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Nelkin scaling, the scaling of moments of velocity gradients in terms of the Reynolds number, is an alternative
way of obtaining inertial-range information. It is shown numerically and theoretically for the Burgers equation
that this procedure works already for Reynolds numbers of the order of 100 (or even lower when combined with
a suitable extended self-similarity technique). At moderate Reynolds numbers, for the accurate determination
of scaling exponents, it is crucial to use higher than double precision. Similar issues are likely to arise for
three-dimensional Navier–Stokes simulations.
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Nelkin [1] showed that the multifractal model of turbulence
[2,3] implies certain scaling relations for moments of velocity
gradients (henceforth gradmoments). According to Nelkin, at
high Reynolds numbers, when plotted as a function of the
Reynolds number R, the pth moment of any component ∇u

of the velocity gradient should scale, to leading order, as

〈(∇u)p〉 ∼ Rχp . (1)

The exponents χp are expressible in terms of the multifractal
structure function exponents ζp (cf. Ref. [1] or [4], Sec. 8.5.6).

By using very highly resolved direct numerical simulation,
it has been checked by Schumacher, Sreenivasan, and Yakhot
that not only is such scaling present (its first verification), but
that it is already seen at Reynolds numbers around 200, well
below those where structure functions show any inertial-range
scaling [5]. This is perhaps not so surprising, given that inertial-
range scaling is for intermediate asymptotics with two large
parameters, the Reynolds number and the ratio of the scale
under consideration to the typical dissipation scale, whereas
Nelkin scaling just requires a large Reynolds number.

The one-dimensional Burgers equation

∂tu + u∂xu = ν∂2
xu, u(x,0) = u0(x), (2)

where u is the velocity and ν the kinematic viscosity, can can
throw light on why gradmoments display good scaling at such
moderate Reynolds numbers. Furthermore, it allows analytical
determination of all the dominant and subdominant terms in the
high-Reynolds number expansion of gradmoments. We note
that in a recent paper [6] the Burgers equation was used to
illustrate why the extended self-similarity (ESS) technique [7]
gives improved scaling through the depletion of subdominant
corrections.

Heuristically, it is quite simple to show that for the Burgers
equation we expect χp = p − 1. Indeed, at high Reynolds
numbers, the solutions of Eq. (2) display shocks broadened by
viscosity over a distance O(ν) = O(R−1). Within a shock,
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the pth power of the velocity gradient is O(Rp). Since
shocks cover a fraction O(R−1) of the one-dimensional spatial
domain, the stated scaling results. Of course, such an argument
tells us nothing about subdominant corrections and thus cannot
be used to predict at what kind of Reynolds numbers this
scaling emerges.

We shall now address these issues more systematically,
using simulations and theory. We shall also address a new
question: Scaling exponents are notoriously known with poor
accuracy (cf., e.g., Ref. [4]); how accurately can we determine
such exponents by working with Reynolds numbers at which
there are significant subdominant corrections to scaling? Using
recent results of van der Hoeven [8,9], we shall show that
this requires a subtle tradeoff between Reynolds numbers and
precision (number of decimal digits) used in the calculations.

We begin with simulation-based results for the Reynolds
number dependence of gradmoments when standard double-
precision calculations suffice. We follow here the same strategy
as in Ref. [6]: We solve the Burgers equation (2) with the
initial condition u0(x) = sin x, using a pseudo-spectral method
combined with fixed-time-step fourth-order Runge-Kutta time
marching and a slaved scheme, known by the acronym
ETDRK4 [10], for handling the viscous dissipation. The
gradmoments of integer order p, as a function of the Reynolds
number R ≡ 1/ν, are defined as spatial averages over the
period 2π :

Mp(R) ≡ 1

2π

∫ 2π

0
dx

[
∂u(x,t)

∂x

]p

. (3)

Gradmoments are calculated for orders p from two to ten and
Reynolds numbers R from 20 to 1000. The number of colloca-
tion points N is taken between 8K and 256K, where K stands
for 210 = 1024; the time step δt is between 10−5 and 10−6. We
checked that the errors on gradmoments stemming from spatial
and temporal truncation stay below the level needed for a
double-precision calculation. The output is calculated at t = 2
when the solution of the Burgers equation has a well-developed
shock. Since, as explained above, gradmoments are expected
to behave asymptotically as Rp−1 at large R, we display
them in compensated manner, that is, divide them by Rp−1.
Figure 1 shows the compensated gradmoments as a function of
Reynolds number. Visual inspection shows that the expected

015301-11539-3755/2012/85(1)/015301(4) ©2012 American Physical Society

http://dx.doi.org/10.1103/PhysRevE.85.015301


RAPID COMMUNICATIONS

CHAKRABORTY, FRISCH, PAULS, AND RAY PHYSICAL REVIEW E 85, 015301(R) (2012)

10
1

10
2

10
310

−5

10
−4

10
−3

10
−2

10
−1

R or R̃

R
p
−

1 |M
p
|o

r
R̃

p
−

1 |M
p
|

p=4

p=3

p=5

p=6

p=7

p=8

p=9

p=10

p=2

FIG. 1. (Color online) Compensated pth-order moments (p from
2 to 10) of velocity gradient (Mp) vs both R (continuous line with
points in blue) and the ESS-type surrogate R̃ (dashed red line).

flat behavior of the compensated gradmoments sets in around
R = 40 for the lowest order p = 2 and around R = 300
for p = 10. In contrast, inertial-range scaling for structure
functions, calculated from the same solution of the Burgers
equation, appears clean only around Reynolds numbers of
several thousands [6]. This discrepancy, of nearly two orders of
magnitude, can be made even larger by resorting to a procedure
inspired from ESS in which one resorts to a surrogate of the
spatial separation, such as the third-order structure function,
and plots structure functions versus the surrogate. In the case
of gradmoments, we observe that the mean energy dissipation
is given in terms of the mean-square velocity gradient by
ε = νM2 = (1/R)M2. This has a finite positive limit ε∞
as the Reynolds number tends to infinity. Hence, we can
use R̃ ≡ M2/ε∞ as a (suitably normalized) surrogate of the
Reynolds number. This we call ESS-type plotting. Figure 1
also shows this type of plotting. Now, the data look almost
completely flat, except for the largest value of p around
R̃ = 20, where the data bend slightly upward, as revealed
by looking at the figure from the side.1

Of course, all this has to do with subdominant corrections
to scaling and the way they are affected by the ESS-type
procedure. We now turn to theoretical interpretations. For this
we use the exact solution of the Burgers equation, obtained by
employing the Hopf–Cole method [11,12], which transforms
the Burgers equation into the heat equation. For the initial
condition u(x,0) = sin(x) this solution reads

u(x,t) = −2ν∂x ln θ (x,t), (4)

θ (x,t) =
∫ 2π

0
ecos(x−x ′)/(2ν) G(x ′,t) dx ′. (5)

Here G(x ′,t) = ∑k=∞
k=−∞ eikx ′−νk2t is the Green’s function for

the heat equation in the 2π - periodic case. We want to use
this solution to determine the asymptotics of gradmoments for
small ν, i.e., large R. Using the method of steepest descent, in
a way somewhat similar to what is found in Ref. [13], one can
show that, for large R and any integer p � 2,

Mp(R) = ApRp−1 + BpRp−2 + CpRp−3 + · · · . (6)

1This ESS technique can be readily extended to three-dimensional
Navier–Stokes experiments and simulations.

The coefficients are given by rather complicated and numeri-
cally ill-conditioned integrals.

The expansion (6) and the numerical values of the coeffi-
cients can actually be obtained by an alternative seminumerical
procedure, called asymptotic extrapolation, developed by
van der Hoeven [8] (see also Ref. [9] for an elementary
presentation). Let us now say a few words about this technique,
which will also be used below in connection with high-
precision spectral calculations. Suppose we have determined
numerically with high precision the values of a function f (n)
for integers n up to some high value N . We wish to obtain
from this as many terms as possible in the high-n asymptotic
expansion of f . Trying to fit the function by a guessed leading
asymptotic form with some free parameters will generally
lead to very poor accuracy in such parameters. With some
information about the structure of the various terms in the
expansion, a better method is to fit an expression contain-
ing one or several subdominant corrections (all with some
unknown parameters). Lacking such information, asymptotic
extrapolation handles the problem by applying to the data a
sequence of suitably chosen transformations that successively
strip off the dominant and subdominant terms in the expansion
for large n. At certain stages of such transformations, the
processed data allow simple extrapolations, most often by
a constant. The transformations are meaningful as long as
the successively transformed data is free from conspicuous
rounding noise and n has reached a simple asymptotic behavior
(e.g., flat). From the extrapolation stages, it then becomes
possible (by undoing the transformations made) to obtain the
asymptotic expansion of the data (including the values of
the various parameters) up to some order that depends on
the precision of the data and on the value of N . Here we will
denote the transformations by using the notation of Ref. [9].
Thus, I stands for “inverse,” R for “ratio,” SR for “second
ratio,” and D for “difference.” The sequence of transformations
is chosen through various tests that provide some clue about
the asymptotic class in which the data falls.

To apply asymptotic extrapolation to the determination
of the coefficients in the high-Reynolds number expansion
(6), we calculate the Hopf-Cole solution [(4) and (5)] and
the gradmoments (3) using extreme precision floating point
calculations [14] with 400 decimal digits. This precision
guarantees that the only source of errors is lack of simple
asymptoticity. The convolution structure of Eq. (5) allows the
use of fast Fourier transforms, also in very high precision
[15], for calculating θ , u, and various space derivatives. The
Reynolds number R is given all integer values from 18 to
Rmax = 400. The processing of the gradmoments for p from 2
to 10 involves typically 15 stages of transformations, the first
eight of which are always R−1, I, D, D, I, D, D, D.2 From
the undoing of the transformations, using the “most asymptotic
data points” for determining constants, we obtain the following
expansion:

Mp(R) = ApRχp + BpRχ
(1)
P + CpRχ

(2)
P + · · · . (7)

The results are shown in Table I. Only those digits of the
coefficients that agree when processing the data successively

2R−1 means applying R and then subtracting unity.
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TABLE I. Dominant scaling exponents χp and the first two subdominant exponents χ (1)
p and χ (2)

p together with the corresponding coefficients
Ap , Bp , and Cp for the large-R behavior of gradmoments of order p, obtained by asymptotic extrapolation processing of a 400-digit precision
determination of gradmoments from the Hopf-Cole solution. The theoretical values are χp = p − 1, χ (1)

p = p − 2, and χ (2)
p = p − 3.

Order(p) χp Ap χ (1)
p Bp χ (2)

p Cp

2 0.999 998 7 + 0.090 326 05 − 0.002 − 0.229 023 6 − 1.002 + 0.2011
3 1.999 998 − 0.032 452 71 1.000 01 + 0.173 685 4 0.005 − 0.1325
4 2.999 996 + 0.012 492 79 2.000 01 − 0.090 466 1.0001 + 0.084 17
5 3.999 995 − 0.004 987 25 3.000 01 + 0.045 622 1.999 88 − 0.082 09
6 4.999 994 + 0.002 036 21 4.000 01 − 0.022 523 2.999 93 + 0.061 03
7 5.999 993 − 0.000 844 14 5.000 008 + 0.010 955 4.0002 − 0.0398
8 6.999 992 + 0.000 353 9 5.999 993 − 0.005 26 5.002 + 0.024
9 7.999 994 − 0.000 149 5 6.999 91 + 0.0025 6.009 − 0.01
10 9.000 01 + 0.000 063 7.9995 − 0.0012 7.03 + 0.03

with Rmax = 200 and Rmax = 400 are shown. It is seen that the
scaling exponents for the dominant term χp and the first and
second subdominant terms χ

(1)
P and χ

(2)
P are very close to their

theoretical values obtained from Eq. (6). The relative discrep-
ancies are in the range 10−5−10−6 for the dominant exponent,
and the accuracy degrades for subdominant corrections, as
expected.

From the expansion (7) we can readily understand why
Nelkin scaling appears at a rather moderate Reynolds number:
The absolute value of relative correction stemming from
the first subdominant term is R−1|Bp/Ap|. For example, it
reaches the 10% level, which is easily picked up visually at
R = 10|Bp/Ap|. Table II shows the values of |Bp/Ap|, and we
now understand why flat compensated gradmoments are seen
in Fig. 1 beyond Reynolds numbers, varying with p, from a
few tens to a few hundreds. To understand the ESS-type even
better scaling, we expand the surrogate R̃ in terms of R. From
Eq. (6) with p = 2 and noticing that A2 = ε∞, we obtain

R̃ = R1 + B2

A2
R0 + O(R−1). (8)

Eliminating R between (6) and (8), we obtain

Mp = ApR̃p−1 + B̃pR̃p−2 + · · · ; B̃p = Bp − (p − 1)Ap

A2
B2.

(9)

TABLE II. Estimates of Reynolds numbers beyond which sub-
dominant corrections become small in the Reynolds number repre-
sentation (middle column) and in the ESS-type representation (last
column).

Order(p) R

p = |Bp/Ap| R̃


p = |B̃p/Ap|
2 2.5344 0.0
3 5.3520 0.2827
4 7.2414 0.3622
5 9.1477 0.9906
6 11.0613 1.6116
7 12.9785 2.2290
8 14.8980 2.8440
9 16.8222 3.4544
10 19.0604 3.7507

Note that the expansion in terms of the surrogate R̃ has
the same structure as (6) and precisely the same dominant-
term coefficient Ap. However, the coefficient B̃p of the first
subdominant correction is significantly smaller than Bp (in
absolute value) and may have a different sign. This explains
for example why the graph for the compensated third-order
gradmoment in terms of R bends down at the low end while
it bends very slightly up in terms of R̃. As a consequence of
the reduced subdominant corrections, the asymptotic behavior
of gradmoments in the ESS-type representation emerges at
Reynolds numbers 5 to 20 times smaller than in the ordinary
representation (see Table II).

We should not be carried away and state that good scaling
can emerge already at very moderate Reynolds number
provided we take the right quantity (here gradmoments) and
the right data processing technique (here ESS). It all depends
on what we call “good scaling.” If we want to obtain scaling
exponents with an error not exceeding 10−2 or 10−3, a
flat-looking compensated graph is definitely not enough since
this is achieved as soon as the relative error is somewhere
below 10−1. We now address the issue how asymptotic (how
large in Reynolds number) and how precise should a spectral
calculation be in order to truly give accurate scaling exponents.
Of course, the higher the Reynolds number, the lower the
relative subdominant corrections will be. But, without enough
precision, the simultaneous determination of dominant terms
and subdominant corrections, e.g., by asymptotic extrapola-
tion, will be unable to handle more than a very few such
corrections and thus gives us substantial errors in the final
results. In order to be closer to more realistic models such as the
multi-dimensional Navier-Stokes equations, in investigating
the trade-off between asymptoticity and precision, we refrain
from using the exact solution of the Burgers equation and
resort to time integration by (pseudo-)spectral technique. We
use double and quadruple precision, both combined with
asymptotic extrapolation, so as to obtain the most accurate
possible parameters. We calculate the scaling exponents χ4

and χ6 of the fourth and the sixth gradmoments, whose
theoretical exact values are three and five, respectively. We
determine how accurately we can predict these exponents when
applying asymptotic extrapolation (which for this purpose is
substantially better than the aforementioned ESS technique),
using various maximum Reynolds numbers Rmax. In double
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FIG. 2. (Color online) Relative error of Nelkin exponents χ4

and χ6 obtained by asymptotic extrapolation from pseudo-spectral
calculations up to a maximum Reynolds number Rmax. Upper set of
curves: double precision calculations (χ4: red filled circles, χ6: blue
filled triangles); lower set of curves: quadruple precision (χ4: red
inverted triangles, χ6: blue filled squares).

precision we were able to use three stages and in quadruple
precision eight stages of the aforementioned transformations.
The maximum wave number and the size of the time step are
the same as reported at the beginning of the paper. We checked,

by further halving of spatial and temporal resolutions, that they
contribute negligible errors to the result. Figure 2 shows the
relative errors for the two types of precision as a function of
Rmax. It is striking that, when doubling the precision, we can
decrease the Reynolds number by about a factor of 11 (from
1000 to 90) and still obtain a substantial decrease (by a factor
of 3 to 10) in the relative error. For accurate determination of
scaling exponents, increasing the precision is here definitely
more efficient than increasing the Reynolds number. It remains
to be seen if this result carries over to a much broader
class of equations, including multidimensional incompressible
problems displaying random behavior. Already, we can state
that the use of Nelkin scaling to analyze multifractal scaling in
simulated 3D turbulent flow should definitely be encouraged,
and preferably combined with high-precision calculations.
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