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One major problem confronting crystal growth researchers has been the development of techniques capable of monitoring and controlling the external shape of melt -grown crystals, and simultaneously improving the crystal structures. In the EFG, Cz, dewetted Bridgman and FZ processes, the shape and the dimensions of the crystal are determined by the liquid meniscus and by the heat transfer at the melt -crystal interface. In addition, the meniscus is also of great practical use for techniques of diameter control: in the weighing method ( [ Bardsley 1974, Bardsley 1977, Dijk 1974, Johansen 1992 , Chapter 3 ]) the weight of the melt enclosed by the meniscus appears as an essential parameter; when using video observation ( [START_REF] Gartner | [END_REF], Gartner 1973, O ' Kane 1972, Sachs 1980] ), the crystal diameter and the interface height have to be measured exactly.

Historically, the physical origin and the shape of a liquid meniscus were among the fi rst phenomena to be studied in capillarity [START_REF] Hauksbee | Physico -Mechanical Experiments[END_REF]] . The fi rst formal analytical expression was given by Laplace [START_REF] Laplace | Trait é de M é canique C é leste[END_REF]] , after introduction of the mean curvature κ defi ned as the average (arithmetic mean) of the principal curvatures κ =+ ( ) [ Young 1805] . Laplace showed that the mean curvature of the free surface is proportional to the pressure change across the surface. The proportionality coeffi cient is the surface tension γ lv . The pressure change across the surface contains p v the pressure of the external gas on the melt; p O , the internal pressure applied on the liquid, which can generally be defi ned at the origin; ρ l gz , the hydrostatic pressure; 1 is the angular velocity of the liquid (around the Oz axis in crystal growth techniques), and, when magnetic fi elds are used, the Maxwell pressure which is proportional to the square of the magnetic induction B 2 ( x , y ) / 2 μ ( μ -magnetic permeability). The following equality known as the Young -Laplace equation must hold: As quoted in [Landau 1971] , the choice of the positive sign is a convention which generally follows the physical meaning. However, from the mathematical point of view, the positive or negative signs depend on the axis frame convention. Generally, the curvature is taken to be positive if the curve turns in the same direction as the surface ' s chosen normal, and negative otherwise.

The result can be summarized as follows: the positive sign corresponds to the cases where the liquid has the shape of a sessile or pendant drop (Figure 8.1 a), e.g. fl oating zone (FZ), dewetting or Verneuil confi gurations, and the negative sign corresponds to the cases where the liquid has the shape of an external meniscus (Figure 8.1 b), e.g. EFG or Cz confi gurations [Hartland 1976] .

Denoting the meniscus surface by A : z ( x, y ), it is known from differential geometry, that the mean curvature is expressed as [Finn 1986] : where E I , F I , G I represent the coeffi cients of the fi rst fundamental form of the surface A and E II , F II , G II represent the coeffi cients of the second fundamental form. According to Finn, for a surface given in explicit form z = z ( x, y ), these coeffi cients are given by:
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,, , This equation is a nonlinear partial differential equation (PDE) of second order, and the unknown function z ( x, y ) represents the meniscus surface. Because of the nonlinearity of this equation, it is necessary to do qualitative analysis and to develop specifi c numerical tools for fi nding the meniscus surface, which, furthermore, should satisfy the boundary conditions depending on the chosen confi guration. Section 8.1 below contains a mathematical formulation of the capillary problem. The boundary value problem for the Young -Laplace equation in the three -dimensional and axisymmetric cases is presented, and the initial and boundary condition of the axisymmetric meniscus problem are given. The growth angle criterion and some approximated solutions of the axisymmetric meniscus problem are also included.
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In sections 8.2 -8.4 some analytical and numerical solutions for the meniscus equation in the Cz, EFG and dewetted Bridgman growth techniques are presented. The case of the FZ process is extensively described in Chapter 4 and is not treated here.

Mathematical Formulation of the Capillary Problem

Boundary Value Problems for the Young -Laplace Equation

Three -Dimensional Case

In order to fi nd physically sound solutions of the Young -Laplace equation, it is generally necessary to formulate the model as a ' well posed ' PDE problem. A PDE problem is said to be well posed if: (i) a solution to the problem exists; (ii) the solution is unique; and (iii) the solution depends continuously on the problem data. In practice, the question of whether a PDE problem is well posed can be diffi cult to settle.

The looks like an elliptic type of any solution z ( x , y ) [Finn 1986] . Unfortunately Equation (8.4) cannot be included in the general theory of the elliptic PDE from variational calculus because the functions a , b , c , d , e: Ω ⊂ R 2 → R are unknown and strongly nonlinear. Moreover, a well -posed elliptic PDE problem usually takes the form of a boundary value problem (BVP) with the solution required to satisfy a single boundary condition (Dirichlet, Neumann or Robin boundary condition) at each point on the boundary ∂ Ω of the region. These circumstances have important consequences for the behaviour of the solutions, reasons for which each problem containing the Young -Laplace equation should be treated separately. The peculiarities of each problem will lead to a corresponding mathematical context capable of providing conditions that ensure the existence and uniqueness of the solution.
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Because of the complexity of the BVP associated to the Young -Laplace equation, there is no general analytical solution and the problem must be addressed numerically [Clanet 2002] . In some particular domains Ω , e.g. those obtained from crystal growth confi gurations (Cz, EFG, dewetted Bridgman, FZ), certain approximations can be made in order to simplify the problem and hence the equation can be integrated. In the following, the approximations most commonly used in the literature are presented, i.e. the domain Ω is two -dimensional or axisymmetric. These two -dimensional models will then be developed for EFG, Cz and dewetted Bridgman growth techniques. In some particular conditions, analytical solutions will be given.

Axisymmetric Case

In the axisymmetric case, the Young -Laplace equation ( 8.3) can be written using cylindrical polar coordinates x = r • cos θ , y = r • sin θ , z = z (the meniscus is axisymmetric). Expressing r and θ as functions of x and y , i.e. rx y =+ 22 , θ = arctan( y / x ), the partial derivatives of the function z ( x,y ) are: 
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but the most useful formulation is:
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. (8.12) This is a nonlinear second -order differential equation and to obtain its solution z = z ( r ) two conditions are needed, which, in association with Equation (8.12) , give the BVP or initial value problem (IVP). In general, because of its nonlinearity, the problem does not have a solution expressed in an analytical form.

To solve the BVP (or IVP) it is necessary do a qualitative analysis and to develop specifi c numerical tools. To this end, Equation (8.12) is transformed into a nonlinear fi rst -order system of differential equations. In the literature, two equivalent systems are known: one having three differential equations, and another having two differential equations. In both formulations, the angle φ between the tangent to the meniscus (at an arbitrary point) and the horizontal axis, called meridian angle [Boucher 1980] , is involved.

First, Princen and Mason [Princen 1965] introduced the arc length s along the curve which generates the surface of revolution z ( 
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Later, Huh and Scriven [Huh 1969] eliminated the parameter s using the notation d z /d r = ± tan φ (with the sign convention mentioned above). Thus, Equation (8.11) was transformed into a system of two differential equations:
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In order to make the analytical and numerical analysis easier, a dimensionless form of the Young -Laplace equation is also used, by introducing the following dimensionless parameters with L a characteristic dimension of the problem or the capillary constant of the material (see Chapter 2 ): 
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Using the above dimensionless parameters, Equation (8.12) can be written as: (8.16) where 
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Therefore, Equation (8.16) is transformed into the system:
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The mathematical models given by the systems (8.13) , (8.14) or (8.19) are very useful for obtaining information concerning the meniscus behaviour (shape, monotony, attainment of the growth angle, etc.). They were successfully applied only after the development of computers powerful enough to permit the computation of menisci.

Initial and Boundary Conditions of the Meniscus Problem

The initial and/or boundary conditions required for solving the axisymmetric Young -Laplace equation are determined by the structural features of each specifi c confi guration and will be analysed in the following sections for EFG, Cz, and dewetted Bridgman crystal growth techniques. In this section, common features corresponding to typical boundary conditions of the capillary problem are discussed: the catching and wetting boundary conditions . The catching boundary condition is specifi c for materials that are wetted by the melt. It is used when one meniscus end is partially fi xed, e.g. for the EFG technique the counter line of the meniscus surface is fi xed by the internal or external edge counter (see Chapter 2 , Figure 2.4 b, d, j, k or Figure 2.4 e, f). This condition can be expressed as:

z rr = = 0 const.,
where r 0 represents the radial coordinate of the point situated at the meniscus end, and the value of the constant depends on the position of the horizontal axis of the ( rOz ) frame, i.e. this constant is set to zero if the meniscus end is on the Or axis, or is equal to the distance between the horizontal axis Or and its parallel which passes through the meniscus end (see Chapter 2 , section 2.6.1.1 ).

The wetting boundary condition is also known as the angle of fi xation boundary condition because it expresses the angle made between the tangent to the meniscus at its endpoint situated at the base, and the tangent to the shaper or crucible wall (see also Chapter 2 , section 2.6.1.2 ). For the axisymmetric Young -Laplace equation written for the confi gurations presented in Figure 2.4 a, c, g, h, i (see Chapter 2 ) or Figure 8.18 (see dewetted Bridgman technique), the wetting boundary condition can be expressed as follows:
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where θ represents the wetting angle (see Chapter 1 ,and Figures 8.4 and 8.18 ).

From the physical point of view, the catching and wetting conditions cannot be applied simultaneously at the same point r = r 0 . However, for certain confi gurations, it is useful from the mathematical point of view to perform calculations with a given angle applied at the catching condition point. Then the angle is varied in order to fi nd a physically acceptable solution to the problem. In such cases, the systems (8.13) , (8.14) or (8.19) have two initial conditions. Thus, an initial value problem is obtained and its unique solution represents the meniscus surface z = z ( r ). The existence and uniqueness of the meniscus is assured on the basis of the Cauchy theorem, because functions from the right -hand terms of the system (8.13) , (8.14) or (8.19) are real analytically. The meniscus can be computed numerically using Runge -Kutta method (see Appendix to this chapter in which the procedure for the fourth -order Runge -Kutta method is presented).

After the meniscus shape is obtained, the growth angle criterion should be imposed. It asserts that the crystal is obtained when the growth angle α is attained at the place where the meniscus contacts the crystal (see Chapter 1 , section 1.3 ). This condition is expressed as

φα rr = =- c π 2 ,
where r c represents the crystal radius.

Even if the IVP of the Young -Laplace equation has a unique solution, it is nevertheless possible that this solution does not satisfy the condition for attainment of the growth angle. If this condition is satisfi ed then a crystal having a radius r c can be obtained (Figure 8.2 ); otherwise, a crystal cannot be obtained.

The attainment of the growth angle is exemplifi ed in Figure 8.2 . More precisely, in the confi guration shown in Figure 8.2 a, there is no place along the meniscus where the angle is equal to α , so it is impossible to grow a crystal under conditions giving this meniscus. In Figure 8.2 b, it is possible to grow a crystal from this meniscus. In Figure 8.2 c, the growth angle can be achieved twice on the meniscus. This means that, under the same capillary conditions, it is possible to grow crystals with two different diameters. The choice is realized by heating or cooling the system in order to fi x the height of the solidliquid interface.

As already explained in Chapter 2 , in some confi gurations, the wetting boundary condition does not exist (or it does so at infi nity and hence cannot be used in numerical solutions; see section 8.2 ). In these cases, to solve the Young -Laplace equation, the growth angle should represent one boundary condition, and the second condition should be expressed using the meniscus height, which is unknown. These kinds of problems are very diffi cult from a mathematical and numerical point of view, so they should be treated separately, e.g. see section 8.2 .

Approximate Solutions of the Axisymmetric Meniscus Problem

Some authors have proposed simple approximations of the axisymmetric Young -Laplace equation used especially for unbounded extent (i.e. Ω is an unbounded axisymmetric domain), when numerical solution of the BVP is very diffi cult [Huh 1969] . For example, in 1960 Nutt neglected the second curvature: (  ) ⋅ 1 cos where d z /d r = +tan φ (the positive sign is due to the confi guration). This equation can be integrated between r 0 and r (here r > r 0 , see Figure 8.3 ), and the meniscus z can be expressed as a function of φ :
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Another approximation was reported by Tsivinski [Tsivinski 1962] . He considered both curvatures but expanded the curvature 1/ R 2 in a Taylor series, considering only the fi rst two terms from the Taylor series:
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The meniscus for a vertical circular cylinder positioned in a fl uid (Reprinted with permission from [Huh 1969] , copyright (1969) Elsevier Ltd) .

where h represents the meniscus height. Using this approximation, Tsivinski obtained an analytical formula for the meniscus height as function of the crystal radius r c and the growth angle α (for more details, see section 8.2 ):
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This formula has been intensively cited and used for fi nding the analytical formulas of the meniscus. For example, Hurle obtained:
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(see details in section 8.1 ) [Hurle 1983] .

Other approximations of the axisymmetric Young -Laplace equation are based on Bessel functions [Boucher 1980, Ferguson 1912] . Boucher obtained a most useful mathematical approximation involving zero -and fi rst -order modifi ed Bessel functions: Comparisons between these analytical formulas [Hurle 1983] and the computed menisci reported by Huh and Scriven [Huh 1969] showed that the explicit approximations of the meniscus are adequate for the range of values of crystal radius and contact angle encountered in crystal growth.
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The most recent approximation was given by Hernandez -Baltazar [Hernandez -Baltazar 2005] who solved the Young -Laplace equation with an elliptic representation, i.e. the principal curvatures When the results of the analytical solution and the literature data for different profi les are compared, a correlation with acceptable error in the fi fth digit is obtained. This means that that the error in the parameter β * , after applying the differential expression, would be less than 0.1%.
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Analytical and Numerical Solutions for the Meniscus Equation in the C z Method

For the Cz growth method (see Figure 8.4 ), the axisymmetric meniscus is given by the Young -Laplace equation (8.12) . In the Cz process, the meniscus height h is controlled by heat transfer and the problem is to fi nd the relation between the crystal radius and the meniscus height.

The pressure due to rotation in Cz is only a few pascals and is commonly neglected. If the growth process takes place without a magnetic fi eld, Equation (8.12) becomes:
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The solution z = z ( r ) of Equation (8.21) has to satisfy the following boundary conditions:
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, , αα 00 02 π (8.22)

where r c > 0 is the crystal radius, α 0 = π /2α where α is the growth angle, h is the meniscus height (an unknown in the problem if a crystal with given r c is to be pulled). Moreover, if the meniscus extends untouched far enough outwards its equilibrium shape becomes effectively fl at at some distance from the crystal. The meniscus may then, for all intents and purposes, be regarded as unbounded, i.e. as extending to infi nity [Huh 1969] :

z r→∞ = 0. (8.23)
From this peculiarity (no curvature of the meniscus at r → ∞ ) it follows that the pressure in the melt at z = 0 is equal to the vapour pressure p O = p v .

Because of (8.23) , it is very diffi cult to fi nd a numerical method for solving the meniscus surface equation, (8.21) . To avoid this inconvenience, many authors have tried to fi nd suffi ciently accurate analytical approximations to the real meniscus profi le. The most often cited results are those reported by Tsivinski [Tsivinski 1962] which derived an analytical expression for the meniscus height (i.e. the unknown h from the boundary condition (8.22) ), in a Czochralski confi guration using a particular form of the meniscus equation (8.11) : 
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represent principal curvatures. Tsivinski considered both curvatures but he expanded the curvature 1/ R 2 in a Taylor series at the point h , as follows:
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Using 1/ R 2 = (sin φ )/ r , where φ is the angle between the tangent to the meniscus (at an arbitrary point) and the horizontal axis, the terms

(1/ R 2 ) ( h ) and (d/d z ) (1/ R 2 ) | z = h from
the above representation are obtained as function of the growth angle α and the crystal radius r c :
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After computations, the following formula for the curvature 1/ R 2 is obtained:
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Thus, the meniscus equation ( 8.24) becomes
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where z ′ = d z /d r and z ″ = d 2 z /d r 2 . Multiplying this equation by z ′ , and integrating between 0 and z gives:
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, and hence Equation (8.29) will represent an equation of the second degree for the meniscus height h :
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Solving this equation, the following analytical approximations on the meniscus height [Tsivinski 1962] is obtained:
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It is easy to see that h 1,2 can be positive or negative, but for physical reasons only the positive meniscus will be considered:
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where α is the growth angle. This is equivalent to:
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which is used to estimate the meniscus height in diameter control techniques ( [Bardsley 1974-2, Bardsley 1977, Dijk 1974, Johansen 1992] ) (Figure 8.5 ), or for comparison with other analytic approximations [Bardsley 1974-1, Hurle 1981, Hurle 1983, Johansen 1987, Johansen 1992, Mika 1975, Tatartchenko 1993] .

An analytical approximation of the meniscus profi le can be obtained only for some particular cases. For example, Hurle considered a reduced form of Equation (8.28) : A rh
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the following ordinary differential equation is obtained:
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After integrating between h and z , using r ( h ) = r c , the following explicit analytical formula r T ( z ) for the meniscus is obtained: The second analytical expression for the meniscus height reported in the literature is based on Bessel functions (see section 8.1.3 ) [Hurle 1983, Johansen 1992, Johansen 1994] :
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Details of Bessel functions and how they are used to obtain Equation (8.34) will be given later, when a new analytical -numerical solution for computing the meniscus surface will be proposed.

A comparison between Equations (8.33) and (8.37) can be seen in Figure 8.7 . The fi gure shows accurate analytical approximations of the meniscus height as a function of the crystal radius. For small crystal radius the error is of the order 10 -4 , but for large crystal radius, as in Cz crystal growth, the approximation is very good, which is why both formulas have been used by crystal growers. Moreover, for the second of the meniscus height formula h B ( r c ) a similar analytical formula for the meniscus r B ( z ) can be found [Hurle 1983] :
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The comparison between Equations (8.36) and (8.38) can be seen in Figure 8.8 . Computations show that for the considered cylindrical silicon crystal of radius r c = 0.136 m, the errors between these two analytical formulas are of the order 10 -5 .

The reason why researchers used the above approximations is that it is diffi cult to obtain a numerical solution because of the condition (8.23) . In order to avoid this diffi culty, Mika and Uelhoff [Mika 1975] proposed an analytical -numerical solution. More precisely, part of the solution for r → ∞ (called asymptotic part of the solution) can be derived analytically, i.e. for r ∈ [ r * ; ∞ ), and the remaining part can be solved numerically using Runge -Kutta method on the fi nite range r ∈ ( 0 ; r * ]. The problem is to fi nd the accurate range on which this analytical solution is available, and after that to fi nd initial conditions for computing the numerical solution.

In the following, the asymptotic part of the solution, r ∈ [ r * ; ∞ ), obtained using modifi ed Bessel functions [Mika 1975] is presented. For the second part of the solution, r ∈ (0; r * ], mathematical tools for fi nding initial conditions in order to solve the IVP numerically are used.

The asymptotic solution can be obtained starting from Equation (8.21) , in which (d z /d r ) 2 is neglected because d z /d r << 1 at a large enough distance from the crystal, and

p O = p v : d d d d l lv 2 2 1 z r gz r z r =-⋅ ρ γ , (8.39)
which can be rewritten in the form

r z r r z r r g z 2 2 2 2 0 ⋅+ ⋅ -⋅⋅ = d d d d l lv ρ γ . (8.40)
In order to write this as a standard Bessel equation, z ( r ) is transformed to y ( x ) with: rx g =⋅ ( ) γρ lv l and zy g =⋅ ( ) γρ lv l . Thus, Equation (8.40) becomes:

x y x x y x xy 2 2 2 2 0 ⋅+ ⋅ -⋅ = d d d d (8.41)
Equation (8.41) is called a homogeneous modifi ed Bessel differential equation, being of the type: (8.42) with n = 0. From the theory of Bessel functions, it is known that the general solution is a linear combination between modifi ed Bessel functions of the fi rst and second order, respectively:

xy x y x n y 22 2 0 ⋅ ′′ +⋅′ -+ ( ) ⋅=,
y ( x ) = C 1 • I n ( x ) + C 2 • K n ( x ),
where C 1 and C 2 are constants which should be determined. The general solution of Equation (8.41) is: Returning to the problem in z ( r ), the following general solution for the asymptotic part of meniscus shape is obtained:

yx C I x C K x ( ) =⋅ ( ) +⋅( ) 10 
zr g C r g r g C r g ( ) =⋅ ⋅ ⋅ ⎧ ⎨ ⎩ ⎫ ⎬ ⎭ +⋅ - ⎧ ⎨ γ ρ ρ γ ρ γ ρ γ lv l l lv l lv l lv 12 2 exp exp π ⎩ ⎩ ⎫ ⎬ ⎭ ⎛ ⎝ ⎜ ⎜ ⎜ ⎜ ⎞ ⎠ ⎟ ⎟ ⎟ ⎟ 2πr g ρ γ l lv .
(8.45)

The fi rst modifi ed Bessel function I 0 ( r ) = J 0 ( ir ) is complex, but only the real part of the solution (8.45) is considered: [Mika 1975] .

zr g C r g r g l l ( ) =⋅ ⋅ - ⎧ ⎨ ⎩ ⎫ ⎬ ⎭ ⎛ ⎝ ⎜ ⎜ ⎜ ⎜ ⎞ ⎠ ⎟ ⎟ ⎟ ⎟ γ ρ ρ γ ρ γ lv l lv lv 2 2 exp , π (8.46) which is equivalent to y ( x ) = C 2 • K 0 ( x ), according to
The solution (8.46) satisfi es the boundary condition (8.23) :

z r→∞ = 0.
In order to fi nd the unique solution, the constant C 2 must be computed. For that, the continuity condition of the fi rst derivative at the connection point r * is imposed, i.e. the continuity of the fi rst derivatives for asymptotic analytical and numerical solutions at r * , d z /d r | r = r * = -tan φ ( r * ). Thus, deriving the asymptotic analytical solution z ( r ) given by (8.46) and equating that with the corresponding derivative available for the numerical solution (tan φ ( r * )), gives:

zr g Kr g Kr g r ( ) =⋅ ⎛ ⎝ ⎜ ⎞ ⎠ ⎟ ⎛ ⎝ ⎜ ⎞ ⎠ ⎟ ⋅ ( ) γ ρ ρ γ ρ γ φ lv l l lv l lv * 0 1 * tan . (8.47)
Here the derivative property of the modifi ed Bessel function: 

(d/d x ) ( K 0 ( x )) = -K 1 ( x ) is used. Moreover,
=- =- ⋅ ⋅-⋅ ⎧ ⎨ ⎪ ⎪ ⎩ ⎪ ⎪ tan cos tan . φ φρ γφ φ 1 (8.50)
In what follows, the meniscus will be computed, using the analytical -numerical solution described above, for a cylindrical silicon crystal grown by the Cz technique. First, it is necessary to fi nd the region for which the asymptotic analytical solution is accurate. Using the material parameters of silicon and computing the modifi ed Bessel functions

Kr g Kr g r 01 0 ρ γ ρ γ l lv l lv for ⎛ ⎝ ⎜ ⎞ ⎠ ⎟ ⎛ ⎝ ⎜ ⎞ ⎠ ⎟ ∈∞ ( ) ,; ,
it follows that their ratio increases to 1 for r ≤ 3.7 m, and after that the modifi ed Bessel functions exponentially decay to zero, i.e. for x >> n ,

Kx x n x ( ) ≈ ( )⋅ - e 2 π ;
in our case n = 0 or 1, and x represents rg ll v ργ . This shows that a crucible radius 0.25 ≤ 3.7 m and a value for r * which is not far from the crucible radius, e.g. r * = 0.19 m, should be considered, in order to have an almost fl at meniscus. Hence, we set r * = 0.19 m and then fi nd h * , i.e. the corresponding meniscus height, andtan φ ( r * ), necessary for conditions (8.49) .

Replacing r = r * = 0.19 m in Equations (8.47) and (8.33) the following system is obtained: In solving this system we considered those values of φ ( r * ) that belong to the interval ( 0 1 2 , π). For the above values, only one value is in the required interval: φ ( r * ) = 7.2 s. Replacing this in fi rst or second equation gives h * = 0.2 μ m. In this way the initial condition is computed, which permits to fi nd the numerical solution. The asymptotic analytical approximation of the meniscus is obtained by plotting function given by (8.47) , as can be seen in Figure 8.9 a. The numerical solution of the meniscus is obtained solving the system (8.50) with the boundary conditions (8.49) . The computed meniscus is shown in Figure 8.9 b. The union between the analytical and numerical menisci forms the fi nal required meniscus (Figure 8.9 c).

h g Kr g Kr g r h *t a n * sin =⋅ ⎛ ⎝ ⎜ ⎞ ⎠ ⎟ ⎛ ⎝ ⎜ ⎞ ⎠ ⎟ ⋅ ( ) =-
The error between the meniscus height h = 0.0067 m computed using the analyticalnumerical solution, and those computed using only the analytical formulas h T (8.32) and h B (8.37) , are of the order 10 -5 , for a crystal radius r c = 0.0136 m.

In the above analytical -numerical model, the idea reported in the literature concerning approximation of the meniscus using Bessel functions was used, but the fi rst part of the meniscus (situated in the neighbourhood of the crucible) was obtained by computing modifi ed Bessel functions, not using the approximation (8.48) . From these calculations, initial conditions necessary to solve the IVP (8.49) -(8.50) were found, and the second part of the meniscus (situated near the crystal) was computed numerically. In comparison with previous approximations [Huh 1969, Hurle 1983, Mika 1975] , this represents an improved result over the analytical -numerical method which gave errors of the order 10 -4 .

As can be seen in the developments presented above, no exact solution of the meniscus shape, neither analytical nor numerical, can exist. Always an approximated part of the solution should be used and the diffi culty is to keep this approximation as low as possible .

Analytical and Numerical Solutions for the Meniscus Equation in the EFG Method

The meniscus surface equation ( 8.3) and its corresponding boundary conditions for the EFG method are considered for sheets and cylindrical crystals. Qualitative analyses are performed, and when possible (i.e. in very particular cases) analytical solutions are given.

The properties of the menisci obtained from the qualitative studies, are exemplifi ed through numerical examples .

In the EFG technique, the main question is: what is the relation between the meniscus height h (which can be controlled through heat transfer) and the crystal sheet halfthickness or crystal rod radius?

Sheets

The central component of the EFG growth method is the die. The shape of the die defi nes the shape and the size of the meniscus, i.e. the liquid bridge retained between the die and the crystal (see Chapters 2 and 5 ). In order to obtain a sheet, the upper surface of the die has to be rectangular. The main characteristic of the sheet is its thickness (or halfthickness x c ). Then solutions z = z ( x ) of Equation ( 8.3) , depending only on the coordinate x, are sought. This means that the border effects (which occur on both edges of the sheet) are not considered. This approximation is equivalent to those given by Nutt [Nutt 1960] who neglected the curvature 1/ R 2 from Equation (8.1) written in the ( xOz ) frame (Figure 8.10 ). It is possible to consider the borders of the sheet as half -cylinders, and the meniscus computed for an EFG crystal rod can be used as a fi rst approximation. However, the junction between the axisymmetric border meniscus and the two -dimensional sheet meniscus remains a problem.

Thus, the meniscus equation (8.1) without magnetic fi eld and without rotation of the liquid becomes: In the EFG method, the pressure p O is the pressure at the origin and it depends on the position of the liquid surface outside the die. For example, referring to Figure 8.10 , because a liquid surface plane coinciding with the shaper edge plane has been chosen, p O = p v , and hence Equation (8.53) becomes:

d d d d l lv 2 2 2 32 1 z x gz z x =⋅ + ( ) ⎡ ⎣ ⎢ ⎤ ⎦ ⎥ ρ γ . (8.54)
The solution z ( x ) of Equation ( 8.54) has to satisfy the following catching boundary condition:

zw ( ) = 0, (8.55)
where w > 0 is the inner half -thickness of the die. It is assumed that the bottom line of the meniscus on the die is fi xed on the edge of the die; i.e. z ( w ) = 0 and z ( x ) > 0 for x < w ( x close to w ) [Braescu 2003] .

At the other end of the meniscus, the growth angle criterion should be imposed, i.e.: In the following, Equation (8.54) will be solved satisfying conditions (8.55) and (8.58) for a given die half -thickness w , and a given angle φ c . After that, for the obtained meniscus z ( x ), the growth angle criteria (8.56) will be imposed and the dependence of the sheet half -thickness x c as a function of the meniscus height h will be found.

In the particular case of zero gravity the solution z ( x ) can be expressed in an analytical form: Equation (8.54) becomes d 2 z /d x 2 = 0 for which the solution is z

( x ) = c 1 • x + c 2 ,
where c 1 and c 2 can be determined from the conditions (8.55) and (8.58) . In this way, the obtained analytical solution

zx x w ( ) =-( )⋅+ ⋅ tan tan φφ cc (8.59)
shows that in zero gravity the meniscus is a straight line.

Imposing the growth angle criterion, the parameter φ c is eliminated and the following dependence of the sheet half -thickness x c as a function of the meniscus height h is obtained:

xh w h c ( ) =- tan . α (8.60)
Using material parameters for silicon (growth angle α = 11 ° = 0.1919 radians), and a die half -thickness w = 0.002 m, the representation shown in Figure 8.11 is obtained.

If gravity is considered, then an analytical form of the meniscus cannot be obtained , but qualitatively it is possible to get information about the shape of the meniscus, and the meniscus shape can be computed using Runge -Kutta method.

Thus, using the technique set out in the fi rst section, the nonlinear Equation (8.54) is transformed into a nonlinear system of two differential equations:

d d d d l lv z x x gz =- =- ⋅⋅ ⋅ ⎧ ⎨ ⎪ ⎪ ⎩ ⎪ ⎪ tan cos φ φρ γφ 1 (8.61)
for which the boundary conditions (8.55) , (8.58) become:

zw w ( ) = ( ) =∈ ( ) 00 2 ,; , . φφ φ cc π (8.62)
The functions from the right -hand side of Equation (8.61) are defi ned for z ∈ ( -∞ ; ∞ ), φ ∈ ( -π /2; π /2) and are independent of x (the system is autonomous). These functions depend also on the material parameters ρ l ∈ (0; ∞ ), γ lv ∈ (0; ∞ ). The functions are real analytical, i.e. they can be expanded in a Taylor series in the neighbourhood of any point In general, the solution (8.63) cannot be expressed in an explicit form (because the system is nonlinear). For this reason, the behaviour of the solution will be analysed in the neighbourhood of w [Balint 2005] .

( z , φ , ρ l , γ lv ) from D = ( -∞ ; + ∞ ) × ( -π /2; π /2) × (0; + ∞ ) × (0; + ∞ ). Therefore,
From (8.61) and (8.62) we have: shows that there exists ε ″ > 0 such that on ( wε ″ ; w ) the function φ ( x ; w , φ c , γ lv , ρ l ) is strictly decreasing and ,,,; .

d d c z x xw = =- < tan , φ 0 
φφ φγ ρ φ ε = ( ) >∀ ∈ -′′ ( ) xw x w w ;,

cl vl c

The growth angle is achieved if the following equality holds:

φφ γ ρ α φ xw ;, , , . cl vl ( ) =-= π 2 0 (8.65)
In order to obtain more information about the solution (8.63) , an approximation of the solution (8.63) by Taylor polynomials, obtained by expansion in w , is considered: 

zxw zww z x
( ) ≈-( )⋅-( ) -⋅ ⋅ ⋅ ⋅⋅ 1 6 1 3 -- ( ) w 3 , (8.75) φφ γ ρ φ φ ρ γ φ xw g xw ;, , , cos sin . cl vl c c l lv c ( ) ≈+ ⋅ ⋅ ⋅ ⋅⋅ - ( ) 1 2 1 2 2 (8.76)
These approximations are valid only for x close to w [Balint 2005] . This will be shown numerically for silicon sheets.

The attainment of the growth angle at a point (0; w ] means that the equation: 

φ φ ρ γ φα c g xw +⋅ ⋅ ⋅ ⋅⋅ - ( ) =- 1 
(i) 0 1 2 << - φα c π (ii) w g - -- ⋅⋅ ⋅ > 1 2 1 2 0 2 π αφ φ φ ρ γ c c c l lv sin cos
These inequalities express the range of the parameter φ c for which the growth angle can be achieved. For example, using parameters for silicon and a die half -thickness w = 0.002 m, the inequalities (i) -(ii) show that condition of the growth angle is satisfi ed for 1.11 ≤ φ c < 1.3787.

Indeed, considering 30 values of the parameter φ c and integrating by Runge -Kutta the problem (8.61) -(8.62) , it is found that the growth angle is achieved for 1.04 ≤ φ c < 1.3787. This proves that the above Taylor approximation is useful for fi nding the range of the parameter φ c .

Concerning the meniscus shape: from Equations (8.75) -(8.76) , it is easy to see that the functions z ( x ; w , φ c , γ 1v , ρ l ), φ ( x ; w , φ c , γ lv , ρ l ) are convex in the neighbourhood of w . The growth angle condition imposes the same monotony on the whole interval ( x c , w ) for the function φ ( x ; w , φ c , γ lv , ρ l ), i.e. d φ /d x < 0. This implies:

d d d d 2 22 1 0 z xx =- ⋅ > cos
, φ φ i.e. the meniscus convexity on the interval ( x c , w ), as can be seen in Figure 8.12 .

The couples ( x c , h ) in which the growth angle is attained were computed for every parameter φ c considered. Plotting these couples gives the dependence shown in Figure 8.13 . Because an analytical expression fi tting the above data is useful for practical crystal growers, the dependence of the sheet half -thickness x c as function of the meniscus height h : are obtained, for a silicon sheet grown using a die half -thickness w = 0.002 m.

xh hh h hh c ( ) = -⋅ + ⋅ - ⋅ -⋅ + ⋅ - 0 
The above qualitative analyses show that the dependences x c ( h ) and h ( x c ) are decreasing functions. For the confi guration shown in Figure 8.10 , i.e. p O = p v , and zero gravity these dependences are linear functions, and the growth angle is always attained. In normal gravity conditions the above dependences are concave functions (the second derivative is negative), and the growth angle is attained if the parameter φ c satisfi es inequalities (i) -(ii).

Cylindrical Crystals

In order to obtain a cylindrical crystal a circular die is used (see Figure 8.14 ). In this case, the equation of the meniscus surface is the axisymmetric Young -Laplace equation (8.12) , which becomes: if the growth process takes place without a magnetic fi eld and without rotation of the crucible [Borodin 1979, Braescu 2004-1, Braescu 2004-2, Brener 1979-1, Brener 1979 -2] . In the confi guration in Figure 8.14 , the liquid surface plane coincides with the shaper edge plane and hence p O = p v . Equation (8.79) becomes:

d d d d d d d d l lv 2 2 2 32 2 1 1 1 z r gz z rr z r z r =⋅ + ( ) ⎡ ⎣ ⎢ ⎤ ⎦ ⎥ -⋅ ⋅ + ( ) ⎡ ⎣ ⎢ ⎤ ⎦ ⎥ ρ γ . (8.80)
The solution z ( r ) of Equation ( 8.80) has to verify the following catching boundary condition:

zr 0i ( ) = 0, (8.81)
where r 0i > 0 is the inner radius of the die. It is assumed that the bottom line of the meniscus on the die is fi xed on the edge of the die; i.e. z ( r 0i ) = 0 and z ( r ) > 0 for r < r 0i ( r close to r 0i ).

At the other end of the meniscus, the growth angle criteria should be imposed, i.e.: In the following, Equation (8.80) satisfying conditions (8.81) and (8.84) will be solved for a given die radius r 0i and a given angle φ c . After that, for the obtained meniscus z ( r ), the growth angle criteria (8.82) will be imposed and the dependence of the crystal radius r c as function of the meniscus height h will be found.

In the particular case of zero gravity the solution z ( r ) can be expressed in an analytical form. Equation (8.80) becomes: for which the condition r ∈ [ r 0i • sin φ c , r 0i ] is imposed, in order to assure the existence of the functions employed [Braescu 2005] .

Imposing the growth angle criterion, the parameter φ c can be eliminated and the dependence of the meniscus height as function of the crystal radius can be found. Using material parameters for silicon (growth angle α = 1 1 ° = 0.1919 radians), and a die radius r 0i = 0.002 m, the representation for the curve (8.89) is found as shown in Figure 8.15 .

If gravity is considered, then an analytical form of the meniscus cannot be obtained , but performing qualitative studies gives us information about the shape of the meniscus which depends on the pressure, and the meniscus shape is computed using Runge -Kutta method.

Thus, using the technique presented in previous section, the nonlinear equation (8.60) is transformed into the following nonlinear system of two differential equations: The functions from the right -hand member of Equations (8.90) are defi ned for r ∈ (0; ∞ ), z ∈ ( -∞ ; ∞ ), φ ∈ ( -π /2; π /2). They are real analytic functions, i.e. can be expanded into Taylor series, and hence for the Cauchy problem (8.90) -(8.91) the conditions of existence and uniqueness of a solution are satisfi ed. It follows that the Cauchy problem (8.90) -(8.91) has a unique saturated solution defi ned on an interval ( a ; b ): ,,, ;,, , ,

z zrr rr = ( ) = ( ) ;,
00 icl v l icl v l φγ ρ φ φ φγ ρ (8.92)
depending on r and on the parameters r 0i , φ c , γ lv , ρ l . The interval extremities a and b depend on r 0i , φ c , γ lv , ρ l as well and verify 0 < a < r 0i < b [Braescu 2004 -2] . Generally, the solution (8.92) can not be expressed in an explicit form because the system is nonlinear; for this reason it is necessary to analyse the behaviour of the solution in the neighbourhood of r 0i .

From the system (8.90) and the conditions (8.91) the following inequalities can be obtained: Inequality (8.93) shows that there exists ε ′ > 0 such that for r ∈ ( r 0iε ′ ; r 0i ], d z /d r < 0 . It follows that the function z = z ( r ; r 0i , φ c , γ 1v , ρ l ) is strictly decreasing on ( r 0iε ′ ; r 0i ] and is strictly positive on ( r 0iε ′ ; r 0i ):

d d i c z r rr = =- < 0 0 tan , φ ( 
zz r r r r r = (

) >∀ ∈ -′ ( ) ;,,,,; .

0i c lv l 0i 0i
φγ ρ ε 0

The inequality dd 0i φ r rr = < 0 shows that the function φ = φ ( r ; r 0i , φ c , γ 1v , ρ l ) is strictly decreasing on ( r 0iε ″ ; r 0i ] and ,,,; . In order to get more information about the solution (8.92) , it will be approximated by Taylor polynomials obtained by expansion in r 0i : zrr zr r z r rr ;,, , ;,, , ;,, The coeffi cients of these polynomials are obtained from (8.90) and (8.91) , being given by [Braescu 2004 -2] Concerning the growth angle condition: from the monotonicity of φ ( r ; r 0i , φ c , γ lv , ρ l ), the growth angle can be achieved in (0; r 0i ) only if the contact angle φ c is in (0; π /2α ]. Thus if φ c = π /2α , then the growth angle is achieved in r 0i . If φ c < π /2α , then the growth angle can be attained on (0; r 0i ) only once (because φ ( r ; r 0i , φ c , γ lv , ρ l ) decreases). Imposing the growth angle condition on the function φ ( r ; r 0i , φ c , γ lv , ρ l ), the following equation is obtained: which should have one root in (0; r 0i ). This condition can be satisfi ed if:

φφ φγ ρ φ ε = ( ) >∀ ∈ -′′ ( ) rr r r r i ;,
0 i c l v l i0 i c l v l 0 i0 i c l v d d
(i) Δ= ⋅ ⎛ ⎝ ⎜ ⎞ ⎠ ⎟ - ⋅ ⋅+ ⋅ + sin cos sin cos tan φ φ ρ γ φ φ φ c ci l lv c ci c 1 2 1 0 2 2 0 2 r g r s sin cos φ φ φα c ci c 3 0 2 1 2 0 ⋅ ⎛ ⎝ ⎜ ⎞ ⎠ ⎟ ⋅-+ ( ) > r π , (ii) sin cos sin cos tan sin cos φ φ ρ γ φ φ φ φ c ci l lv c c0 i 2 c c ⋅- ⋅ ⋅+ ⋅ + 1 1 0 23 r g r Δ φ φ ci ⋅ < 1 0 0 2 r .
These inequalities express the range of the parameter φ c for which the growth angle can be achieved. For example, using parameters for silicon and a die radius r 0i = 0.002 m, the inequalities (i) -(ii) show that the growth angle condition can be satisfi ed for 0 < φ c < 1.378. Indeed, considering 30 values of the parameter φ c and integrating by Runge -Kutta for the problem (8.90) -( 8.91) , the growth angle is achieved for 0.01 ≤ φ c < 1.378. The previous described convexity and the monotonicity of the functions z = z ( r ; r 0i , φ c , γ lv , ρ l ), φ = φ ( r ; r 0i , φ c , γ lv , ρ l ) can be seen in Figure 8.16 . For every considered parameter φ c , the couples ( r c , h ) in which the growth angle is achieved were computed. Plotting these couples gives the dependence showing Figure 8.17 .

Because an analytical expression fi tting the above data is useful for practical crystal growers, the dependence of the meniscus height h as function of the crystal radius r c : and the dependence of the crystal radius r c as function of the meniscus height h are obtained for a cylindrical silicon crystal grown using a die radius r 0i = 0.002 m. The above qualitative analyses show that the dependencies r c ( h ) and h ( r c ) are parabolic functions. For the confi guration presented in Figure 8.14 , i.e. p O = p v , and zero gravity, the growth angle is always attained for r ∈ [ r 0i sin φ c , r 0i ]. On Earth, the growth angle is achieved if the parameter φ c satisfi es inequalities (i) -(ii).

Analytical and Numerical Solutions for the Meniscus Equation in the Dewetted Bridgman Method

Dewetted Bridgman is a crystal growth technique in which the crystal is detached from the crucible wall by a liquid free surface at the level of the solid -liquid interface, called liquid meniscu s, which creates a gap between the crystal and the ampoule (Figure 8.18 ). The dewetting is explained in Chapter 6 and involves the wetting angle θ , the growth angle α , possible modifi cation of these parameters due to pollution of the melt by the gas phase and possible pressure difference between the hot and cold sides of the crucible.

There are two problems of interest in dewetting (see Chapter 6 ):

• What is the gap thickness e , therefore the crystal radius r c = r ae ?

• What is the shape of the meniscus? This shape is related to the stability of the process.

In order to understand the process which leads to a crystal with a constant radius under normal gravity, analytical and numerical studies of axisymmetric meniscus shapes must be made and the dependence of the meniscus shape on the pressure difference must be established, starting from the Young -Laplace equation of a capillary surface (8.11) written in agreement with the above confi guration [Duffar 2000] : Here, the external pressure on the melt p v = p cold and the internal pressure applied on the liquid, p O is defi ned as:

pp g H b O hot l m lv =+ + ρ γ 2 ,
where p hot and p cold are the vapour pressure at the hot and cold sides of the sample and b is the radius of curvature at the apex of the liquid. Thus the Young -Laplace equation can be written as follows: (8.105) where Δ p = p coldp hot represents the pressure difference between the cold and hot sides of the sample and the term 2/ b is due to the curvature at the top which depends on the wetting angle θ and on the crucible radius r a [Duffar 1997] . Under microgravity this can be written as follows:

d d d d d d d d lm 2 2 2 32 2 12 1 1 1 z r z r r z r z r gH z + ( ) ⎡ ⎣ ⎢ ⎤ ⎦ ⎥ + ⋅ + ( ) ⎡ ⎣ ⎢ ⎤ ⎦ ⎥ = - ( ) ρ -- + Δp b γ lv 2 ,
1 br =- cos . θ a
What is specifi c for dewetted Bridgman is that the contribution due to the curvature 2/ b at the top of the free liquid must be considered in Equation (8.105) . It is important to emphasize that for crucibles with a reasonable practical radius (larger than the melt capillary constant), the curvature of the upper free liquid surface is very small in normal gravity conditions, and hence it can be neglected. This is not true in microgravity conditions, which is why these cases are treated separately in what follows.

From the physical point of view, the dewetting phenomenon is governed by the Young -Laplace equation through the Bond ( Bo ), and Laplace ( La ) dimensionless numbers. Thus, using the dimensionless numbers (8.15) obtained by using the ampoule radius r a as length scale, Equation (8.110) becomes [Epure 2010] :

d d d d d d d d 2 2 2 32 2 12 1 1 1 ɶ ɶ ɶ ɶ ɶ ɶ ɶ ɶ ɶ z r z r r z r z r + ( ) ⎡ ⎣ ⎢ ⎤ ⎦ ⎥ + ⋅ + ( ) ⎡ ⎣ ⎢ ⎤ ⎦ ⎥ = B Bo H z La ɶ ɶ m - ( ) -- [ ] 2 cos , θ (8.106) 
where

H ˜ m = H m / r a , Bo g r =⋅ ργ la l v
. 2 , and La = Δ p • r a / γ lv .

Zero Gravity

In zero gravity conditions, the dimensionless Young -Laplace equation becomes:

d d d d d d d d 2 2 2 32 2 12 1 1 1 ɶ ɶ ɶ ɶ ɶ ɶ ɶ ɶ ɶ z r z r r z r z r + ( ) ⎡ ⎣ ⎢ ⎤ ⎦ ⎥ + ⋅ + ( ) ⎡ ⎣ ⎢ ⎤ ⎦ ⎥ =--- [ ] La 2 cos , θ (8.107) 
for which the following wetting boundary condition must be satisfi ed:

d d ɶ ɶ z r 1 22 ( ) =-( ) ∈ ( ) tan , , θθ ππ π (8.108)
and the choice of axis gives z ˜ (1) = 0. Equation (8.107) can be written as

ɶ ɶ ɶ ɶ ɶ ɶ ɶ ɶ ɶ r z r z r z r z r L ⋅+ ⋅ + ( ) ⎡ ⎣ ⎢ ⎤ ⎦ ⎥ + ( ) ⎡ ⎣ ⎢ ⎤ ⎦ ⎥ =- d d d d d d d d 2 2 2 2 32 1 1 a ar + ( )⋅ 2 cosθ ɶ which is equivalent to d d d d d d ɶ ɶ ɶ ɶ ɶ ɶ ɶ r r z r z r La r ⋅ + ( ) ⎛ ⎝ ⎜ ⎜ ⎜ ⎞ ⎠ ⎟ ⎟ ⎟ =- + ( )⋅ 1 2 2 cos . θ
Integrating, we obtain the analytical expression for the derivative of the function z ˜ ( r ˜ ):

d d ɶ ɶ ɶ ɶɶ ɶɶ ɶ z r r rr L a c rr r L ac ( ) = -⋅ -⋅ ( ) + --⋅ -⋅ ( ) + 22 1 22 2 2 2 cos cos θ θ 1 1 2 ( ) . (8.109)
The constant c 1 is determined from the boundary condition

(d z ˜ /d r ˜ ) (1) = tan( θ -π /2). It follows that d d ɶ ɶ ɶ ɶɶ ɶɶ ɶ z r r r r La La rr r L a ( ) = -⋅ -⋅ ( ) + ( ) --⋅ -⋅ ( 22 22 2 22 2 cos cos θ θ ) ) + ( ) ( ) La 2 2 . (8.110)
Further, the analytical expression of the meniscus can be obtained by integration. The integral can be expressed using elementary functions only in some particular cases.

Case I : L a = 0, g = 0

Integrating Equation (8.110) gives:

ɶ ɶɶ zr r c ( ) =⋅ - + 1 1 22 2 cos cos . θ θ (8.111)
Using the boundary condition z ˜ (1) = 0, the analytical expression of the meniscus surface in zero gravity when La = 0 is obtained:

ɶ ɶɶ zr r ( ) =⋅ - - ( ) 1 1 22 cos cos sin , θ θθ (8.112)
where r ˜ ∈ [0, 1]. Dewetting occurs when the growth angle α is achieved at least at one point on the meniscus surface, i.e. when the equation:

ɶ ɶ φα r ( ) = ( ) - π 2 (8.113)
has at least one solution in the range (0, 1); where ɶ φ is the angle between the plane z ˜ = 0 and the tangent plane to the meniscus. For this angle the equality tan ɶ ɶ ɶ φ = dd zr holds, and hence information concerning attainment of the growth angle is given by the equation: 

(d z ˜ /d r ˜ ) (1) = tan ( θ -π /2) which is equivalent to ɶ φ α 12 ( ) = ( ) - π , the growth angle ( π /2) -α can be achieved if ɶ ɶ φ r ( ) decreases from θ -( π /2) to ( π /2) -α . This means that ( π /2) -α < θ -( π /2
) and hence α + θ > π . In the opposite case, when α + θ < π , the growth angle cannot be achieved because of the monotonicity of ɶ ɶ φ r ( ). Assuming that the growth angle can be achieved, i.e. α + θ > π , Equations (8.113) and (8.114) give:

sin cos π 21 ( ) - ( ) =-- ( )⋅ αθ ɶ e
where e˜ represents the nondimensional gap thickness and r ˜ c = 1 -e˜ the nondimensional crystal radius. The following nondimensional gap thickness formula [Duffar 1997] results:

ɶ e = + cos cos cos θα θ (8.116)
valid under zero gravity conditions, La = 0, and α + θ > π .

We now have a remarkable new result concerning the meniscus shape. Because tan ɶ ɶ ɶ φ = dd zr and dd ɶ ɶ φ r > 0, the second derivative is:

d d d d d d d d d d 2 22 1 ɶ ɶɶ ɶ ɶɶ ɶ ɶ ɶ ɶ z rr z rr r = ( ) = ( ) =⋅ tan cos . φ φ φ
This equation proves that d 2 z ˜ /d r ˜ 2 > 0, and hence under zero gravity and La = 0, the meniscus is globally convex for any r ˜ ∈ [0, 1].

Case II : L a ≠ 0, g = 0

To obtain the meniscus equation, Equation (8.110) should be integrated, but if La ≠ 0 this integral can not be expressed using elementary functions. In order to obtain information about the meniscus shape, attainment of the growth angle, and gap thickness, a qualitative study is necessary.

Introducing tan ɶ ɶ ɶ φ = dd zr in Equation (8.110) gives:

sin cos , ɶ ɶɶ ɶ φθ =-( )⋅-⋅+ ⋅ r La r La r 22 1 (8.117)
which is equivalent to

ɶ ɶɶ ɶ φθ =-( )⋅-⋅+ ⋅ ( ) arcsin cos , r La r La r 22 1 (8.118)
for any r ˜ ∈ [0, 1]. In a similar way to previous calculations, the sign of the derivative dd ɶ ɶ φ r will give information about the shape of the meniscus, and about the condition that must be imposed on the sum of the wetting and growth angles to ensure that attainment of the growth angle is feasible. Deriving the relation (8.118) gives:

d d ɶ ɶ ɶɶ ɶ ɶ φ θθ r r La r La r La r =--( )⋅-⋅+ ⋅ ( ) ⎡ ⎣ ⎢ ⎤ ⎦ ⎥ ⋅- - ( ) 11 22 1 2 2 cos cos 2 2 2 2 1 - ⎡ ⎣ ⎢ ⎤ ⎦ ⎥ ⋅ La rɶ . (8.119)
The sign of this derivative depends on the sign of the expression depending on r ˜ and La :

ErL a La r La ɶɶ ,c o s . ( ) =- - ( ) - θ 22 2 (8.120)
The following three cases should be considered:

• I f La ∈ ( -∞ ; 0], then E ( r ˜ , La ) > 0 and hence dd ɶ ɶ φ r > 0. Moreover, d d d d 2 22 1 0 ɶ ɶ ɶ ɶ ɶ z rr =⋅ > cos
, φ φ i.e. the meniscus is globally convex, and the growth angle can be achieved only if α + θ > π .

• I f La ∈ (0; -2cos θ ), then the meniscus changes its curvature (concave to convex) at the point ɶ rL a L a

I =-⋅ - ( ) 2 cosθ , i.e. E ( r ˜ 1 , La ) = 0, which is equivalent to d d d d II ɶ ɶ ɶ ɶ ɶ ɶ φ r r z r r ( ) = ( ) = 2 2 0,
and the growth angle can be achieved either once or twice, depending on its value. • I f La ∈ [ -2cos θ ; + ∞ ), then E ( r ˜ , La ) < 0 and hence dd ɶ ɶ φ r < 0. In this case the meniscus is globally concave, i.e. d 2 z ˜ /d r ˜ 2 < 0, and the growth angle can be achieved only if α + θ < π .

The above ranges for the pressure difference give information about the meniscus shape and the corresponding cases α + θ < π or α + θ > π , in which the growth angle can be achieved or, in other words, when dewetting is feasible.

Assuming that La , θ , and α are chosen such that the growth angle can be achieved, the growth angle condition (8.113) is satisfi ed somewhere along the meniscus. From (8.117) : from which the following gap thickness formulas available in zero gravity [Duffar 1997 The gap formula (8.122) is valid when the growth angle is reached on the convex part of the meniscus, and formula (8.123) is valid when attainment of the growth angle takes place on the concave part of the meniscus. More precisely, the numerical results obtained by solving the problem (8.90) -(8.91) by the Runge -Kutta method for InSb crystals grown in zero gravity by the dewetted Bridgman technique (the parameters for InSb are those presented in [Balint 2008, Braescu 2008 -2] ), confi rm the results obtained from the qualitative study:

sin cos , π 2 1 2 1 2 1 1 - ( ) =-( )⋅-( ) -⋅ -
• I f La ∈ ( -∞ ; 0], then the meniscus is globally convex and the growth angle can be achieved once. When the growth angle is reached the gap thickness is given by e˜ 1 , as in (8.122) . The numerical results reveal this behaviour for La = -0.655 ∈ ( -∞ ; 0] and θ + α = 160 ° + 25 ° > π , as can be seen in Figure 8.19 . The fi gure shows that the meniscus is globally convex and that the growth angle is achieved. The computed gap thickness e˜ = 1r ˜ c1 = 1 -0.97915 = 0.02085 is equal to the value given by formula (8.122) , i.e. e˜ 1 = 0.02085. • I f La ∈ (0; -2cos θ ), then the meniscus is concave -convex (i.e it has a point of infl exion). If the growth angle is attained on the concave part the gap thickness is given by e˜ 2 in (8.123) ; if on the convex part, the gap thickness is given by e˜ 1 in (8. 

Normal Gravity

Under normal gravity conditions, for a crucible radius larger than the capillary constant of the material, the curvature of the upper free liquid surface can be neglected (it is very small), and hence the Young -Laplace equation (8.105) becomes: Using the technique presented in section 8.1 , the nonlinear equation (8.124) is transformed into the following nonlinear system of two differential equations: (8.126) for which the boundary condition (8.125) becomes [Balint 2008, Braescu 2008 -2] : 

d d d d d d m 2 2 2 32 1 1 1 ɶ ɶ ɶ ɶ ɶ ɶɶ ɶ ɶ z r Bo H z La z rr z r =⋅ - ( ) - [ ] ⋅+ ( ) ⎡ ⎣ ⎢ ⎤ ⎦ ⎥ -+ ( ) ) ⎡ ⎣ ⎢ ⎤ ⎦ ⎥ ⋅ 2 d d ɶ ɶ z r , ( 8 
d d d dc o s tan m ɶ ɶ ɶ ɶ ɶ ɶ ɶ ɶ ɶ ɶ z r r Bo H z La r = =⋅ - ( ) - [ ] ⋅-⋅ ⎧ ⎨ ⎪ ⎪ ⎩ ⎪ tanφ φ φ φ 11 ⎪ ⎪
ɶ ɶ z 10 1 22 ( ) = ( ) =- ∈ ( )
˜ = z ˜ ( r ˜ ), ɶɶ ɶ φ φ = ( ) r .
Because of the high nonlinearity of the problem, an analytical formula for the meniscus cannot be obtained, hence analytical and numerical studies of meniscus shapes are necessary. With this aim, the dependence of meniscus shape on the pressure difference will be established, and inequalities of the pressure intervals which assure the feasibility of dewetting will be determined.

Because of the different behaviours of the meniscus shape in the cases α + θ < π , and α + θ > π , as already shown in zero gravity, qualitative studies will be performed on each case separately. Recent experimental developments [Sylla 2008 -1] , confi rmed by thermodynamic analysis [Sylla 2008 -2] , show that contamination of the system during the growth process may greatly increase the wetting angle, leading to an unexpected inequality between the wetting angle θ and growth angle α , i.e. α + θ > π .

Case I : α + θ < π

In order to make a qualitative study of the meniscus shape (convex, concave -convex, convex -concave, concave) as a function of the Laplace number, the function z ˜ = z ˜ ( r ˜ ) is approximated by a Taylor polynomial of third degree Tr z ɶ ɶ 3 ( ) in the neighbourhood of r ˜ = 1. To establish the inequalities of the pressure intervals (i.e. La numbers) which assure the feasibility of dewetting, the information obtained from Taylor approximation (approximate meniscus) will be combined with properties deduced from the problem (8.126) -(8.127) which describes the shape of the real meniscus. Thus, approximating the function z ˜ = z ˜ ( r ˜ ) by a Taylor polynomial of third degree Tr z ɶ ɶ 3 ( ) in the neighbourhood of r ˜ = 1, accurate qualitative results are obtained only in a suffi ciently small neighbourhood of r a . The third -order Taylor polynomial Tr z ɶ ɶ 3 ( ) which approximates the meniscus surface z ˜ = z ˜ ( r ˜ ) is given by:

Tr z r z r z r z ɶ ɶ ɶ ɶ ɶ ɶ ɶ ɶ 3 23 11 1 2 1 1 6 1 ( ) = ′( )⋅-( ) + ′′( ) ⋅-( ) + ′′′( ) ⋅-( ) (8.128)
where z ˜ ′ (1), z ˜ ″ (1), z ˜ ′ ′ ′ (1) represent the fi rst -, second -and third -order derivatives of the function z ˜ = z ˜ ( r ˜ ) at r ˜ = 1, and are obtained from the system (8.126) and boundary conditions (8.127) as follows [Braescu 2008 -2] : 

ɶ ɶ ′( ) == - zA z 1 1 cos sin θ θ , ( 8 
ɶ ɶɶ ɶ ′′′( ) =⋅ -⋅+ =- ⋅ + ⋅ zA L a B L a C La zz z - ⋅ -⋅ + ⎡ ⎣ ⎢ ⋅ - ⋅⋅ ⋅ Bo Bo H ɶ m s sin . 2 θ -⋅ ⎤ ⎦ ⎥ Bo H ɶ m (8.131)
The concavity or convexity of the meniscus z ˜ = z ˜ ( r ˜ ) in a suffi ciently small neighbourhood of 1 is given by the sign of the second derivative of the approximated meniscus ɶ ɶɶ ɶ zr Tr Tz ( ) = ( ) The sets of La values that defi ne convex, concave -convex, convex -concave and concave shapes of the approximated menisci are determined by the following inequalities: Dewetting occurs if the growth angle α is achieved at some point in the interval (0, 1), which is given by the solution of the equation: The inequality (8.134) states that the gas pressure difference should be larger than the hydrostatic pressure plus a term which depends on the capillary parameters.

• i f E z ɶ 2 0 > and E z ɶ 4 0 < (or E z ɶ 2 0 > and E z ɶ 4 1 > ), then the approximated meniscus is convex; • i f E z ɶ 2 0 > and 0 1 4 << E z ɶ , then the approximated meniscus is concave -convex; • i f E z ɶ 2 0 < and 0 1 4 << E z ɶ , then the approximated meniscus is convex -concave; • i f E z ɶ 2 0 < and E z ɶ 4 0 < (or E z ɶ 2 0 < and E z ɶ
For certain values of La , the growth angle can be achieved twice for a convex -concave approximated meniscus (Equation (8.133) has two solutions), and once for a concave approximated meniscus (Equation ( 8.133) has one solution). These values of La are given by the following statements (for details see [Braescu 2008 -2] ):

• Statement 1: The set of La values for which the growth angle α can be achieved once on the approximated meniscus is defi ned by the inequality:

FA E E A zz z z z ɶɶ ɶ ɶ ɶ 11 3 2 1 1 2 0 =-( ) ⋅⋅-+- ⎡ ⎣ ⎢ ⎤ ⎦ ⎥ < cos sin cos sin . α α α α (8.135)
• Statement 2: The set of La values for which the growth angle α can be achieved twice in the interval (0, 1) on the approximated meniscus is defi ned by the following inequalities: Inequalities (i) and (ii) defi ne the interval La I for which dewetted Bridgman growth is feasible with a convex -concave (S -shaped) meniscus. Moreover they show that the value La (concave) for which the meniscus is concave can be deduced from the pressure difference values La (convex -concave) for which the meniscus is S -shaped.

FE E A zz z z ɶɶ ɶ ɶ 22 
The range La I can be refi ned by using the approximation ɶ ɶ φ T r ( ) of the function ɶ ɶ φ r ( ), and the condition for attainment of the growth angle on the approximate meniscus z ˜ T ( r ˜ ).

• Statement 4: A refi ned range La approx of the interval La I , for which dewetted Bridgman with convex -concave meniscus is feasible and the growth angle is achieved, is determined by the following inequalities:

(i) Bo H La Bo H h ⋅+ <<⋅ - ( ) - ɶɶ ɶ mm cos cos θ α , (ii) FL a A E E A zz z z z ɶɶ ɶ ɶ ɶ 11 3 2 1 1 2 ( ) =-( ) ⋅⋅-+- ⎡ ⎣ ⎢ ⎤ ⎦ ⎥ < cos sin cos sin α α α α 0 0 , (iii) Bo H h rL a La ⋅-( ) -( ) > ɶɶ ɶ m cosα 1 ,
where r ˜ 1 ( La ) represents the real root of the equation

1 2 0 321 ⋅-+- = EEA zzz ɶɶɶ cos sin α α
and is in (0, 1) [Braescu 2008 -2] . Inequalities (i) are related to the shape of the meniscus: concave at 1 and convex later.

The inequality (ii) FL a z ɶ 1 0 ( ) < indicates that the growth angle α is achieved once on the approximated meniscus. Inequality (iii) shows that in r ˜ 1 ( La ) the approximated meniscus is convex. In the following, numerical results are obtained by solving the problem (8.126) -(8.127) for InSb crystals grown in normal gravity by the dewetted Bridgman process [Balint 2008, Braescu 2008 -2] .

Inequalities (i) -(ii), from Statement 4 give the La range [51.353; 52.617]. Through inequality (iii) this is refi ned to La approx = [51.353; 52.589] which represents the range of the Laplace number for which dewetted Bridgman growth with a convex -concave meniscus is possible and where the growth angle is achieved. Numerically integrating the system (8.126) -(8.127) for different values of the La from the refi ned range La approx , gives La real = [51.726; 52.458] which represents the real range of the pressure difference that gives a convex -concave real meniscus where the growth angle is attained twice (Figure 8.24 ). If La real ≥ 52.46 then the real meniscus is concave and the growth angle is achieved only once, as can be seen in Figure 8. 25 . Figures 8.24 and 8.25 show that the approximated meniscus given by the third -degree Taylor polynomial Tr z ɶ ɶ 3 ( ) is accurate only in the neighbourhood of 1. However, experi- mental values of the gap thickness are always much smaller than 1 mm (see Chapter 6 ). The points marked on the fi gures represent the points at which the growth angle is achieved. 

Case II : α + θ > π

During the growth process of classical semiconductors grown in uncoated ampoules (i.e. α + θ < π ), contamination of the system may greatly increase the wetting angle, leading to an unexpected sum of the wetting angle θ and growth angle α , i.e. α + θ > π . For this reason, the dependence of the meniscus shape on the pressure difference is studied, in order to get conditions that allow dewetting for classical semiconductors grown in uncoated crucibles with contamination (or in coated crucibles). To study the meniscus shape qualitatively as a function of the Laplace number, only the properties obtained from the problem (8.126) -(8.127) are used. In the case α + θ > π , the meniscus height increases if La increases, hence the Taylor polynomial approximations cannot be used because they are valid only in a small neighbourhood of 1 (this is the opposite behaviour to the previous case α + θ < π , where increasing La leads to a decrease of the meniscus).

Thus, considering the inequality α + θ > π and boundary condition for ɶ ɶ φ r ( ), 

( ) = ( ) ⋅ ( ) cos φ φ d 2 z ˜ /d r ˜ 2 >
0 in the neighbourhood of 1, which means that the growth angle can be achieved if the meniscus is convex in the neighbourhood of 1.

Then, for a pressure difference which satisfi es the inequality (8.141) the meniscus is convex in the neighbourhood of 1 (this includes globally convex or concave -convex menisci), and the growth angle can be achieved.

Numerical results obtained by solving the problem (8.126) -(8.127) for InSb crystals grown on the ground by the dewetted Bridgman process for high apparent wetting angle (i.e. the contamination case θ + α = 160 ° + 25 ° > π ) prove that if the pressure difference satisfi es the inequality (8.141) , i.e. La < 49.794, then the meniscus is globally convex (Figure 8.26 ) or concave -convex (see Figure 8.27 ; it is diffi cult to see this shape on the fi gure, but it can be seen in the numerical results) and the growth angle is achieved once.

Further, there are cases in which the meniscus is concave at 1 and the growth angle can be achieved. There are two possible situations: (i) convex -concave meniscus, and (ii) globally concave meniscus.

For the convex -concave meniscus there is a point of infl exion r ˜ I , i. In conclusion, for a convex -concave meniscus, the growth angle can be achieved (the crystal can be obtained) if inequalities (8.143) and (8.145) are satisfi ed. In practice, it is not certain whether the growth angle is always attained; this depends on the material and process parameters. For the globally concave meniscus dd ɶ ɶ φ r < 0, and hence the function ɶ ɶ φ r ( ) decreases on the interval (0; 1); because ( π /2)α < θ -( π /2) the growth angle cannot be achieved on the globally concave meniscus. Numerical results show that for La = 51.504 > Bo • H ˜ m = 50.733 Pa the meniscus is globally concave and the growth angle is not achieved (Figure 8.29 ). The above analytical and numerical studies of meniscus shapes were performed in order to derive the conditions which allow dewetting and lead to a crystal with a constant radius under normal gravity. The results are useful for in situ control of the process and show the importance of a careful calculation of the meniscus shapes for the optimization of stable dewetted Bridgman growth.

Conclusions

In this chapter, mathematical and numerical analyses of the BVP for the Young -Laplace equation have been presented as an essential part of capillarity problems and processes. First, a mathematical formulation of the capillary problem and the BVP for the Young -Laplace equation in the three -dimenional and axisymmetric cases was presented.

After that, the problems were formulated for the Cz, EFG and dewetted Bridgman growth techniques. For the confi gurations and specifi c boundary conditions considered, analytical solutions of the meniscus were found in some special cases. Due to the high nonlinearity of these problems in general cases, the solutions were approached qualitatively and proved by numerical computations using the Runge -Kutta method. From these analytical and numerical studies, information useful for practical crystal growers was reported: meniscus shapes for different growth conditions, the range of some parameters for which the growth angle is achieved (i.e. a crystal is obtained), the dependencies between the meniscus height and the crystal thickness. A relevant computer program (in Mathcad) is presented in the Appendix .

Because of the nonlinearity of the Young -Laplace equation, no simple solution of the problem exists in most cases. It is always necessary to perform a qualitative analysis, which is problem dependent. After that a numerical solution can be sought. However, as shown for the Cz technique, there are confi gurations for which no exact solution is available. ) which represents the weighted average of slopes:

• k 1 is the slope at the beginning of the interval;

• k 2 is the slope at the midpoint of the interval, using the slope k 1 for determining the value of y at the point x i -1 + ( h /2) by Euler ' s method (fi rst -order Runge -Kutta method);

• k 3 is the slope at the midpoint of the interval, but now using the slope k 2 for determining the value of y at the point x i -1 + ( h /2) by Euler ' s method; • k 4 is the slope at the end of the interval with its y -value predicted by k 3 .

In summary, each value of k i gives an estimate of the size of the y -jump made by the actual solution across the whole width of the interval. The fi rst one uses Euler ' s method, the next two use estimates of the solution slope at the midpoint, and the last one uses an estimate of the slope at the endpoint. Each k i uses the earlier k i as a basis for its prediction of the y -jump. The local truncation error for RK4 is of the order O ( h 5 ). This method is relatively easy to implement and gives good accuracy, but as it is a constant step size method, the calculation time may become very long, especially if a very small step size is needed. Thus, in order to reduce computation time, an adaptive step size version of the Runge -Kutta method can be used. The general formula for the adaptive step size Runge -Kutta method is given by: 

A.1.1 RK 4 Procedure

A.2.2 Conclusion

Comparing the solution obtained by rkfi xed (i.e. RK4), Rkadapt and the analytical solution, it is easy to see that Rkadapt gives better results. In seeking the computed value of the function at the endpoint b of the interval, it can be observed that the difference between the exact solution and the approximate solutions are in the fourth digit for rkfi xed , and the sixth digit for Rkadapt . Note that the error can be decreased by increasing N . 

S_fi xed = S_adapt = 0 1 0 1 •• • • •• • • • • •• • • • • •• • • • • •• •• • •

Figure 8

 8 Figure 8.1 (a) Sessile or pendant drop: + positive sign in Young-Laplace equation. (b) External meniscus:negative sign in Young-Laplace equation.

  r ): d r /d s = cos φ , d z /d s = ± sin φ (the positive or negative signs depend on the axis frame convention in the same way as in Equation (8.1) ). Taking into account that d r /d s = cos φ , d z /d s = sin φ imply the curvatures 1/ R 1 = d φ /d s and 1/ R 2 = (sin φ )/ r (e.g. confi guration Figure 8.1 a), and d r /d s = cos φ , d z /d s = sin φ imply 1/ R 1 =d φ /d s , 1/ R 2 = -(sin φ )/ r (e.g. confi guration Figure 8.1 b)), Equation (8.11) is transformed into a system of three parametric differential equations:

  Weber number and Bo em = ( B 2 ( r ) • L )/( μ • γ lv ) is the electromagnetic Bond number. Because after the dimensionless analysis φ depends on the nondimensional parameter r ˜ , in the following ɶ φ is used instead of φ ( r ˜ ). Taking into account that: form of the Young -Laplace equation is obtained:

Figure 8 . 2

 82 Figure 8.2 Numerical meniscus shape and attainment of the growth angle for InSb ( Bo = 3.84, α = 25 ° ): (a) La = 0.105: the growth angle cannot be achieved; (b) La = 0.262: the growth angle is achieved once; (c) La = 0.393: the growth angle is achieved twice.

  20) can be used to give z = z ( r ) at constant φ , or z = z ( φ ) at constant r .

Figure 8 . 4

 84 Figure 8.4 Axisymmetric model for a cylindrical crystal grown by the Cz method.

Figure 8 . 5

 85 Figure 8.5 Meniscus height profi le h T as a function of the cylindrical silicon crystal radius r c .

Figure 8 . 6

 86 Figure 8.6 Meniscus profi le r T ( z ) vs z .

  A and h by (8.35) and (8.33) respectively, the meniscus profi le for a cylindrical silicon crystal of radius r c = 0.136 m is shown in Figure8.6 .

Figure 8 . 7 Figure 8 . 8

 8788 Figure 8.7 Meniscus heights h T (8.33) and h B (8.37) as function of the crystal radius r c .

Figure 8

 8 Figure 8.9 (a) Meniscus given by the asymptotic analytical solution on the interval [0.19; 0.25]. (b) Computed meniscus obtained by numerical solution of the initial value problem on the interval [0; 0.19]. (c) The analytical -numerical meniscus for a cylindrical silicon crystal grown in a crucible of radius 0.25 m.

Figure 8 .Figure 8 .

 88 Figure 8.10 Two -dimensional model for a sheet grown by the EFG method.

  for the Cauchy problem (8.61) -(8.62) , all the conditions of the Cauchy -Lipschitz theorem concerning the existence and uniqueness of the solution of the problem (8.61) -(8.62) are satisfi ed. It follows that the problem (8.61) -(8.62) has a unique saturated solution defi ned on an interval ( a; b ). The solution of (8.61) -(8.62) will be denoted by: x and on the parameters w, φ c , γ lv , ρ l ; a and b also depend on w , φ c , γ lv , ρ l and satisfy a < w < b.

  there exists ε ′ > 0 such that for any x ∈ ( wε ′ ; w ] we have d z /d x < 0 . It follows that the function z = z ( x ; w , φ c , γ lv , ρ l ) is strictly decreasing on the interval ( wε ′ ; w ] and is strictly positive on ( wε ′ ; w ): , in the neighbourhood of w , the meniscus is convex at any point, which is obvious from the Young -Laplace equation:

  to see that Equation (8.77) can have only one solution on (0; w ] if the following inequalities hold:

Figure 8 .Figure 8 .

 88 Figure 8.12 Numerical representation of the functions z = z ( x ; w, φ c , γ lv , ρ l ) and φ = φ ( x ; w, φ c , γ lv , ρ l ) for silicon sheets grown using a die with half -thickness w = 0.002 m, and φ c = 1.04 or 1.11 radians.

Figure 8 .

 8 Figure 8.14 Axisymmetric model of a cylindrical crystal grown by the EFG method.

  height h and the crystal radius r c are unknown. For fi nding h and r c for a given inner die radius r 0i , an intermediate parameter α d will be used (see Figure8

  a constant. From this an analytical expression for the derivative of the function z ( r ) is obtained: (8.84) gives the value of the constant c 1 = r 0 i • sin φ c and the function z ( r ) becomes: analytical expression of the meniscus as function of the parameters is:

  z ( r c ) = h , the analytical formula of the meniscus height as a function of the crystal radius is obtained:

Figure 8 . 15

 815 Figure 8.15 Meniscus height h as function of the crystal radius r c in zero gravity.

  of r 0i , it results that the function z ( r ; r 0i , φ c , γ lv , ρ l ) is convex in the neighbourhood of r 0i .

  which is achieved at the point r min > r 0i : . the polynomial function of second degree φ ( r ; r 0i , φ c , γ lv , ρ l ) decreases until r min and increases after that.The position of r min shows that the function φ ( r ; r 0i , φ c , γ lv , ρ l ) decreases and is convex on (0; r 0i ]. This implies convexity of the meniscus, too. Indeed, because φ ( r ; r 0i , φ c , γ lv , ρ l ) decreases, d φ /d r < 0convexity of the function z ( r ; r 0i , φ c , γ lv , ρ l ).

Figure 8 .

 8 Figure 8.16 Numerical representation of the functions z = z ( r ; r oi , φ c , γ lv , ρ l ) and φ = φ ( r ; r oi , φ c , γ lv , ρ l ) for cylindrical silicon rods grown using a die radius r 0i = 0.002 m, and φ c = 1; 0.1 radians.

Figure 8 . 17

 817 Figure 8.17 The dependencies h ( r c ) (a) and r c ( h ) (b).

  Figure 8.18 Schematic dewetted Bridgman crystal growth system.

  r ˜ ∈ [0, 1]. What is remarkable is that Equation (8.115) gives a condition for dewetting that depends on the growth angle α and contact angle θ . From the positivity of the function ɶ ɶ φ r ( ) is strictly increasing for r ˜ ∈ [0, 1]. Considering this monotonicity and the boundary condition

Figure 8 .

 8 Figure 8.19 Meniscus shape z ˜ ( r ˜ ) and meniscus angle ɶ ɶ φ r ( ) corresponding to La = -0.655 and θ + α = 160 ° + 25 ° for InSb, g = 0. The place where the growth angle (( π /2 ) -α = 1.13446 radians) is reached is shown by the black dot.

  122) . The numerical results confi rm this behaviour. The menisci are concave -convex and the growth angle can be achieved either once or twice: (a) for θ + α = 112 ° + 25 ° < π and La = 0.105 ∈ (0; -2cos θ ) = (0; 0.749) the growth angle is not achieved (see Figure 8.20 ), but for La = 0.262 ∈ (0; 0.749) the growth angle is achieved once, as can be seen in Figure 8.21 ; (b) for θ + α = 160 ° + 25 ° > π and La = 0.393 ∈ (0; -2cos θ ) = (0; 1.879) the growth angle is achieved twice (Figure 8.22 ). If the growth angle is achieved on the concave part of the meniscus, then the computed gap thickness in Figure 8.21 e˜ = 1r ˜ c1 = 1 -0.1505 = 0.8494 is equal to e˜ 2 = 0.8494 given by (8.123) and in Figure 8.22 , e˜ = 1r ˜ c1 = 1 -0.2819 = 0.7181 is equal to e˜ 2 . If the growth angle is reached on the convex part of the meniscus, then the computed gap thickness e˜ = 1r ˜ c2 = 1 -0.9374 = 0.0626 is equal to e˜ 1 = 0.0626 given by (8.122) , as can be seen in Figure 8.21 . • I f La ∈ [ -2cos θ ; + ∞ ), then the meniscus is concave and the growth angle can be achieved once. When the growth angle is attained the gap thickness is given by e˜ 2 in (8.123) . The numerical results show that the meniscus is concave, and that the growth angle is achieved for θ + α = 112 ° + 25 ° < π , La = 0.85 ∈ [ -2cos θ ; + ∞ ) = [0.749; + ∞ ) (Figure 8.23 ). The computed gap thickness e˜ = 1r ˜ c2 = 1 -0.4573 = 0.5427 is equal to e˜ 2 as given by (8.123) .

Figure 8 .

 8 Figure 8.20 Meniscus shape z ˜ ( r ˜ ) and meniscus angle ɶ ɶ φ r ( ) corresponding to La = 0.105 and θ + α = 112 ° + 25 ° for InSb, g = 0. The growth angle cannot be achieved.

Figure 8 .

 8 Figure 8.21 Meniscus shape z ˜ ( r ˜ ) and meniscus angle ɶ ɶ φ r ( ) corresponding to La = 0.262 and θ + α = 112 ° + 25 ° for InSb, g = 0. The place where the growth angle (( π /2 ) -α = 1.13446 radians) is achieved is shown by the black dot.

  .124) where the axisymmetric solution z ˜ = z ˜ ( r ˜ ) has to satisfy the following boundary conditionthe choice of origin, z ˜ (1) = 0.

Figure 8 .

 8 Figure 8.22 Meniscus shape z ˜ ( r ˜ ) and meniscus angle ɶ ɶ φ r ( ) corresponding to La = 0.393 and θ + α = 160 ° + 25 ° for InSb, g = 0. The places where the growth angle (( π /2 ) -α = 1.13446 radians) is achieved are shown by the black dots.

Figure 8 .

 8 Figure 8.23 Meniscus z ˜ ( r ˜ ) and meniscus angle ɶ ɶ φ r ( ) corresponding to La = 0.85 and θ + α = 112 ° + 25 ° for InSb, g = 0. The place where the growth angle (( π /2 ) -α = 1.13446 radians) is achieved is shown by the black dot.

  α + θ < π , the boundary condition for ɶ ɶ φ r ( ) shows that the growth angle ( π /2) -α can be achieved only if ɶ ɶ φ r ( ) decreases, i.e. dd ɶ ɶ φ r < 0. On the other hand, and the real meniscus should be concave in the neighbourhood of 1. For this reason, in what follows special attention is paid to the convex -concave (S -shaped), and concave meniscus shapes. Moreover, the inequality E z ɶ 2 0 > , which appears in both cases, gives the values of La resulting in a concave meniscus at 1:

•

  Statement 3: For α + θ < π : (i) If the real meniscus is concave at 1, then La > Bo • H ˜ m + cos θ ; (ii) If the real meniscus is convex at the triple point r c in which the growth angle is achieved , then La < Bo • ( H ˜ mh ˜ )cos α .

Figure 8 .

 8 Figure 8.24 Approximated menisci Tr z ɶ ɶ 3 ( ) (dotted line) and real (numerical) convexconcave menisci z ˜ ( r ˜ ) corresponding to La = 51.726 (a) and La = 52.446 (b) for InSb, H ˜ m = 10.9. The places where the growth angle (( π /2 ) -α = 1.13446 radians) is achieved are shown by the black dots.

Figure 8 .

 8 Figure 8.25 Approximated menisci Tr z ɶ ɶ 3 ( ) (dotted line) and real (numerical) concave menisci z ˜ ( r ˜ ) corresponding to La = 52.46 (a) and La = 64.167 (b) for InSb, H ˜ m = 10.9. The places where the growth angle (( π /2 ) -α = 1.13446 radians) is achieved are shown by the black dots.

Figure 8 . 26

 826 Figure 8.26 Meniscus shape z ˜ ( r ˜ ) and meniscus angle ɶ ɶ φ() r corresponding to La = -13.095 and θ + α = 160 ° + 25 ° > π for InSb, H ˜ m = 10.9. The place where the growth angle (( π /2 ) -α = 1.13446 radians) is reached is shown by the black dot.

Figure 8 .

 8 Figure 8.27 Meniscus z ˜ ( r ˜ ) and meniscus angle ɶ ɶ φ() r corresponding to La = 49.788 and θ + α = 160 ° + 25 ° > π for InSb, H ˜ m = 10.9. The place where the growth angle (( π /2 )α = 1.13446 radians) is achieved is shown by the black dot.

Figure 8 .

 8 Figure 8.28 Convex -concave meniscus shape z ˜ ( r ˜ ) and meniscus angle ɶ ɶ φ() r corresponding to La = 50.679 and θ + α = 160 ° + 25 ° > π for InSb, H ˜ m = 10.9. The place where the growth angle (( π /2 ) -α = 1.13446 radians) is reached is shown by the black dot.

  Numerical results obtained by solving the problem (8.126) -(8.127) for InSb crystals grown under normal gravity by the dewetted Bridgman process for the case θ + α = 160 ° + 25 ° > π , show that if La = 50.679 < Bo • H ˜ m = 50.meniscus is convex -concave and the growth angle is achieved on the convex part of the meniscus (Figure 8.28 ).

Figure 8 .

 8 Figure 8.29 Globally concave meniscus shape z ˜ ( r ˜ ) and meniscus angle ɶ ɶ φ() r corresponding to La = 51.504 and θ + α = 160 ° + 25 ° > π for InSb, H ˜ m = 10.9. The growth angle (( π /2 ) -α = 1.13446 radians) cannot be achieved.

  Input a, b, c, N, f // a, b, c are the problem -dependent values of x 0 , x N and y 0 //.

•

  D is a derivative vector function of the form D ( x, y ) specifying the right -hand side of the system.

  

  can be written as follows:

	axy ,, z x bxy ( )⋅ ∂ ∂ +⋅( 2 2 2	)⋅	z xy ∂ ∂∂ 22 cxy y , + ( )⋅ ∂ ∂	z 2	dxy z exy , , + ( )⋅= ( (	),	(8.4)
	where						
			z				
	axy ,, y				
		z	z				
		x	y				

  in this computation the previously used approximation: If r = r * = r c in (8.47) , and using the approximation (8.48) , then the formula of the meniscus height given by (8.37) is obtained. Nowadays, it is not necessary to use approximation (8.48) because modern computers can compute modifi ed Bessel functions; this makes it possible to compute the initial conditions:

	was considered. zr ( ) = *	h	*,	z r d d	rr ** ( ) =-( ) tan φ	,	(8.49)
	necessary for solving numerically the nonlinear system of differential equations corre-
	sponding to Equation (8.21) :						
	d	z			
	d	r			
	d							l	gz
	d	r				lv	r
	Kr Kr 0 1 ( ) ( )	≈	r + ( ) 1 11	,	(8.48)

  which depends on r ˜ and on the parameters θ , La, Bo, H ˜ m . In what follows, this solution is denoted by z

	,; φθ ππ π , . θ	(8.127)
	The functions on the right -hand side of Equations (8.126) are real analytic, i.e. they can
	be expanded in Taylor series, and the conditions of existence and uniqueness of a solution
	are satisfi ed for the problem (8.126) -(8.127) . The meniscus shape is described by the
	solution	
	ɶɶ ɶ z z rL a B o H ɶ = ( ;, , , θφ φ θ ɶɶ ɶ rL a B o H ɶ ) = ( , ;, , ,	)

mm

  Here z ˜ ( r ˜ I ) is unknown but z ˜ ( r ˜ I ) < 0, and hence if

	which must be negative. As ɶ ɶ φ r I ( ) ∈-( ) ( ) θ ( ππ 22 ; that ɶ rB o I > ( )⋅ 1 sinθ , which gives the following limit for the ampoule radius: ) and r ˜ I < 1, from (8.142) we have
	11 > (	)⋅ Bo sin . θ	(8.143)
	Moreover, since dd ɶ ɶɶ I φ rr ( ) ( ) = 0 the following inequality for the pressure difference is
	obtained:		
	La Bo H <⋅ ɶ mI . Bo z r -⋅ ( )	(8.144)
	La Bo H <⋅ ɶ m	(8.145)
	then inequality (8.144) is always satisfi ed.		

Appendix: Runge -Kutta Methods

The Runge -Kutta methods are single -step methods which approximate solutions of fi rstorder differential equations (or systems) with given initial conditions. They are based on the Taylor series method in which derivatives are approximated by the forward difference and at the same time, keep the desirable property of higher -order local truncation error [Braescu 2008 -1] . These facts imply a better convergence to the solution.

In practice, there are some particular forms of the Runge -Kutta method: the secondorder method RK2, the third -order method RK3, the fourth -order (standard) method RK4 and the fi fth -order Runge -Kutta -Fehlberg method RKF5. The RK4 method is discussed in more details in the next section, as it is the most commonly used.

A.1 Fourth -Order Runge -Kutta Method ( RK 4)

Considering the initial value problem:

where f :( a; b ) × ( c; d ) → R is an indefi nite derivable function and x 0 ∈ ( a; b ), y 0 ∈ ( c; d ). The solution y ( x ) of IVP can be computed numerically using RK4 method along the interval [ x 0 ;

x N ] which is divided in N equidistant subintervals. The RK4 method for this problem is summarized by the following equation with differences:

with local truncation error of order O ( h 6 ).

Several sets of a n , b nm and c n coeffi cients and computer algorithms for implementation of this method were reported, e.g. those suggested by Cash and Karp [Cash 1990] .

Thus, in the adaptive Runge -Kutta method, the step size is controlled so that the results are within the desired accuracy. This is why the numerical computations in Chapter 8 are performed using the adaptive RK4 method .

Runge -Kutta methods are available in all standard computer mathematical toolboxes such as Matlab, Mathcad, Mathematica, Maple etc. The use of a Runge -Kutta fourthorder method with fi xed integration step (a routine called rkfi xed ), and with step -size adaptation ( Rkadapt ) is shown here for Mathcad.

A.2 Rkfi xed and Rkadapt Routines for Solving IVP

The case of cylindrical rods grown in zero gravity using the EFG technique (the confi guration presented in Figure 8.14 ) is considered as an example. Equation (8.86) with the initial condition (8.81) is solved numerically and the solutions obtained using the routines rkfi xed and Rkadapt are compared with the analytical solution (8.87) .

Thus, the following IVP is solved numerically: 

The exact solution represents the analytical expression of the meniscus as function of the parameter φ c :

The obtained solution of rkfi xed and Rkadapt routines is a matrix with two columns (independent variable values, and the corresponding solution function values). The arguments list of these procedures is as follows:

where:

• init is either a vector of n real initial values, where n is the number of unknowns, or a single scalar initial value, for a single ordinary differential equation (ODE); • x 1 and x 2 are real, scalar initial and end points of the interval over which the solution to the ODE(s) will be evaluated; • N is the integer number of points beyond the initial point at which the solution is to be approximated; The exact solution is given by Equation (A8.3) . At the end point of the interval the exact solution is: