+Ki2(y(t)− ŷ(t))
˙̂ξ3(t) = Ki3(y(t)− ŷ(t))
˙̂ξ4(t) = ξ̂3+Ki4(y(t)− ŷ(t))

(9)

It is clear thatξ̂1 = φ̇ is estimated in the initial state vector
x̂(t), so we can use it to compute directlyφ̂ without need to
minimize φ̈ .
Then the new obtained P2I observer can be expressed as
follows:

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˙̂x(t) = Ax̂(t)+B1ξ̂2+B2ξ̂4+Kp(y(t)− ŷ(t))
˙̂ξ2(t) = ˙̂φ +Ki1(y(t)− ŷ(t))
˙̂ξ3(t) = Ki2(y(t)− ŷ(t))
˙̂ξ4(t) = ξ̂3+Ki3(y(t)− ŷ(t))

(10)

where Kp, Ki1, Ki2 and Ki3 are the observer gain ma-
trices. By defining the new augmented state vector ¯x =
[

xT ξ2 ξ3 ξ4
]T

, the state space observer becomes:

˙̂x(t) = Āx̂(t)+L(y(t)−C̄x̂(t)) (11)

where
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andC̄ =
[

C 0
]

and

Ψ =
[

0 0 0 0 0 0 1
]

The gain of the observer is given by the matrixK to be
designed which includes all the gainsKp, Ki1, Ki2 and Ki3.
Let us define the state estimation errore(t) = x− x̂. Its time
derivative is given by:

ė(t) = ẋ(t)− ˙̂x(t) (12)

= (Ā−KC̄)e(t)+ B̄α(t) (13)

Consider the Lyapunov function:

V (t) = eT (t)Pe(t) (14)

where P is a symmetric and positive definite matrix. The
time derivative of the Lyapunov function is given by:

V̇ = eT (t)[P(Ā−KC̄)+(Ā−KC̄)T P]e(t)+αT B̄T Pe(t)

+ e(t)T PB̄α(t) (15)

The observer gainK is computed in order to stabilize
the system generating the state estimation error and also
to attenuate the effect of the second derivativeα(t) of the
Unknown Input on the estimation errors, namely‖Teα‖∞ < γ,
γ > 0, whereTeα represents the transfer fromα(t) to the error
e(t).

Let us define theL2-gain of the system as the quantity:

sup
‖e(t)‖2

‖α(t)‖2
, ‖α(t)‖2 6= 0 (16)



where theL2-norm of e(t) andα(t) are defined by:

‖e(t)‖2 =

(

∫ ∞

0
e(t)T e(t)dt

)1/2

(17)

‖α(t)‖2 =

(

(
∫ ∞

0
α(t)T α(t)dt)

)1/2

(18)

Then, if the inequality

V̇ (t)+ eT e− γ2αT α < 0 (19)

holds, the state estimation error dynamics is stable and the
transfer fromα(t) to e(t) is bounded byγ. By replacing (15)
in (19) one obtains:

eT (t)[P(Ā−KC̄)+(Ā−KC̄)T P+ I]e(t)

+ αT (t)B̄T Pe(t)+ eT (t)PB̄α(t)− γ2αT (t)α(t)< 0

(20)

Since the final objective is to derive LMI conditions, let us
consider the change of variableZ = PK. The inequality (20)
is equivalent to:

eT (t)[ĀT P+PĀ−C̄T ZT −ZC̄+ I]e(t)

+ αT (t)B̄T Pe(t)+ eT (t)PB̄α(t)− γ2αT (t)α(t)< 0

(21)

In matrix formulation, (21) is equivalent to:
(

e(t)
α(t)

)T ( ĀT P+PĀ−C̄T ZT −ZC̄+ I PB̄
B̄T P −γ2I

)(

e(t)
α(t)

)

< 0

(22)
The quadratic form (22) is negative definite if and only if
the linear matrix inequality:

(

ĀT P+PĀ−C̄T ZT −ZC̄+ I PB̄
B̄T P −γ2I

)

< 0 (23)

holds. Finally, given a scalarγ, if there exists a symmetric
and positive definite matrixP and a matrixZ such that the
LMI (23) is satisfied, then the system generating the state
estimation error is stable and the transfer fromα(t) to e(t)
is bounded by theL2 gainγ. Furthermore, in order to enhance
the performances of the observer, it is possible to minimize
the transfer gainγ subject to LMI constraints. The following
optimization problem is then stated

minγ̄

s.t.
(

ĀT P+PĀ−C̄T ZT −ZC̄+ I PB̄
B̄T P −γI

)

< 0 (24)

by choosingγ as a variable and using the change of
variables γ̄ = γ2. After solving this optimization problem,
the gains of the observer are obtained by

K = P−1Z (25)

and the attenuation gain is given byγ =
√

γ.

V. SIMULATION ANALYSIS

The main objective of this work is to reconstruct the
lateral dynamics, especially, the roll angle, the lateral forces
and the steering torque. To limit the effect of the oscil-
latory phenomenon in the transit phase the poles of the
matrix A− LC are assigned in a LMI regionS defined by
S = {z ∈C | Re(z)<−a, |z|< R}, which is an intersection
between the left plan defined by the Re(z) < −a and the
disc with center(0,0) and radiusR. Thus, we solve si-
multaneously the proposed optimization problem and the
LMI constraints, corresponding to the LMI region, given as
follows (for more details see [5]).

ĀT P+PĀ− Z̄C−CT Z̄T +2aP < 0 (26)
[

−RP PĀ− Z̄C
ĀT P−CT Z̄T −RP

]

< 0 (27)

In all the simulations we fixeda = 10 andR = 50.
Simulation results prove the efficiency of the motorcycle

model used here as illustrated in figure 2 where we show
that the equilibrium condition [18] is verified. The torque
has been chosen in such a way to excite the lateral vehicle
dynamics which corresponds to a cornering maneuver as
shown in the same figure.
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Fig. 2. Vehicle trajectory (top) and Comparison between guiding force and
lateral balance force (bottom)

A. Results without measurement noise

The two figures (3 and 4) show the evolution of the state
variables and the estimate of each state. We see that the
observer converges quickly and the state estimation errors
converge accurately to real states. Figure 5 represents the
roll angle estimation of the vehicle and the reconstructionof
the steering torque, satisfactory results are then obtained.

B. Results with measurement noise

Now, consider the same observer in the presence of
measurement noise of order 10% of maximal value of each
output. The obtained results are depicted in figures 6, 7 and
8. One can conclude that even if the the measurements are
affected by noises, an acceptable state and unknown input
estimations are obtained.
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VI. CONCLUSION AND FUTURE WORK

In this paper, a synthesis of P2I observer was presented
to estimate the dynamic states of a two-wheeled vehicle,
the roll angle that is often inaccessible to measure and
reconstruct the steering torque which is the control input
(rider’s action on the handlebar). The stability of the ob-
server is studied with Lyapunov theory and LMI conditions
are established. Finally, the efficiency of the observer are
illustrated by some simulation results. For Future works, it
will be interesting to extend the approach for a nonlinear
model of the motorcycle by using Takagi-Sugeno fuzzy
structure and Linear Parameter Varying (LPV) model in
order to take into account some nonlinear behaviors and the
variation of the longitudinal velocity. In addition, it remains
to achieve these results through a validation of the prototype
test available in the laboratory, this aims to test some risk
functions developed for strong risks related at preventive
security systems development.
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APPENDIX
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(tZ f −M f eg)sinε (tZ f −M f eg)
tZ f −M f eg −(M f j+Mrh)g















, G =















0
0
0
0
−1
0















where the parameters are defined as follows:
M f , Mr Mass of front/rear frame (M = M f +Mr)
j Distance between the center of gravity

of the front frame and ground
k Distance between the centers of gravity

of each frame
L f , Lr Distance between the center of gravity
e Distance between the fork and the center

of gravity
h Height of the center of gravity
i f y, iry Polar moment of inertia of front/rear wheel
Irz Camber inertia of rear wheel.
R f , Rr radius of the front/rear wheel

g Acceleration due to gravity.
σ f , σr Front and rear tire relaxation lengths respectively
C f 1 C f 2 Front and rear tire cornering

stiffnesses respectively
Cr1 Cr2 Front and rear tire camber stiffnesses respectively
t, V Pneumatic trail and Forward speed
Z f , ε Front wheel load and Steering head angle
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