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Abstract

Time domain responses of porous media have been studied by some
authors, but generally the possible descriptions have been given in the
frequency domain. The aim of this paper, limited to materials with rigid
skeleton considered as equivalent fluids, is to compare the descriptions
by Johnson-Allard (JA) as well as by Pride-Lafarge (PL) with i) some
analytical, approximate formulas, based upon asymptotic high frequency
expansion ; ii) the exact formula by Zwikker and Kosten for the case of
cylindrical pores. The paper starts with a short summary of the state-
ment of the different general full frequency models (JA and PL). The
Green function in the time domain is shown to exhibit interesting prop-
erties of materials. In particular the maximum response depends on one
dimensionless parameter only, which is denoted ξ and is the ratio of the
travelled distance to the product of the “frozen” sound speed and a charac-
teristic viscous relaxation time. The distance ξ is related to a time domain
Stokes number. The numerical computation of the Green function is done
by FFT, with some precautions, because of the importance of the higher
frequencies on the response shape. The PL description is shown to be
the best full frequency general model, but some discrepancies with the
exact model appear at short times or short distances. When the distance
ξ increases from zero, the asymptotic expansion shows that the maximum
of the Green function decreases first as 1/ξ2, then exponentially.
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1 Introduction

Long-wavelength wave propagation in homogeneous porous media is a classical
topic. In particular for materials with a rigid skeleton considered as equivalent
fluids, the classical homogenization theory gives us recipes to compute the com-
plex, frequency-dependent, equivalent-fluid density and compressibility. This
computation would require knowing, however, the detailed microgeometry of
the solid. In absence of this knowledge, a widely used 1D semi phenomenolog-
ical frequency-domain model of propagation which depends on a small set of
geometrical parameters of the structure is given by the well-known formula of
Johnson et al. [1] for the density, and the Champoux-Allard [10] or Lafarge et
al. [9] formulae for the compressibility. These approximate expressions (denoted
JA) of the two constitutive functions essentially are the result of:

1) a relatively precise description of the high-frequency limit, the two first
leading terms of the two functions, density and compressibility, being exactly
described in terms of the concepts of ideal-fluid tortuosity α∞ and characteristic
lengths Λ (see Ref. [1]) and Λ′ (see Ref. [10]), the viscous and thermal relaxation
processes being “frozen” in this limit,

2) a less precise description of the low-frequency limit, only the first non-
trivial leading term of the two functions being exactly described in terms of the
concepts of d.c. viscous and thermal permeabilities, k0 (see Ref. [4]) and k′0 (see
Refs. [9, 12]), the viscous and thermal relaxation processes being “relaxed” in
this limit, and finally,

3) an assumption that the frozen and relaxed limits 1) and 2) are connected
in the simplest authorized manner, i.e. (see [1] and [9, 12]), by means of the
simplest functions of frequency ω having their singularities and zeros lying on the
imaginary axis (in the complex ω plane). Indeed, this assumption is equivalent
to stating that the fluid velocity pattern at the pore scale is divergence-free,
and this characteristics of the fluid motion tends to be verified (at least, as long
as the geometry remains sufficiently simple) as a result of the long-wavelength
separation condition which ensures that a homogenized medium exists.

In this manner, a simple, resp. viscous and thermal, relaxation-transition
description of the density and compressibility functions is obtained, that may be
thought to be well-verified in a wide class of materials, as long as the wavelengths
are large compared to the typical dimensions of the coarse-graining averaging
volumes.

Subsequently, the low-frequency relaxed limit 2) was made more precise
by Pride et al. [11] and Lafarge [12] (the next viscous and nontrivial thermal
terms now being exactly described thanks to the introduction of the additional
notions of d.c. viscous and thermal tortuosities α0 and α′

0 ), resulting in a
slightly improved (denoted PL) description of the relaxation transitions of the
two functions.

In Ref. [13], Fellah et al. concentrated on the time-domain expression of the
high-frequencies asymptotics implied by this model.

Expanding, in the high-frequency limit, the PL density and compressibility
in powers of the inverse Stokes number St−1 (defined as the ratio between
boundary layer thickness and characteristic pore size), and retaining the (exact)
zero and first order terms and the (model-dependent) second order terms, they
derived an asymptotic time-domain pressure wave equation. Using fractional-
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derivative and Laplace-transform calculus, they were able to rigorously solve
this equation in instructive and elegant manner, through the calculation of the
corresponding asymptotic Green function of the unbounded 1D medium. Recall
that a Green function or impulse response, as a function of time, extends and
flattens when observed at fixed locations more and more remote from the spatial
point where it originates. Like the wave equation used to construct it, however,
the above asymptotic Green function was (partly) model dependent.

Now, the results of the calculations made in [13] seem to indicate that the
terms of second order yield a significant effect on the Green function for resistive
porous materials, and, in addition, that the effect is mainly an effect on the
amplitude without noticeable distortion of the time wave pattern (see Figs. 2
and 3 of paper [13]).

In the present paper, our purpose is threefold.
First, paying attention to distinguish between the results that are general

and the results that are model-dependent, we shall justify in another simple al-
ternative analytic manner the finding of Ref. [13] summarized above. Indeed, by
exploiting the model-independent fact that (with some restrictions on the geom-
etry) the high-frequency asymptotic expansion of the wavenumber expands in
successive powers of St−1, and considering the o(2) expansion, we shall obtain a
closed-form expression of a corresponding asymptotic time-domain Green func-
tion Go(2)(x, t). Exactly the same closed-form expression was obtained before
by Polack et al. [18] for the special case of cylindrical circular tubes. There-
fore, like this special one, our general asymptotic o(2) Green function differs
from the asymptotic o(1) one only by an amplitude factor exp(−Cωx) indepen-
dent of time: Go(2)(x, t) = Go(1)(x, t) exp(−Cωx). This is the above-mentioned
second-order attenuation with no distortion effect.

Next, we hasten to point out that by construction, the models PL and JA
unfortunately yield faulty values for the coefficient Cω involved, and hence,
faulty descriptions of this asymptotic second order attenuation effect.

Finally, we try to assess in which circumstances this want of precision of
the models PL and JA is manifested on the Green functions. To this end, we
make detailed comparisons between the modeled and exact Green functions,
computed by FFT, for the case of cylindrical circular pores. Recall that for
this geometry, exact results exist since Zwikker and Kosten [14], in frequency-
domain, for the effective density and compressibility. It appears that the lack
of precision of existing models is manifested mainly at sufficiently “short” prop-
agation distances x (past the spatial origin x = 0 of the impressed impulsive
signal) and sufficiently “long” delayed times t−x/c (meaning the times t elapsed
past the first arrival time x/c of the signal, with c = cf/

√
α∞ the frozen speed

of sound in the medium and cf the speed of sound in the fluid). In terms of the
dimensionless distances ξ = x/cΘ and delayed times τ = (t−x/c)/Θ, where Θ is
a characteristic relaxation time (varying like the square of the pore size divided
by the fluid kinematic viscosity), this means a limited region of the plane (ξ,
τ) near the origin. Outside this region i.e. at sufficiently “large” propagation
distances x and/or delayed arrival times t−x/c (where “large” is inversely pro-
portional, for a given shape of the pores, to the flow resistivity of the material),
the existing models and especially PL, perform quite well.

The paper is organized as follows.
After the statement of the basic equations (section 2), the high-frequencies

asymptotic wave equation and wave number are written (section 3 and 4), re-
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taining terms of order O(2) (i.e. ∼ St−2). As anticipated on general grounds, it
is explicitly checked on the workable case of cylindrical circular pores, that the
latter terms are not accurately described by the models JA and PL (section
2). Using o(1) and o(2) asymptotic expansions of the wavenumber, two corre-
sponding asymptotic Green functions in the time domain are derived (section
4). These are the direct transposition of those given in [18] for the case of cylin-
drical circular tubes. By construction, our time domain o(2) Green function
is obtained at the same order of accuracy as that derived in [13]. The evalu-
ation, by FFT, of all different time-domain Green’s functions based on exact
or approximate frequency-domain expressions, is discussed in section 5. The
behaviors of the different expressions are compared and contrasted in section 6,
in particular for the entirely workable case of cylindrical circular pores.

2 Basic equations

We start by recalling the form of the macroscopic Equivalent-fluid equations in
the frequency domain (see [1, 9, 19]):

ρfα(ω)iωvi = ∇ip ; K−1
a β(ω)iωp = ∇.v , (1)

where by definition, v and p are the macroscopic velocity and pressure obtained
by coarse-graining (averaging) the microscopic fluid velocity and pressure fields,
−iω is the time derivative, ρf and Ka are the saturating-fluid density and
adiabatic bulk modulus, and α(ω) and β(ω) are the dynamic tortuosity and the
dynamic compressibility. Notice that for simplicity, isotropy or 1D propagation
along one principal axis is assumed, so that α(ω) is a scalar.

As every macroscopic theory, the Equivalent-fluid theory assumes a long-
wavelength regime, i.e. a wide separation between the macroscopic wavelength
and the typical porous medium lengthscale involved in obtaining the coarse-
grained macroscopic variables. Now, the special form of Eqs. (1) shows that
the theory assumes much more than this. Indeed, as only the frequencies and not
the wavenumbers are apparent in Eqs. (1), it appears that the Equivalent-fluid
theory is certainly a simplified macroscopic description limited to describe the
situations in which only the temporal dispersion – and not the spatial dispersion
– effects are important [21]. Allowing for the spatial dispersion effects will lie
outside the framework and scope of this paper.

Coherent with this physical simplification which is well-justified in most ge-
ometries (the condition to neglect spatial dispersion is certainly the same as that
which allows us stating that the fluid velocity pattern tends to be divergence-
free at the pore scale) an application of the homogenization technique [9] at
order zero yields two different microscopic boundary value formal problems to
be solved for determining the two constitutive functions α(ω) and β(ω).

The first one describes the (velocity) response of a viscous incompressible
fluid subject to an applied spatially uniform, time harmonic, bulk force source
term:

−iωρf
η

w = −∇Π+∇
2w+ e, (2)

∇ ·w = 0, (3)
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in the pore space (with Π a periodic or stationary random field, in periodic
or stationary random geometries), and satisfying on the pore surface (no slip
condition),

w = 0. (4)

In this problem, η is the fluid viscosity, e is a dimensionless unit vector in
the direction of the applied bulk force, and w is the scaled response velocity
field (dimension of length2). It determines the dynamic permeability k(ω) and
dynamic tortuosity α(ω) introduced in the landmark paper by Johnson et al. [1],
by the relations:

k(ω) =
ηφ

−iωρfα(ω)
= 〈w〉 · e, (5)

where 〈〉 is the coarse-graining averaging operation in the pore space, and φ is
the porosity.

The other describes the (excess temperature) response of a thermal fluid
subject to an applied spatially uniform, time harmonic, pressure source term:

−iωPrρf
η

θ = ∇
2θ + 1, (6)

in the pore space, and satisfying on the pore surface (no temperature-jump
condition),

θ = 0. (7)

Here, 1 is a dimensionless unit constant representing the applied pressure, Pr
is the Prandtl number, and θ is the scaled response excess temperature field
(dimension of length2). It determines the functions k′(ω) and α′(ω), thermal
counterparts of functions k(ω) and α(ω) introduced by Lafarge [9,12], and then,
the effective compressibility β(ω), by the following relationships:

k′(ω) =
ηφ

−iωPr ρfα′(ω)
= 〈θ〉 ; β(ω) = γ − γ − 1

α′(ω)
. (8)

2.1 Frozen and relaxed limits

In absence of a complete information on the microgeometry, the two above-
mentioned microscopic formal boundary-value problems cannot entirely be worked
out and their exact detailed solutions (from which α(ω) and β(ω) can in principle
be extracted by coarse-graining, see Eqs.(5) and (8)) are missing. Nevertheless,
tacit, hidden, but very important assumptions on the geometry have been made
in obtaining these problems (namely, that it is possible to neglect spatial disper-
sion), and these assumptions have had the consequence that in the first problem
the stirring force e was set constant (and accordingly the velocity field v was
represented by a divergence-free field), and in the second problem the stirring
pressure term 1 was set constant (gradient-free). We shall later indicate what
exactly mean these two characteristics of the obtained problems: they mean that
the functions α(ω) and α′(ω) have purely imaginary singularities and thus are
relatively smooth functions on the real axis (this is property 3 mentioned in In-
troduction). For the time being, we observe that in the limit of high-frequencies
and low-frequencies, which we may call the frozen and relaxed, respectively,
limits of the viscous and thermal relaxation processes involved, some general
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characteristics of the solutions and corresponding functions α(ω) and β(ω) may
be sketched as follows.

2.1.1 High frequencies (frozen limit)

In the asymptotic frozen limit of high frequencies, the viscous and thermal
terms ∇

2w and ∇
2θ become negligibly small compared to the other terms.

The fluid motions, except for vanishingly small viscous and thermal boundary
layers at the pore walls, become close to those of an inviscid nonconducting
fluid (η = 0, κ = 0, κ is the thermal conductivity). Accordingly, the quantities
−iωρf

η w and
−iω Pr ρf

η θ everywhere tend (except, of course, at the pore walls) to

the “frozen” fields E and I verifying in the pore space, (with ϕ a periodic or
stationary random field, in periodic or stationary random geometries),

E = −∇ϕ+ e ; I = 1, (9)

∇ ·E = 0, (10)

and verifying at the pore walls (n is the normal on the latter),

E · n = 0. (11)

Now assume, following Johnson et al. [1] and Allard [8], that the pore-surface
interface appears locally plane in this asymptotic high-frequency frozen limit.
This is an assumption that the viscous and thermal boundary layer thicknesses

δ =
√

2η
ρfω

and δ′ =
√

2η
ρfωPr eventually become small compared to a character-

istic radius of curvature of the pore surface. Then, the functions α(ω) and α′(ω)
expand in integral power series of these thicknesses, which allows us writing a
priori1,

α(ω) = α∞ +
2α∞

Λ

(

η

−iωρf

)1/2

+O

(

1

−iω

)

;

α′(ω) = α′

∞
+

2α′

∞

Λ′

(

η

−iωρf Pr

)1/2

+O

(

1

−iω

)

. (12)

The intervening geometrical parameters α∞ and α′

∞
(dimensionless) and Λ

and Λ′ (dimension of length) must be some pore averages constructed with the
frozen fields E and I. Indeed, detailed classic calculations made by Johnson
and Allard [1,10], to which we refer the reader, show that they may be written
as follows (see also [19] and, in the most detailed manner for Λ, [5]):

1

α∞

= 〈E〉 · e =
〈E〉2
〈E2〉 ;

1

α′

∞

= 〈I〉 = 1, (13)

1Notice that the case of fractal geometry which modifies the exponent 1/2 in the first
correction terms – see [1] – is excluded by the assumption that the pore walls appear locally
flat at the scale of the boundary layer thickness; the presence of sharp edges which modifies
the exponent 1 in the second correction terms – see [5] – is also excluded by this assumption.
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and,

2

Λ
=

∫

Sp
E2dS

∫

Vf
E2dV

;
2

Λ′
=

∫

Sp
I2dS

∫

Vf
I2dV

=

∫

Sp
dS

∫

Vf
dV

, (14)

where Sp denotes the pore walls and Vf denotes the connected pore volume.
Parameter Λ is an effective pore radius for dynamically connected pore sizes

which was introduced by Johnson et al. [2] for the problem of electrical conduc-
tion in the bulk fluid, perturbed by a thin, different conducting layer at the pore
walls. Parameter Λ′ is a length characterizing a simpler effective pore radius
– twice the fluid-volume to fluid-surface ratio – sometimes referred to as the
Kozeny-Carman radius; Allard [10], inspired by Johnson’s identification of the
tortuosity high-frequency frozen limit, identified it as the thermal counterpart
of parameter Λ. Mention that an erroneous expression for Λ was sometimes
employed [3]; the reasoning inaccuracy2 was clarified and corrected in [5] along
a line tentatively sketched in [6] (Appendix D).

2.1.2 Low frequencies (relaxed limit)

In the opposite relaxed limit of low frequencies, the viscous and thermal terms
∇

2w and ∇
2θ eventually become much greater than the inertial terms

−iωρf

η w

and
−iω Pr ρf

η θ and the boundary layers extend to the whole fluid. Accordingly,
the fields w and θ everywhere tend to the d.c. – or “relaxed” – velocity and
excess temperature fields w0 and θ0 verifying, in the pore space (with Π0 a pe-
riodic or stationary random field, in periodic or stationary random geometries),

∇
2w0 = ∇Π0 − e ; ∇

2θ0 = −1, (15)

∇ ·w0 = 0. (16)

and verifying, at the pore walls,

w0 = 0 ; θ0 = 0.

In this limit the functions α(ω) and α′(ω) expand in Laurent’s series,

α(ω) =
ηφ

−iωρfk0
+α0 +O(−iω) ; α′(ω) =

ηφ

−iωρf Pr k′0
+α′

0+O(−iω). (17)

The two first intervening geometrical parameters, k0 (Darcy’s viscous permeabil-
ity) and k′0 (its thermal counterpart [9,12]) on one hand, both having dimension
of length2, and α0 (viscous tortuosity) and α′

0 (its thermal counterpart) on the
other hand, both being dimensionless, are pore averages constructed with the
relaxed fields w0 and θ0. Indeed, simple calculations show that they may be

2The ignorance, in the bulk, i.e. outside the viscous boundary layer or the perturbed
conducting layer, of a perturbation contribution due to a perturbed ideal-fluid or electrical
bulk flow field orthogonal to the leading bulk flow field E, and having, contrary to the latter,
nonzero normal components at the pore walls.
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written ( [7, 12]),

k0 = φ 〈w0〉 · e ; k′0 = φ 〈θ0〉 , (18)

α0 =

〈

w2
0

〉

〈w0〉2
; α′

0 =

〈

θ20
〉

〈θ0〉2
. (19)

Mention that, among other things it is possible to show that, whatever the
geometry,

α0 > α∞ ≥ 1, (20)

k0 ≤ k′0 ; α0 ≥ α′

0 ; Λ ≤ Λ′, (21)

the equalities being satisfied only for the case of aligned cylindrical pores.

2.2 Full-frequency models

Let us now come back to our hypothesis that spatial dispersion is absent. This
hypothesis is an assumption that the geometry is sufficiently simple not to have
structures such as Helmholtz resonators manifesting the presence of widely dif-
ferent pore sizes (the resonator neck and cavity dimensions). It is in absence
of such structures and effects that the long-wavelength separation condition en-
sures that the microscopic flow-field may be considered divergence-free for the
purpose of determining the microscopic fluid velocity pattern (see Eq. (3)),
and likewise, the excess pressure field may be considered gradient-free for the
purpose of determining the microscopic excess temperature pattern.

Now, Johnson et al. have shown that, because the velocity field may be
viewed locally divergence-free, the singularities of functions α(ω) and k(ω) –
poles, zeros, and branch points – necessarily are purely imaginary (see [1] Ap-
pendix A). This also was shown by Avellaneda and Torquato [6]: assuming
periodicity, a formal solution of the problem (2-4) directly expresses in tempo-
ral domain, in terms of a distribution of relaxation times.

For the functions α′(ω) and k′(ω), it was similarly shown that, because
the excess pressure field may be considered gradient-free, the singularities of
functions α′(ω) and k′(ω) also are purely imaginary (see [9] Appendix C).

The wanted functions must therefore have very simple and smooth behaviors
on the real axis. For example, calculations [12] inspired by the DRT formalism
of Avellaneda and Torquato show that in the Laplace domain (s = −iω > 0)
the permeability function k(s) is always a strictly decreasing positive function
on the real axis s > 0 (and the same holds true in the same manner for the
thermal permeability function k′(s)).

Finally, as suggested by Johnson et al., the functions k(ω) and α(ω), as well
as the functions k′(ω) and α′(ω), will be seeked as the simplest ones, satisfying
both the frozen and relaxed limits and the condition that they have purely
imaginary singularities.

To proceed, let us introduce a Stokes number constructed using Johnson’s
concept of dynamically connected pore size Λ, viz:

St = Λ

√

−iωρf
η

. (22)
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Johnson has proposed the following expression of α(ω),

α(ω) = α∞

(

1 +
8

MSt2

√

1 +
M2

16
St2

)

, (23)

where

M =
8α∞k0
φΛ2

(24)

is a dimensionless shape factor associated to the geometry. This expression is the
simplest analytical ansatz that yields the exact first two terms at high frequen-
cies (Eq. (12)) and the exact first leading term at low frequencies (Eq.((17)), and
automatically satisfies the condition on singularities. Factor of 8 is introduced
for convenience in Eq. (24), so that M = 1 for cylindrical circular pores.

Similarly, to describe the function α′(ω) let us introduce a second Stokes
number corresponding to thermal effects:

St′ = Λ′

√

−iωρf Pr

η
. (25)

The ratio St′/St =
√
Pr Λ′/Λ is of the order of Pr1/2, not far from unity.

Proceeding as did Johnson, Lafarge [12] proposed to write,

α′(ω) = 1 +
8

M ′St′2

√

1 +
M ′2

16
St′2, (26)

where

M ′ =
8k′0
φΛ′2

(27)

is the thermal counterpart of shape factor M (M ′ = 1 for cylindrical circular
pores), giving in turn a definite model for the dynamic compressibility

β(ω) = γ − (γ − 1)/α′(ω). (28)

As one key recognition of this model – namely, that there is one length Λ′

playing for thermal effects the role of Johnson’s Λ for viscous effects – was due
to Allard [10], we refer to the combined modeling of functions α and β as to
Johnson-Allard’s (JA).

Subsequently, Pride et al. [11], studying oscillating viscous flow in convergent-
divergent channels, evidenced the fact that Johnson’s simple formula (23) (as
was already anticipated in [1]) may significantly underestimate the imaginary
part of permeability at low frequencies. To remedy this, they proposed different
modifications of the formula. In essence these modifications produce formulae
capable to account for the exact value of parameter α0, which, in such channels,
may be significantly increased as compared to Johnson’s. Notwithstanding, fo-
cusing on the imaginary part of the permeability, they did not use and mention
the parameter α0. Its identification (see Eq. (19)) shows that it is a measure
of “disorder” of the “Poiseuille” flow in the given microgeometry, so that it is
increased not only by the convergent-divergent mechanism considered by Pride
et al., but also, e.g., by the effect of a mere irregular distribution of solid inclu-
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sions. Whatever the cause of the enhanced “Poiseuille disorder”, it will make
more significant the use of the Pride modified formula for the function α. The
same general considerations hold true also, mutatis mutandis, for thermal effects
and the function α′.

Now, among the different modifications proposed in [11] the first is the sim-
plest one that is capable to yield the exact first two terms at high and low
frequencies, and simultaneously, to automatically satisfy the condition on sin-
gularities, whatever the values of parameters φ, k0, α0, α∞ and Λ (incidentally,
this last nice feature of the formula is at variance to what was stated in this
paper). Lafarge [12] expressed it in terms of the parameter α0 and the same
description was then immediately applicable, mutatis mutandis, to the thermal
effects. The corresponding Pride-Lafarge’s (PL) model formulae are3:

α(ω) = α∞

(

1 +
8

MSt2

(

1− p+ p

√

1 +
M2

16p2
St2

))

, (29)

α′(ω) = 1 +
8

M ′St′2

(

1− p′ + p′

√

1 +
M ′2

16p′2
St′2

)

, (30)

β(ω) = γ − (γ − 1)/α′(ω), (31)

where M and M ′ are as before, and p and p′ are the new shape factors given
by,

p =
1

α0 − α∞

2k0α
2
∞

φΛ2
; p′ =

1

α′

0 − 1

2k′0
φΛ′2

. (32)

It must be realized that, most probably, as long as the geometry is relatively
simple, and as a side result of the strong constraints imposed by the special
location of the singularities of the functions, these PL expressions constructed
using the information of one more exact term than JA’s at low frequencies,
will also and more importantly, describe in a more accurate manner all of the
viscous and thermal relaxation. They reduce to JA’s if one replaces (32) by the
simplifications p = p′ = 1.

Now recall that in the frozen limit, as we have assumed a smooth pore-surface
interface, our functions expand in successive powers of St−1 or St′−1 and the
first two leading terms (O(0) and O(1)) in these expansions are exactly described
in terms of Johnson’s and Allard’s concepts of tortuosity α∞ and characteristic
lengths Λ and Λ′. We may try, using the improved but still approximate PL’s
Eqs. (29-32), to estimate the third O(2) leading terms:

α(ω) = α∞

(

1 +
2

St
+

8(1− p)

MSt2
+O

(

1

St3

))

, (33)

β(ω) = γ − (γ − 1)

(

1 +
2

St′
+

8(1− p′)

M ′St′2
+O

(

1

St′3

))

−1

. (34)

3Notice that in Ref. [13] there was a mistake of a factor 2 in the term under the root,
without influence on further equations.
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The second equation leads to4 :

β(ω) = 1 + (γ − 1)

(

2

St′
+

8(1− p′)

M ′St′2
− 4

St′2
+O

(

1

St′3

))

. (35)

Nevertheless, we should not hope that the above expansions yield anything
precise as regards these third – model dependent – O(2) terms. This is because
the shape factors p and p′ in the PL model (29-30) are not fixed through the
“frozen” conditions, physical in this context, that Eqs. (33) and (35) should
match the exact frozen limits, but instead, through the physically very different
“relaxed” conditions that the relaxed limits Eqs. (17) should be verified. The
example of cylindrical circular tubes may serve to illustrate this in quantitative
manner.

2.3 The case of cylindrical pores

For a material with cylindrical circular pores of identical radius R (say for
simplicity, all parallel and aligned along the direction of propagation), the two
boundary value problems, Eqs. (2-4) and (6-7), determining α(ω) and β(ω) are
easily entirely stated and solved. In effect, these are nothing but the problems
considered by Zwikker and Kosten [14] in simplifying (on account of the wide
separation between wavelength and tube radius) the governing equations of the
full Kirchhoff’s theory of sound propagation in a cylindrical circular tube [15].
Thus, we may say that the conventional Equivalent-fluid theory (neglecting
spatial dispersion and expressed by Eqs. (1-8)) is the direct generalization, to
the case of arbitrary geometry, of the classical Zwikker and Kosten’s theory.
Now, Zwikker and Kosten’s result is that α(ω) and β(ω) express via Bessel
functions as follows:

1

α(ω)
= 1− χ(ω) ; β(ω) = 1 + (γ − 1)χ(ω Pr), (36)

where χ(ω) is the following relaxation function,

χ(ω) =
2J1

(

(
iωρf

η R2)1/2
)

(
iωρf

η R2)1/2J0

(

(
iωρf

η R2)1/2
) , (37)

(going from relaxed value 1 at low frequencies to frozen value 0 at high fre-
quencies). Using the known small-arguments and large-arguments series and
asymptotic expansions of Bessel functions (or Kelvin functions), and comparing
the results with those of the exact low-frequency and high-frequency limits (Eqs.
(17) and (12)), the following parameters values are obtained:

k0 = k′0 = φR2/8 ; α0 = α′

0 = 4/3 ; α∞ = 1 ; Λ = Λ′ = R. (38)

¿From Eqs. (28) and (32), the circular-tube shape factors M , p and M ′, p′ are
then identified as:

M = M ′ = 1 ; p = p′ = 3/4. (39)

4Notice that in Ref. [13] the last term −4/St′2 in Eq (35) was omitted.
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In order to see the extent with which these values may be used to estimate the
frozen O(2) terms for the case at hand (aligned cylindrical circular pores), let
us write for this case the known exact asymptotic high-frequency expansions:

α(ω) = 1 +
2

St
+

3

St2
+O(

1

St3
); (40)

β(ω) = 1 + (γ − 1)

(

2

St′
− 1

St′2
+O(

1

St′3
)

)

. (41)

If p and p′ were fixed by the “frozen” conditions that the PL expansions (33)
and (35) were to match the above exact expansions, they would be p = p′ = 5/8.
They are, however, fixed by other “relaxed” conditions, giving p = p′ = 3/4.
The difference (1/8) is not very large, but it produces a significant deviation
on the O(2) terms because of the factors of 8 in Eqs. (33) and (35). Thus
for instance, with the values (39), the term St−2 in Eq. (33) has a coefficient
equal to 2 instead of 3 in Eq. (40), while the term St′−2 in Eq. (35) has a
coefficient equal to −2(γ − 1) instead of −1(γ − 1) in Eq. (41)5. These faulty
PL coefficients, while significantly better than JA’s (resp. 0 instead of 3 and
−4(γ − 1) instead of −1(γ − 1)), will obviously not yield accurate estimates of
the exact O(2) frozen terms. Here is a constitutive limitation of both models
JA and PL that should be kept in mind. Its consequences on the time-domain
Green functions will be illustrated later on.

3 Asymptotic o(2) wave equation

The 1D wave equation that follows from Eqs. (1) is the following Helmholtz
equation:

d2p

dx2
+ ω2 ρfα(ω)β(ω)

Ka
p = 0. (42)

Using the PL high-frequencies asymptotic limits (33) and (35) we get,

α(ω)β(ω)/α∞ = 1 +
2

St
+ (γ − 1)

2

St′
+

8(1− p)

MSt2
+

(γ − 1)

(

8(1− p′)

M ′St′2
− 4

St′2
+

4

StSt′

)

+ o(2), (43)

and this is the form of the exact asymptotic result, except of course for the PL
faulty values of p and p′, if we intend to use Eqs. (32).

In the time domain, the corresponding asymptotic wave equation is written
as follows:

∂2p(x, t)

∂x2
−A

∂2p(x, t)

∂t2
−B

∫ t

0

∂2p(x, t′)/∂t′2√
t− t′

dt′ − C
∂p(x, t)

∂t
= 0. (44)

5In Ref. [13] because the term −4/St′2 in Eq (35) was omitted, the total coefficient of the
term in St′−2 in Eq (35) was +2.
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Comparison between (42-43) and (44) shows that the coefficients are given by:

A =
1

c2
=

ρfα∞

Ka
, B =

√

1

π

2

c2

√

η

ρf

1

Λ

(

1 + (γ − 1)
Λ

Λ′

√
Pr

)

, (45)

C =
1

c2
η

ρf

1

Λ2
m with (46)

m =
8(1− p)

M
+ (γ − 1)

[

4Λ

Λ′

√
Pr

+

(

−4 +
8(1− p′)

M ′

)

Λ2

Λ′2 Pr

]

. (47)

Again, this is the exact asymptotic o(2) wave equation in time domain, except
for a faulty value of the coefficient C, if we intend to use Eqs. (32). These
equations are the equations (14-16) of Fellah et al. [13], who computed the
Green function for an infinite medium described by this wave equation (44), by
using the Laplace transform method6. We shall see in sections 4 and 5 that an
alternative closed-form Green function may be obtained in simple manner for
this same o(2) asymptotic frozen limit. Before detailing this result, let us give
the general definition of the Green function we employ.

4 A simple definition of a Green function and
its asymptotic o(1) and o(2) frozen forms

4.1 Definition; scaled form

Another general method of defining and calculating a Green function in an
infinite medium is by means of the effective frequency-dependent wavenumber
k in this medium. Let us define our Green function G(x, t) (or impulse response)
as a propagated Dirac delta impulsive signal δ(t) imposed at x = 0, or more
precisely, as the inverse Fourier transform of the propagation transfer function
Gω(x, ω) = exp(ikx):

G(x, t) =

∫

∞

−∞

dω

2π
exp [−iωt+ ikx] . (48)

Setting to zero the viscosity and thermal conduction coefficients, no fre-
quency dispersion arises. The wavenumber writes k = ω/c where c, defined by
the first Eq. (45), is the frozen speed of sound c = cf/

√
α∞. The Green func-

tion (48) coincides with a Dirac delta propagated at this velocity c: G(x, t) =
δ(t− x/c).

Setting to nonzero values the viscosity and thermal conduction coefficients
the medium wavenumber k writes,

k =
ω

c

√

α(ω)β(ω)

α∞

=
ω

c
[1− h(St)] , (49)

making apparent a complex function h(St) that describes frequency dispersion
induced by the viscous and thermal relaxation processes. The Green function

6Nevertheless, coherent with Eq. (35), an additonal term has been included in the bracket
of the coefficient C in Eq. (46) .
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(48) writes,

G(x, t) =

∫

∞

−∞

dω

2π
exp

[

−iω(t− x/c)− i
ω

c
h(St)x

]

. (50)

This Green function gx(t − x/c) = G(x, t) now extends and flattens when
observed at positions x more and more remote from the origin x = 0. Ex-
plicit asymptotic expressions of the Green’s function defined in this manner will
now be obtained by considering high-frequency asymptotic expansions of the
wavenumber k (meaning high-frequency asymptotic expansions of the function
h).

It will also be convenient to express these functions in scaled form, as func-
tions of a dimensionless delay time τ and a dimensionless position variable ξ.
To take but one example, before being Fourier-transformed, the Green function
Gω(x, ω) = exp(ikx) where k is – say – given by the model PL, may be viewed
as a function of:

(i) one dimensionless frequency variable, e.g. Ω = ωΘ where Θ is the char-
acteristic viscous relaxation time given by,

Θ =
Λ2ρf
η

, (51)

(hence St2 = −iΩ),
(ii) one dimensionless position variable, e.g.

ξ =
x

cΘ
, (52)

(hence ξ−1/2 = Λ
√

ρfc/(xη) can be regarded as a time domain Stokes number,
when replacing −iω by c/x in Eq. (22)).

(iii) a number of dimensionless parameters characteristic of the form of the
porous space but not of its absolute dimensions (α∞, M , p, M ′, p′, and Λ′/Λ),
and,

(iv) two dimensionless parameters characteristic of the fluid (γ and Pr).
Suppose that the parameters (iii) and (iv) of both the medium and the fluid

are held constant. Function Gω(x, ω) = exp(ikx) then reduces to a function of
Ω which is parametrized by ξ. There follows that the shape of the corresponding
time-domain function will depend, in scaled form, on ξ only, provided the time
is counted in a dimensionless manner, e.g. for the time elapsed after the first
arrival of the signal,

τ = (t− x

c
)/Θ. (53)

But function G(x, t) has the dimension of the inverse of time. Therefore,

ΘG(x, t) = Fs(ξ, τ), (54)

with Fs a scale-invariant function that depends on the form of the pore space
but not on its absolute dimensions:

Fs(ξ, τ) =

∫

∞

−∞

dΩ

2π
exp

[

−iΩτ − iΩξh(
√
−iΩ)

]

. (55)
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4.2 Asymptotic o(1)’s and o(2)’s wavenumbers

4.2.1 General asymptotic result and PL asymptotic result

Recall that, since we assume a smooth pore-surface interface, in the frozen limit
the product α(ω)β(ω)/α∞ expands in successive integral powers of St−1 (see
footnote 1), hence giving the form:

k =
ω

c

[

1 +
Bω√
−iω

+
Cω

(−iω)
+ o(2)

]

. (56)

Constant c and Bω are exactly given by:

1

c
=

√

ρfα∞

Ka
, Bω = 2

√

η

ρf

1

Λ
n1 with (57)

2n1 = 1 + (γ − 1)
Λ

Λ′

√
Pr

, (58)

whereas Cω is a new unknown constant. We have been unable to find any
rigorous theoretical statements that can be made about this coefficient. In the
framework of the PL model it is estimated as (see Eq. (43)):

Cω =
η

ρf

1

Λ2
n2 with (59)

2n2 =
8(1− p)

M
− 1 +

2(γ − 1)Λ

Λ′

√
Pr

+
(γ − 1)Λ2

Λ′2 Pr

(

8(1− p′)

M ′
− 3− γ

)

.(60)

However, for the reasons explained before, this is a rather loose determination.
The relationships between these coefficients and the coefficients B and C are:

Bω = B
√
πc2/2 ; Cω = (Cc2 −B2

ω)/2. (61)

In what follows ko(1) and ko(2) designate the asymptotic wavenumbers ob-
tained by limiting the expansion of α(ω)β(ω)/α∞ to the first and second order
exact frozen terms in St−1:

ko(1) =
ω

c

[

1 +
Bω√
−iω

]

, (62)

ko(2) =
ω

c

[

1 +
Bω√
−iω

+
Cω

(−iω)

]

. (63)

4.2.2 The case of cylindrical pores

For the case of cylindrical pores, using Eqs. (38) and (39), the expressions (57)
and (59) of Bω and Cω become:

Bω =
1

R

√

η

ρf

(

1 +
γ − 1√

Pr

)

; Cω =
1

R2

η

ρf
n2; n2 =

1

2
+

γ − 1√
Pr

− γ2 − 1

2Pr
. (64)

As expected, the last expression is not the exact one. This was given by
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Keefe [17]:

n2 = 1+
γ − 1√

Pr
− γ(γ − 1)

2 Pr
. (65)

For standard conditions in air, the exact result for n2 in Cω is 1.08, while
the approximated one is 0.29, i.e. more than three times smaller. Notice that
Johnson-Allard’s model would give a negative estimate of −1.27 for it.

4.3 Frozen limit: Asymptotic o(1)’s and o(2)’s Green func-

tions

Taking for k its asymptotic o(1) expression (62) and making the inverse Fourier
transform, it is a known result [20] that the corresponding analytical form of
G(x, t) is,

Go(1)(x, t) = 0 for t < x/c,

Go(1)(x, t) = F1(x, t) for t > x/c, (66)

where

F1(x, t) =
1√
π

Q(x)

(t− x/c)3/2
exp

[

− Q2(x)

t− x/c

]

, with Q(x) =
Bωx/c

2
. (67)

The dimension of the function Q(x) is
√
t.

Likewise, taking for k its asymptotic o(2) expression (63), it is also a known
result of musical acoustics [18] that the corresponding analytical form of G(x, t)
is

Go(2)(x, t) = 0 for t < x/c,

Go(2)(x, t) = F1(x, t) exp(−Cωx/c) for t > x/c. (68)

Thus, it is demonstrated that, as regards the Green’s functions, the ef-
fect of the second order terms on the inverse Stokes number (the effect of
the term Cω/(−iω) in the bracket (63)) is a pure multiplication by the fac-
tor exp(−Cωx/c): Go(2)(x, t) = Go(1)(x, t) exp(−Cωx/c). An expression (59) is
given for the coefficient Cω, but, as we have argued, it will not be an accurate
expression if we put JA’s values (= 1) or PL’s values (32) of parameters p and
p′. In general, the values p and p′ that would give through (59) the exact value
of parameter Cω are unknown. They come from two new o(2) frozen geometrical
informations (let’s say, the values p∞ and p′

∞
of parameters p and p′ in Eqs.

(33) and (34), such that these expansions are exact) that are simply not present
in the parameters introduced so far (φ, α∞, Λ, Λ′, k0, k

′

0, α0, α
′

0).
As examples of the scaling analysis, the formulae giving the o(1) and o(2)

Green functions may be rewritten in the following scaled form:

ΘGo(1)(x, t) = 0 for τ < 0,

ΘGo(1)(x, t) = Fs1(ξ, τ) for τ > 0, (69)
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where,

Fs1(ξ, τ) =
1√
π

n1ξ

τ3/2
exp

[

−n2
1

ξ2

τ

]

, with 2n1 = 1 + (γ − 1)
Λ

Λ′

√
Pr

, (70)

where n1 is given by Eq. (58) and,

ΘGo(2)(x, t) = 0 for τ < 0,

ΘGo(2)(x, t) = Fs1(ξ, τ) exp(−n2ξ) for τ > 0, (71)

where n2 is given by Eq. (60).

4.4 Relaxed limit: Asymptotic diffusive Green function

The (relaxed) purely diffusive Green function Gdiff can be obtained by assim-
ilating β(ω) with γ and α(ω) with its first leading term ηφ/(−iωρfk0) in Eq.
(17). In the relaxed d.c. approximation where β = γ and α = ηφ/(−iωρfk0),
one finds that the wavenumber expands as,

k = kdiff =
1

c

(

8γ

MΘ

)1/2 √
iω. (72)

(we have used the relation (24)). Formally, this is the form (62) with, in the first
term, c replaced by ∞, and, in the second term, Bω/c replaced by the factor
before

√
iω. Straightforward calculations using the solution (66-67) and the

following dimensionless time ((53) with c = ∞ and a prime to avoid confusion)

τ ′ = t/Θ, (73)

then show that,

ΘGdiff (x, t) = 0 for τ ′ < 0

ΘGdiff (x, t) = Fs,diff (ξ, τ
′) for τ ′ > 0, (74)

where,

Fs,diff (ξ, τ
′) =

1√
π

√

2γ

M

ξ

τ ′3/2
exp

[

−2γ

M

ξ2

τ ′

]

. (75)

5 FFT computations of Green’s functions

In addition to the previous asymptotic analytic Green’s functions, full Green’s
functions G(x, t) computed numerically by inverse FFT (Fast Fourier Trans-
form) of the transfer function exp(ikx), can always be obtained as soon as exact
or approximate full-frequency expressions of the wavenumber k in Eq. (49) are
known. These FFT computations are to be carefully done, however, as it is
detailed below.

For the case of arbitrary porous media, approximate models such as JA or
PL may be used for k(ω), leading to the computation by FFT of approximate
Green functions G(x, t). For the case of simple workable geometries (e.g., cylin-
drical circular aligned pores of identical radius) exact expressions are available
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(e.g., Zwikker and Kosten’s), leading to the computation by FFT of exact Green
functions G(x, t).

In section 6 we shall study particularly, in the case at hand of cylindrical
circular pores, the relationships between the different, asymptotic or not, ap-
proximate or exact, Green’s functions. For later use, it will be convenient to
distinguish and denote respectively by:

G the exact (Zwikker and Kosten) Green function;
GJA the full JA Green function (p = p′ = 1);
GPL the full PL Green function (p = p′ = 3/4);
GmPL the modified full PL Green function (defined by PL’s expressions

with p = p′ = 5/8);
An important point is that the diffusion solution Gdiff (Eq. (74)) is used

in our FFT computations to improve the accuracy of calculations. Indeed, in-
stead of calculating directly the inverse Fourier transform G(x, t) of the function
exp(ikx), we first compute the inverse Fourier transform G′(x, t) of the function
exp(ikx)−exp(ikdiffx) (the latter difference being smoothly varying at low fre-
quencies and rapidly decreasing at high frequencies), and next use the relation
G(x, t) = G′(x, t) + Gdiff (x, t), with Gdiff (x, t) as given by the Eqs. (73-75)
above (see Ref. [22]). The validity of the FFT computation has been checked
for first order asympotic expression, with an accuracy better than 1%.

The FFT computations can be compared with the following expressions:
Go(1) the (frozen) o(1) Green function;
Go(2) the (frozen) o(2) Green function (p = p′ = 5/8);
GJAo(2) the JA o(2) Green function (p = p′ = 1);
GPLo(2) the PL o(2) Green function (p = p′ = 3/4).
With p = p′ = 5/8, p = p′ = 1, and p = p′ = 3/4, the above expres-

sion (71) yields the Green functions Go(2)(x, t), GJAo(2)(x, t), and GPLo(2)(x, t),
respectively.

Finally, the FFT computations can be compared to the solution of the
asymptotic o(2) wave equation (44), for both cases p = p′ = 5/8 and p =
p′ = 3/4 (we choose to compute the solutions using FFT):

GWEo(2) the (frozen) o(2) Green function (p = p′ = 5/8);
GWEPLo(2) the PL o(2) Green function (p = p′ = 3/4).
These solutions being of o(2) as well as the solutions using the asymptotic

o(2) wavenumber are expected to be very close to the latter.

6 Computed results

For the computation, the values of the parameters have been chosen close to
those of material M1 in Ref. [13]. The porosity is φ = 0.82, the flow resistivity
σ = 196000Nm−4s, the permeability k0 = η/σ = 9.225 10−11m2, corresponding
to a radius R = 3 10−5m. The temperature is 20◦C, and the Prandtl number
Pr = 0.71. The characteristic viscous relaxation time is Θ = 6.10−5s.

6.1 Time responses

The chosen length is 5.3mm (the dimensionless length is ξ = 0.3152). Fig.
1 shows the results for the dimensionless Green function, obtained by FFT.
The Pride-Lafarge description is compared with the exact Zwikker and Kosten
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Figure 1: Green function ΘG(x, t) with respect to time t/Θ (both are dimen-
sionless). (Black), solid line: Zwikker and Kosten formula (Eqs. (36) and (37).
(Blue), dotted line Pride Lafarge description (Eqs. (29) to (32)). (Green), thin,
solid line: diffusive limit (Eqs. (74) and (75)). For very long times, the diffusive
limit is reached.

formula. As expected, the full PL description is very satisfactory for short times
(high frequencies) and long times (low frequencies). For very long times, both
descriptions reach the diffusive (analytical) limit, i.e. the Poiseuille behavior is
reached.

In order to precise these results, Fig. 2 shows a zoom of the previous figure,
and other approximations have been added. The modified PL Green function,
denoted GmPL, can be compared to the PL Green function. As expected, it
is more accurate for short time (during the signal rise) than the non modified
PL function, but it is less accurate for long times, because the choice of the
parameters p and p′ has been done from the frozen limit expressions instead of
the relaxed limit expressions. Otherwise the JA model yields less accurate
results than both PL models. Notice that Go(2), the (frozen) o(2) Green
function (p = p′ = 5/8), which is a very simple analytical expression, leads
to interesting results, except at long times. This will be confirmed by the
calculation presented hereafter.

6.2 Maximum values of the time response

The previous results are concerned with a fixed value of the parameter ξ , i.e.
a fixed value of the thickness of the material layer. In order to compare the
different descriptions for several values of ξ, we chose to compare the maximum
values of the time responses (there is a unique maximum). It is noticeable that
for the asymptotic (frozen) expressions at the first order, Fs1, the maximum
value and the corresponding time τmax are given by an analytical expression,
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Figure 2: Green function ΘG(x, t) with respect to time t/Θ (zoom of figure 1).
(Black), solid line: Zwikker and Kosten formula; (blue), dotted line: PL formula;
(red), dashed line PL modified formula; (blue), mixed line: JA formula; (yellow),
solid, pale line: frozen o(2)’s Green function Go(2).

obtained from Eq. (70):

Max(Fs1) =
1√
π

[

3

2

]3/2

e−(3/2) 1

n2
1ξ

2
=

0.2312

n2
1ξ

2
;

τmax =
2

3
n2
1ξ

2.

For the asymptotic expression of order 2, the time τmax remains the same,
while the maximum needs to be corrected from order 1 by the factor exp(−n2ξ),
according to Eq. (71). Fig. 3 shows the result for the exact Green function G
and the two PL models, GPL and GmPL, as well as the diffusive function Gdiff .
It shows the neperian logarithm of the maximum value of Fs with respect to
the dimensionless space variable ξ. The two PL models seem to be very good;
however we prefer to give more insight by subtracting the result corresponding to
the exact Green function, as shown in Fig. 4. As expected, the PL description
is very good for high distances ξ, while the modified PL description is better
for small distances ξ. Otherwise both are better than the JA description. In
order to make possible a comparison with the asymptotic solutions (presented
hereafter in Fig. 5), the best asymptotic solution is shown in Fig. 4. It is bad for
large distances. The transition range values of the distance ξ is approximately
between 0.036 and 1.7, corresponding to a range for the time domain Stokes
number 5.3 ≥ ξ−1/2 ≥ 0.75. This range is similar to that accepted for the
frequency domain Stokes number defined by Eq. (22) (see e.g. Ref. [17]).

Fig. 5 shows that the PL description is slightly better than the first order
of the frozen asymptotic, but the second order of the frozen asymptotic is the
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Figure 3: Neperian logarithm of the Green function maximum. (Black) solid,
thick line: exact Green function G. (Blue) dotted line: PL Green function
GPL. (Red), dashed line: modified Green function GmPL. (Green) solid, thin
line: diffusive Green function, Gdiff .

best approximation. Otherwise, for short distances ξ, the second order of the
asymptotic wave equation WE exhibits the expected convergence to the results
of the solution based on wavenumber expansion at second order, for both the
coefficients obtained from the Zwikker and Kosten solution (p = p′ = 5/8) and
those of the PL model (p = p′ = 3/4). Nevertheless, for higher distances, the
asymptotic WE solution seems to be slightly less accurate than the asymptotic
wavenumber solution: it is not easy to have an interpretation for this result.

7 Conclusion

For very short dimensionless distances, the value of the time maximum is in-
versely proportional to the square of the distance, but when the distance in-
creases, the decrease becomes exponential. This behavior is correctly represented
by the second order of the frozen asymptotic. Nevertheless, if the coefficient of
the second order is known for some geometries, such as for cylindrical pores, it
is not known in general. The PL description remains the more satisfactory for
the general case, but it gives faulty description of the exponential decreasing,
because the coefficients p and p′ are determined from the relaxed limit. The
different figures presenting the results for dimensionless quantities can help for
the choice of certain approximations.

The second order solution of the wave equation, as presented in Ref. [13]
differs (by definition) by the third order with the solution based on wavenumber
expansion at second order, the latter being simpler to use in practice. Looking
at the calculation made in the frequency domain, the figure 3 of this paper
exhibits a ratio between the PL description and the JA one (with p = p′ = 1)
that is almost independent of frequency: this is confirmed by the asymptotic
calculation of the wavenumber (Eq. (71)).

A problem of major interest is the use of the present investigation for the
inverse problem, i.e. the determination of the parameters of a given material.
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Figure 4: Error on the neperian logarithm of the Green function maximum. The
different solution are compared to the exact one, the error being the difference
between the corresponding value and the eaxct value. (Blue) dotted line: GPL.
(Red), dashed line: modified PL GmPL. (Blue) mixed line: GJA. (Yellow) solid
line: frozen o(2) Green function Go(2).

In this connection we have illustrated in this paper by direct FFT a simple
fact. This fact is that the description of the time domain Green functions may
be significantly improved by employing the full model expressions (instead of
the asymptotic expressions). It suggests therefore that there is still a strong
potential of improvement of the inverse methods of characterization based on
recording transmitted and reflected pulses on different thicknesses of a material,
provided the full expressions are exploited in the analysis.

Assuming that we are dealing here with sufficiently well-defined and repro-
ducible materials, we may suggest moreover, that this potential may be difficult
to exploit fully, within the framework of current models including the most pre-
cise PL. Indeed, the present work has highlighted one fundamental limitation
of these models. It has shown that, even if it would be possible to gain precise
experimental information on the unknown geometrical coefficients determining
the high-frequency “second order” attenuation effect, it would not be possible
to properly exploit this information in the framework of the current models.
It is thus possible that working in the framework of a new model free from
the highlighted limitation would present significant advantages for the precise
inversion. These questions would have to be considered in further work.
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