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     One major problem confronting crystal growth researchers has been the development of 

techniques capable of monitoring and controlling the external shape of melt - grown crys-

tals, and simultaneously improving the crystal structures. In the EFG, Cz, dewetted 

Bridgman and FZ processes, the shape and the dimensions of the crystal are determined 

by the liquid meniscus and by the heat transfer at the melt – crystal interface. In addition, 

the meniscus is also of great practical use for techniques of diameter control: in the weigh-

ing method ([ Bardsley 1974, Bardsley 1977, Dijk 1974, Johansen 1992 , Chapter  3 ]) the 

weight of the melt enclosed by the meniscus appears as an essential parameter; when 

using video observation ( [Gartner 1972, Gartner 1973, O ’ Kane 1972, Sachs 1980] ), the 

crystal diameter and the interface height have to be measured exactly. 

 Historically, the physical origin and the shape of a liquid meniscus were among the 

fi rst phenomena to be studied in capillarity  [Hauksbee 1709] . The fi rst formal analytical 

expression was given by Laplace  [Laplace 1806] , after introduction of the  mean curvature 

 κ   defi ned as the average (arithmetic mean) of the principal curvatures   κ = +( )1
2 1 21 1R R
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     Figure 8.1     (a) Sessile or pendant drop:   +   positive sign in Young-Laplace equation. 
(b) External meniscus:    −    negative sign in Young-Laplace equation.

 [Young 1805] . Laplace showed that the  mean curvature  of the free surface is proportional 

to the pressure change across the surface. The proportionality coeffi cient is the surface 

tension   γ    lv . The pressure change across the surface contains  p  v  the pressure of the external 

gas on the melt;  p  O , the internal pressure applied on the liquid, which can generally be 

defi ned at the origin;   ρ   l  gz , the hydrostatic pressure;   1
2

2 2 2ρl lΩ x y+( ), the pressure deter-

mined by the centrifugal force due to a possible liquid rotation   1
2

2 2 2ρl lΩ x y+( ) where  Ω  1  

is the angular velocity of the liquid (around the  Oz  axis in crystal growth techniques), 

and, when magnetic fi elds are used, the Maxwell pressure which is proportional to the 

square of the magnetic induction  B  2 ( x ,  y ) / 2  μ   (  μ   - magnetic permeability). The following 

equality known as the Young – Laplace equation must hold:

1 1

1

2
2

1 2

2 2 2

R R

p p gz x y B x y

+ = ±
− − + +( ) − ( )[ ]O v l l l

2

lv

ρ ρ μ

γ

Ω ,
.     (8.1)   

 As quoted in  [Landau 1971] , the choice of the positive sign is a convention which gener-

ally follows the physical meaning. However, from the mathematical point of view, the 

positive or negative signs depend on the axis frame convention. Generally, the curvature 

is taken to be positive if the curve turns in the same direction as the surface ’ s chosen 

normal, and negative otherwise. 

 The result can be summarized as follows: the positive sign corresponds to the cases 

where the liquid has the shape of a sessile or pendant drop (Figure  8.1 a), e.g. fl oating 

zone (FZ), dewetting or Verneuil confi gurations, and the negative sign corresponds to the 

cases where the liquid has the shape of an external meniscus (Figure  8.1 b), e.g. EFG or 

Cz confi gurations  [Hartland 1976] .   

 Denoting the meniscus surface by  A :  z ( x, y ), it is known from differential geometry, 

that the mean curvature is expressed as  [Finn 1986] :

2



   κ =
− +

−( )
E G F F G E

E G F

I II I II I II

I I I
2

2

2
,     (8.2)  

where  E  I ,  F  I ,  G  I  represent the coeffi cients of the fi rst fundamental form of the surface  A  

and  E  II ,  F  II ,  G  II  represent the coeffi cients of the second fundamental form. According to 

Finn, for a surface given in explicit form  z    =    z ( x, y ), these coeffi cients are given by:

   E
z

x
F

z

x

z

y
G

z

y
I I I= +

∂
∂( ) =

∂
∂

⋅
∂
∂

= +
∂
∂

⎛
⎝⎜

⎞
⎠⎟

1 1

2 2

, , ,

   E
z x

z x z y
II =

∂ ∂

+ ∂ ∂( ) + ∂ ∂( )

2 2

2 2
1

,

   F
z x y

z x z y
II =

∂ ∂ ∂( )
+ ∂ ∂( ) + ∂ ∂( )

2

2 2
1

,

   G
z y

z x z y
II =

∂ ∂

+ ∂ ∂( ) + ∂ ∂( )

2 2

2 2
1

,

and hence the Young – Laplace equation  (8.1)  becomes:
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 This equation is a nonlinear partial differential equation (PDE) of second order, and the 

unknown function  z ( x, y ) represents the meniscus surface. Because of the nonlinearity of 

this equation, it is necessary to do qualitative analysis and to develop specifi c numerical 

tools for fi nding the meniscus surface, which, furthermore, should satisfy the boundary 

conditions depending on the chosen confi guration. 

 Section  8.1  below contains a mathematical formulation of the capillary problem. The 

boundary value problem for the Young – Laplace equation in the three - dimensional and 

axisymmetric cases is presented, and the initial and boundary condition of the axisym-

metric meniscus problem are given. The growth angle criterion and some approximated 

solutions of the axisymmetric meniscus problem are also included. 

 In sections  8.2  –  8.4  some analytical and numerical solutions for the meniscus equation 

in the Cz, EFG and dewetted Bridgman growth techniques are presented. The case of the 

FZ process is extensively described in Chapter  4  and is not treated here.  
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  8.1   Mathematical Formulation of the Capillary Problem 

  8.1.1   Boundary Value Problems for the Young – Laplace Equation 

  8.1.1.1   Three - Dimensional Case 

 In order to fi nd physically sound solutions of the Young – Laplace equation, it is generally 

necessary to formulate the model as a  ‘ well posed ’  PDE problem. A PDE problem is said 

to be well posed if: (i) a solution to the problem exists; (ii) the solution is unique; and 

(iii) the solution depends continuously on the problem data. In practice, the question of

whether a PDE problem is well posed can be diffi cult to settle.

 The Young – Laplace equation  (8.3)  can be written as follows:
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looks like an elliptic type of any solution  z ( x , y )  [Finn 1986] . Unfortunately Equation  (8.4)  

cannot be included in the general theory of the elliptic PDE from variational calculus 

because the functions  a ,  b ,  c ,  d ,  e:   Ω     ⊂      R 2     →      R are unknown and strongly nonlinear. 

Moreover, a well - posed elliptic PDE problem usually takes the form of a boundary value 

problem (BVP) with the solution required to satisfy a single boundary condition (Dirichlet, 

Neumann or Robin boundary condition) at each point on the boundary  ∂  Ω  of the region. 

 These circumstances have important consequences for the behaviour of the solutions, 

reasons for which each problem containing the Young – Laplace equation should be treated 

separately. The peculiarities of each problem will lead to a corresponding mathematical 

context capable of providing conditions that ensure the existence and uniqueness of the 

solution. 

 Because of the complexity of the BVP associated to the Young – Laplace equation, there 

is no general analytical solution and the problem must be addressed numerically  [Clanet 

2002] . In some particular domains  Ω , e.g. those obtained from crystal growth confi gura-

tions (Cz, EFG, dewetted Bridgman, FZ), certain approximations can be made in order 

to simplify the problem and hence the equation can be integrated. In the following, the 

approximations most commonly used in the literature are presented, i.e. the domain  Ω  is 

two - dimensional or axisymmetric. These two - dimensional models will then be developed 

for EFG, Cz and dewetted Bridgman growth techniques. In some particular conditions, 

analytical solutions will be given.  

  8.1.1.2   Axisymmetric Case 

 In the axisymmetric case, the Young – Laplace equation  (8.3)  can be written using cylindri-

cal polar coordinates  x    =    r     ·    cos  θ , y    =    r     ·    sin  θ , z    =    z  (the meniscus is axisymmetric). 

Expressing  r  and  θ  as functions of  x  and  y , i.e.   r x y= +2 2 ,   θ     =   arctan( y / x ), the partial 

derivatives of the function  z ( x,y ) are:
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 Replacing these derivatives in Equation  (8.3) , the Young – Laplace equation written in 

cylindrical coordinates is:
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for which the solution  z    =    z ( r ) is sought depending on the radial coordinate   r x y= +2 2 . An 

equivalent formulation of Equation  (8.10)  is given in terms of the principal curvatures:
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 This is a nonlinear second - order differential equation and to obtain its solution  z    =    z ( r ) 

two conditions are needed, which, in association with Equation  (8.12) , give the BVP or 

initial value problem (IVP). In general, because of its nonlinearity, the problem does not 

have a solution expressed in an analytical form. 

 To solve the BVP (or IVP) it is necessary do a qualitative analysis and to develop 

specifi c numerical tools. To this end, Equation  (8.12)  is transformed into a nonlinear 

fi rst - order system of differential equations. In the literature, two equivalent systems are 

known: one having three differential equations, and another having two differential equa-

tions. In both formulations, the angle   φ   between the tangent to the meniscus (at an arbi-

trary point) and the horizontal axis, called meridian angle  [Boucher 1980] , is involved. 

 First, Princen and Mason  [Princen 1965]  introduced the arc length  s  along the curve 

which generates the surface of revolution  z ( r ): d r /d s    =   cos  φ  , d z /d s    =    ± sin  φ   (the positive 

or negative signs depend on the axis frame convention in the same way as in Equation 

 (8.1) ). Taking into account that d r /d s    =   cos  φ  , d z /d s    =   sin  φ   imply the curvatures 1/ R  1    =   

d  φ  /d s  and 1/ R  2    =   (sin  φ  )/ r  (e.g. confi guration Figure  8.1 a), and d r /d s    =   cos  φ  , d z /d s    =   

 − sin  φ   imply 1/ R  1    =    − d  φ  /d s , 1/ R  2    =    − (sin  φ  )/ r  (e.g. confi guration Figure  8.1 b)), Equation 

 (8.11)  is transformed into a system of three parametric differential equations:

    

d

d

d

d

d

d

O v l l l
2

r

s

z

s

s r

p p gz r B r

=

= ±

= − ±
− − + ⋅ − ( )

cos

sin

sin

φ

φ

φ φ ρ ρ
1

2

2 2Ω 22μ

γ

[ ]

⎧

⎨

⎪
⎪
⎪
⎪

⎩

⎪
⎪
⎪
⎪

lv

    (8.13)   

 Later, Huh and Scriven  [Huh 1969]  eliminated the parameter  s  using the notation 

d z /d r    =    ± tan  φ   (with the sign convention mentioned above). Thus, Equation  (8.11)  was 

transformed into a system of two differential equations:
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 In order to make the analytical and numerical analysis easier, a dimensionless form of 

the Young – Laplace equation is also used, by introducing the following dimensionless 

parameters with  L  a characteristic dimension of the problem or the capillary constant of 

the material (see Chapter  2 ):

    ɶ ɶ ɶr
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 Using the above dimensionless parameters, Equation  (8.12)  can be written as:
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where  Bo    =     ρ   l     ·     g     ·     L  2 /  γ    lv  denotes the Bond number,  La    =   ( p  o     −     p  v )    ·     L /  γ    lv  the Laplace 

number,  We    =     ρ   l  Ω  1  L  3 /  γ    lv  the Weber number and  Bo  em    =   ( B  2 ( r )    ·     L )/(  μ      ·      γ    lv ) is the electro-

magnetic Bond number. Because after the dimensionless analysis   φ   depends on the non-

dimensional parameter     r̃    , in the following   ɶφ  is used instead of   φ  (    r̃    ). 

 Taking into account that:

    

d

d

d

d

d

d

d

d

d

d

d

d

z

r

z

r

z

r r

z

r r

= ± ⇒ = ±

= ⎛
⎝

⎞
⎠ = ±

→

tan tan

t

φ φ
φ φɶ ɶ

ɶ

ɶ

ɶ

ɶ ɶ

ɶ

ɶ ɶ

2

2
aan

cos
tan ,ɶ

ɶ

ɶ

ɶ

ɶ
ɶ

ɶ
φ

φ
φ

φ
φ( ) = ± = ± +( )1

1
2

2d

d

d

dr r

    (8.17)  

the following dimensionless form of the Young – Laplace equation is obtained:
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 Therefore, Equation  (8.16)  is transformed into the system:
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 The mathematical models given by the systems  (8.13) ,  (8.14)  or  (8.19)  are very useful 

for obtaining information concerning the meniscus behaviour (shape, monotony, 

attainment of the growth angle, etc.). They were successfully applied only after the 

development of computers powerful enough to permit the computation of menisci.   
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  8.1.2   Initial and Boundary Conditions of the Meniscus Problem 

 The initial and/or boundary conditions required for solving the axisymmetric Young –

 Laplace equation are determined by the structural features of each specifi c confi guration 

and will be analysed in the following sections for EFG, Cz, and dewetted Bridgman 

crystal growth techniques. In this section, common features corresponding to typical 

boundary conditions of the capillary problem are discussed: the  catching  and  wetting 

boundary conditions . 

 The  catching boundary condition  is specifi c for materials that are wetted by the melt. 

It is used when one meniscus end is partially fi xed, e.g. for the EFG technique the counter 

line of the meniscus surface is fi xed by the internal or external edge counter (see Chapter 

 2 , Figure  2.4 b, d, j, k or Figure  2.4 e, f). This condition can be expressed as:

   z r r= =
0

const.,  

where  r  0  represents the radial coordinate of the point situated at the meniscus end, and 

the value of the constant depends on the position of the horizontal axis of the ( rOz ) frame, 

i.e. this constant is set to zero if the meniscus end is on the  Or  axis, or is equal to the

distance between the horizontal axis  Or  and its parallel which passes through the meniscus

end (see Chapter  2 , section  2.6.1.1 ).

 The  wetting boundary condition  is also known as the  angle of fi xation boundary condi-

tion  because it expresses the angle made between the tangent to the meniscus at its endpoint 

situated at the base, and the tangent to the shaper or crucible wall (see also Chapter  2 , 

section  2.6.1.2 ). For the axisymmetric Young – Laplace equation written for the confi gura-

tions presented in Figure  2.4 a, c, g, h, i (see Chapter  2 ) or Figure  8.18  (see dewetted 

Bridgman technique), the wetting boundary condition can be expressed as follows:

d

d

z

r r r=
= −( )

0 2
tan θ

π

where   θ   represents the wetting angle (see Chapter  1 , and Figures  8.4  and  8.18 ).   

 From the physical point of view, the catching and wetting conditions cannot be applied 

simultaneously at the same point  r    =    r  0 . However, for certain confi gurations, it is useful 

from the mathematical point of view to perform calculations with a given angle applied 

at the catching condition point. Then the angle is varied in order to fi nd a physically 

acceptable solution to the problem. In such cases, the systems  (8.13) ,  (8.14)  or  (8.19)  

have two initial conditions. Thus, an initial value problem is obtained and its unique 

solution represents the meniscus surface  z    =    z ( r ). The existence and uniqueness of the 

meniscus is assured on the basis of the Cauchy theorem, because functions from the 

right - hand terms of the system  (8.13) ,  (8.14)  or  (8.19)  are real analytically. The meniscus 

can be computed numerically using Runge – Kutta method (see Appendix   to this chapter 

in which the procedure for the fourth – order Runge – Kutta method is presented). 

 After the meniscus shape is obtained, the  growth angle criterion  should be imposed. 

It asserts that the crystal is obtained when the  growth angle    α   is attained at the place 

where the meniscus contacts the crystal (see Chapter  1 , section  1.3 ). This condition is 

expressed as
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    φ α
r r= = −

c

π
2

,  

where  r  c  represents the crystal radius. 

 Even if the IVP of the Young – Laplace equation has a unique solution, it is nevertheless 

possible that this solution does not satisfy the condition for attainment of the growth angle. 

If this condition is satisfi ed then a crystal having a radius  r  c  can be obtained (Figure  8.2 ); 

otherwise, a crystal cannot be obtained.   

 The attainment of the growth angle is exemplifi ed in Figure  8.2 . More precisely, in the 

confi guration shown in Figure  8.2 a, there is no place along the meniscus where the angle 

is equal to   α  , so it is impossible to grow a crystal under conditions giving this meniscus. 

In Figure  8.2 b, it is possible to grow a crystal from this meniscus. In Figure  8.2 c, the 

growth angle can be achieved twice on the meniscus. This means that, under the same 

capillary conditions, it is possible to grow crystals with two different diameters. The 

choice is realized by heating or cooling the system in order to fi x the height of the solid –

 liquid interface. 

 As already explained in Chapter  2 , in some confi gurations, the wetting boundary condi-

tion does not exist (or it does so at infi nity and hence cannot be used in numerical solu-

tions; see section  8.2 ). In these cases, to solve the Young – Laplace equation, the growth 

angle should represent one boundary condition, and the second condition should be 

expressed using the meniscus height, which is unknown. These kinds of problems are 

very diffi cult from a mathematical and numerical point of view, so they should be treated 

separately, e.g. see section  8.2 .  

  8.1.3   Approximate Solutions of the Axisymmetric Meniscus Problem 

 Some authors have proposed  simple approximations  of the axisymmetric Young – Laplace 

equation used especially for unbounded extent (i.e.  Ω  is an unbounded axisymmetric 

domain), when numerical solution of the BVP is very diffi cult  [Huh 1969] . For example, 

in 1960 Nutt neglected the second curvature:

     Figure 8.2     Numerical meniscus shape and attainment of the growth angle for InSb 
( Bo    =   3.84,   α     =   25    ° ): (a)  La    =   0.105: the growth angle cannot be achieved; (b)  La    =   0.262: 
the growth angle is achieved once; (c)  La    =   0.393: the growth angle is achieved twice.  
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1
1

1
2

2 1 2
R

r

z

r

z

r

=
⋅

+ ( )⎡

⎣⎢
⎤

⎦⎥

d

d

d

d
 

from Equation  (8.11)   [Nutt 1960] , leading an analytical expression for the meniscus. More 

precisely, for the confi guration presented in Figure  8.3 , the Equation  (8.11)  is reduced to

    

d

d

d

d

B A

lv

2

2

2 3 2

1

z

r

z

r

gz

+ ( )⎡

⎣⎢
⎤

⎦⎥

=
−( )ρ ρ
γ

 

which is equivalent to:

    
d

d

B A

lv

φ ρ ρ
γ φr

gz
=

−( )
⋅

1

cos
 

where d z /d r    =   +tan  φ   (the positive sign is due to the confi guration). This equation can be 

integrated between  r  0  and  r  (here  r >  r  0 , see Figure  8.3 ), and the meniscus  z  can be 

expressed as a function of   φ  :

    z
g

φ
γ

ρ ρ
φ( ) = −

−( )
⋅ ( )2

2

lv

B A

sin .     

 Another approximation was reported by Tsivinski  [Tsivinski 1962] . He considered both 

curvatures but expanded the curvature 1/ R  2  in a Taylor series, considering only the fi rst 

two terms from the Taylor series:

    
1 1 1

2 2 2R R
h z h

z R z h

= ( ) + −( ) ⋅ ⎛
⎝

⎞
⎠

=

d

d
,  

z

r

z0

r0

0

Aρ

Bρf

f

     Figure 8.3     The meniscus for a vertical circular cylinder positioned in a fl uid  (Reprinted 
with permission from  [Huh 1969] , copyright (1969) Elsevier Ltd) .    
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where  h  represents the meniscus height. Using this approximation, Tsivinski obtained an 

analytical formula for the meniscus height as function of the crystal radius  r  c  and the 

growth angle   α   (for more details, see section  8.2 ):

    h r
r g r g g

T c

c

lv

l c l

( ) = −⎛
⎝

⎞
⎠ ⋅ + ⎛

⎝
⎞
⎠ ⋅ − ⋅

cos cos
sin

α γ
ρ

α γ
ρ

γ
ρ

α
2 2

2
2 2

1
2 2

−−( )1 .   

 This formula has been intensively cited and used for fi nding the analytical formulas of 

the meniscus. For example, Hurle obtained:

    r z r
A

h
A

z
A

z

h

A h

A z
( ) = + − − − − ⋅ ⋅

+ − ⋅
+ − ⋅

c

2 2 1

2

2 2

2 2

2 2
2

2
ln ,  

where

    A
r h

g
=

−( )
⋅

+

⎛

⎝

⎜
⎜
⎜

⎞

⎠

⎟
⎟
⎟

1

2

2
sin

.

π
α ρ

γc

l

lv

  

 (see details in section  8.1 )  [Hurle 1983]   . 

 Other approximations of the axisymmetric Young – Laplace equation are based on 

Bessel functions  [Boucher 1980, Ferguson 1912] . Boucher obtained a most useful math-

ematical approximation involving zero -  and fi rst - order modifi ed Bessel functions:

    z
K r

K r
= + ⋅

( )
( )

1
2

2

0

1

cos ,φ     (8.20)  

where

    
K r

K r r

0

1

2

2

1

1 1 2

( )
( )

≈
+ ( )

  

 Equation  (8.20)  can be used to give  z    =    z ( r ) at constant  φ , or  z    =    z ( φ ) at constant  r . 

 Comparisons between these analytical formulas  [Hurle 1983]    and the computed menisci 

reported by Huh and Scriven  [Huh 1969]  showed that the explicit approximations of the 

meniscus are adequate for the range of values of crystal radius and contact angle encoun-

tered in crystal growth. 

 The most recent approximation was given by Hernandez - Baltazar  [Hernandez - Baltazar 

2005]  who solved the Young – Laplace equation with an elliptic representation, i.e. the 

principal curvatures

    
1

1

1
1

1
1

2

2

2 3 2
2 2

1

2
R

z

r

z

r

R

r

z

r

z

r

=

+ ( )⎡

⎣⎢
⎤

⎦⎥

=
⋅

+ ( )⎡

⎣⎢
⎤

⎦⎥

d

d

d

d

d

d

d

d

,  
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     Figure 8.4     Axisymmetric model for a cylindrical crystal grown by the Cz method.  

were approximated by

1 1

1

4 4

4 2 4 2 3 2
2

2

4 2 4 2 3 2
R

a b

a z b r R

b

a z b r
=

+[ ]
=

+[ ]
and ,

assuming that the meniscus profi le is very close to an elliptic profi le with  a, b  representing 

the length of the semimajor (one half of the longest axis of the ellipse) and semiminor 

(one half of the shortest axis) axes of the ellipse centred at the origin. The elliptical ana-

lytical solution proposed by these authors is dependent on the parameter  a  in square form 

and its predictive capacity depends on a cubic expression. The parameters  a  and  b  are 

obtained from solving the Young – Laplace equation with the elliptical equation:

a

b

a

b
a

g
+ = + ⋅ =

−( ) ⋅3

3

22 β β
ρ ρ

γ
* where

B A

lv

, * .

 When the results of the analytical solution and the literature data for different profi les are 

compared, a correlation with acceptable error in the fi fth digit is obtained. This means 

that that the error in the parameter   β  *  , after applying the differential expression, would 

be less than 0.1%.   

  8.2   Analytical and Numerical Solutions for the Meniscus Equation 

in the  C  z  Method 

 For the Cz growth method (see Figure  8.4 ), the axisymmetric meniscus is given by the 

Young – Laplace equation  (8.12) . In the Cz process, the meniscus height  h  is controlled 

by heat transfer and the problem is to fi nd the relation between the crystal radius and the 

meniscus height.   
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 The pressure due to rotation in Cz is only a few pascals and is commonly neglected. 

If the growth process takes place without a magnetic fi eld, Equation  (8.12)  becomes:

    
d

d

d

d

d

d

d

d

O v l

lv

2

2

2 3 2

1
1

1
z

r

p p gz z

r r

z

r

z

r
= −

−( ) −
⋅ + ( )⎡

⎣
⎢

⎤

⎦
⎥ − ⋅ ⋅ + ( )ρ

γ

22⎡

⎣
⎢

⎤

⎦
⎥ .     (8.21)   

 The solution  z    =    z ( r ) of Equation  (8.21)  has to satisfy the following boundary 

conditions:

    z r h
z

r
r tgc c

d

d
( ) = ( ) = − ∈( ), ; , ,α α0 0 0 2π     (8.22)  

where  r  c     >    0 is the crystal radius,   α   0    =    π /2    −      α   where   α   is the growth angle,  h  is the meniscus 

height (an unknown in the problem if a crystal with given  r  c  is to be pulled). Moreover, 

if the meniscus extends untouched far enough outwards its equilibrium shape becomes 

effectively fl at at some distance from the crystal. The meniscus may then, for all intents 

and purposes, be regarded as unbounded, i.e. as extending to infi nity  [Huh 1969] :

    z r→∞ = 0.     (8.23)   

 From this peculiarity (no curvature of the meniscus at  r     →     ∞ ) it follows that the pressure 

in the melt at  z    =   0 is equal to the vapour pressure  p  O    =    p  v . 

 Because of  (8.23) , it is very diffi cult to fi nd a numerical method for solving the menis-

cus surface equation,  (8.21) . To avoid this inconvenience, many authors have tried to fi nd 

suffi ciently accurate analytical approximations to the real meniscus profi le. The most 

often cited results are those reported by Tsivinski  [Tsivinski 1962]  which derived an 

analytical expression for the meniscus height (i.e. the unknown  h  from the boundary 

condition  (8.22) ), in a Czochralski confi guration using a particular form of the meniscus 

equation  (8.11) :

    −

+ ( )⎡

⎣⎢
⎤

⎦⎥

−
⋅

+ ( )⎡

⎣⎢
⎤

⎦⎥

=

d

d

d

d

d

d

d

d

l

lv

2

2

2 3 2 2 1 2

1

1

1

z

r

z

r

r

z

r

z

r

gzρ
γ

,     (8.24)  

where

    

d

d

d

d

and

d

d

d

d

2

2

2 3 2
1

2 1 2
2

1

1
1

1

1
z

r

z

r

R

r

z

r

z

r

R
+ ( )⎡

⎣⎢
⎤

⎦⎥

=
⋅

+ ( )⎡

⎣⎢
⎤

⎦⎥

=  

represent principal curvatures. Tsivinski considered both curvatures but he expanded the 

curvature 1/ R  2  in a Taylor series at the point  h , as follows:

    
1 1 1

2 2 2R R
h z h

z R z h

= ( ) + −( ) ⋅ ⎛
⎝

⎞
⎠

=

d

d
.     (8.25)   
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 Using 1/ R  2    =   (sin  φ  )/ r , where   φ   is the angle between the tangent to the meniscus (at an 

arbitrary point) and the horizontal axis, the terms (1/ R  2 ) ( h ) and (d/d z ) (1/ R  2 )| z   =   h  from 

the above representation are obtained as function of the growth angle   α   and the crystal 

radius  r  c :

1

1

2

2

0

R
h

h

r r r
( ) =

( )
=

−( )
=

sin
sin

sin
,

φ α α
c c c

π

d

d

c

z R

R h R

h

h r

hz h

1 1 1 0 0

1

2

2

2 2⎛
⎝

⎞
⎠ ≅

( )( ) − ( )( )
=

( )( ) −
=

−( )
=

sin
sinφ απ

rr hc ⋅
.   

 After computations, the following formula for the curvature 1/ R  2  is obtained:

1

1

2

2R r

z

h
=

−( )
⋅

sin π α

c

.     (8.26)   

 Thus, the meniscus equation  (8.24)  becomes

   −
′′

+ ′[ ]
−

−( )
⋅ =

z

z r

z

h

gz

1

1

2
2 3 2

sin

,

π α ρ
γc

l

lv

 (8.27)  

where  z  ′    =   d z /d r  and  z  ″    =   d 2  z /d r  2 . Multiplying this equation by  z  ′ , and integrating between 

0 and  z  gives:

   −
+ ′

−
−( )

⋅
⋅ − ⋅ +

+ ′( ) =
=

1

1

1

2

2 2

1

1
0

2

2 2

2
0z r h

z g z

z z

sin

.

π α ρ
γc

l

lv

    (8.28)   

 Because   1 1 2+ ′ = ( )z rcosφ , it follows that:

− ( ) −
−( )

⋅
⋅ − ⋅ + =cos

sin

.φ
α ρ

γ
r

r h

z g z

1

2

2 2
1 0

2 2π

c

l

lv

    (8.29)   

 For  z    =    h ,   φ α αh( ) = − =1
2 0π , and hence Equation  (8.29)  will represent an equation of

the second degree for the meniscus height  h :

ρ
γ

α
αl

lv c

g h

r
h⋅ + ⋅ − −( ) =

2
0

0
2 2

1 0
sin

cos .     (8.30)   

 Solving this equation, the following analytical approximations on the meniscus height 

 [Tsivinski 1962]  is obtained:
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11 0−( )cos .α     (8.31)   

 It is easy to see that  h  1,2  can be positive or negative, but for physical reasons only the 

positive meniscus will be considered:

    h
r g r g g
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sin sin
c

α γ
ρ

α γ
ρ

γ
ρ

0 0
2 2

1
2 22 2

2
1

c

lv

l c

lv lv
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oos .α0( )     (8.32)  

where   α   is the growth angle. This is equivalent to:

    h r
r g r g g
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cos cosα γ
ρ

α γ
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γ
ρ2 2

2
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1
2 2

11−( )sinα     (8.33)  

which is used to estimate the meniscus height in diameter control techniques ( [Bardsley 

1974 – 2, Bardsley 1977, Dijk 1974, Johansen 1992] ) (Figure  8.5 ), or for comparison with 

other analytic approximations  [Bardsley 1974 – 1, Hurle 1981, Hurle 1983, Johansen 1987, 

Johansen 1992, Mika 1975, Tatartchenko 1993]       .   

 An analytical approximation of the meniscus profi le can be obtained only for some 

particular cases. For example, Hurle considered a reduced form of Equation  (8.28) :
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    (8.34)   

 Writing the equation in the form:
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     Figure 8.5     Meniscus height profi le  h  T  as a function of the cylindrical silicon crystal 
radius  r  c .  
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     Figure 8.6     Meniscus profi le  r  T ( z ) vs  z .  
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    (8.35)  

the following ordinary differential equation is obtained:

    
1

1 1

2

2 2

− ⋅

− − ⋅( )
=

A z

A z
z rd d .   

 After integrating between  h  and  z , using  r ( h )   =    r  c , the following explicit analytical formula 

 r  T ( z ) for the meniscus is obtained:

    r z r
A

h
A

z
A

z

h

A h

A z
T c( ) = + − − − − ⋅ ⋅

+ − ⋅
+ − ⋅

2 2 1

2

2 2

2 2

2 2
2

2
ln .     (8.36)   

 Replacing  A  and  h  by  (8.35)  and  (8.33)  respectively, the meniscus profi le for a cylindrical 

silicon crystal of radius  r  c    =   0.136   m is shown in Figure  8.6 .   

 The second analytical expression for the meniscus height reported in the literature is 

based on Bessel functions (see section  8.1.3 )    [Hurle 1983, Johansen 1992, Johansen 

1994]     :

    h r
g r g
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l c lv l

⋅( ) = ⋅
− −( )

+ ( ) ⋅ ( )
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1 1
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    (8.37)  

equivalent to

    h r
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l c lv l

( ) = ⋅
−
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1 1

γ
ρ

α
γ ρ

sin
.     (8.37′)   

 Details of Bessel functions and how they are used to obtain Equation  (8.34)  will be given 

later, when a new analytical - numerical solution for computing the meniscus surface will 

be proposed. 
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 A comparison between Equations  (8.33)  and  (8.37)  can be seen in Figure  8.7 . The 

fi gure shows accurate analytical approximations of the meniscus height as a function of 

the crystal radius. For small crystal radius the error is of the order 10  − 4 , but for large 

crystal radius, as in Cz crystal growth, the approximation is very good, which is why both 

formulas have been used by crystal growers. Moreover, for the second of the meniscus 

height formula  h  B ( r  c ) a similar analytical formula for the meniscus  r  B ( z ) can be found 

 [Hurle 1983] :

    r z
g

P z P z

g z

r g
B

lv

l

l lv

c l lv

( ) = ⋅ ( ) + ( ) +
( ) ⋅ −

+ ( ) ⋅( )
1

2

3

4
2

1 1

2

2 2

γ
ρ

ρ γ

ρ γ

⎛⎛

⎝

⎜
⎜
⎜

⎞

⎠

⎟
⎟
⎟

    (8.38)  

where  P ( z ) is given by
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 The comparison between Equations  (8.36)  and  (8.38)  can be seen in Figure  8.8 .   
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     Figure 8.7     Meniscus heights  h  T   (8.33)  and  h  B   (8.37)  as function of the crystal radius  r  c .  
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     Figure 8.8     Meniscus profi les  r  T   (8.36)  and  r  B   (8.38)  vs  z.   
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 Computations show that for the considered cylindrical silicon crystal of radius 

 r  c    =   0.136   m, the errors between these two analytical formulas are of the order 10  − 5 . 

 The reason why researchers used the above approximations is that it is diffi cult to obtain 

a numerical solution because of the condition  (8.23) . In order to avoid this diffi culty, 

Mika and Uelhoff  [Mika 1975]    proposed an analytical - numerical solution. More pre-

cisely, part of the solution for  r     →     ∞  (called asymptotic part of the solution) can be 

derived analytically, i.e. for  r     ∈    [ r  * ;  ∞ ), and the remaining part can be solved numerically 

using Runge – Kutta method on the fi nite range  r     ∈    ( 0 ;  r  * ]. The problem is to fi nd the 

accurate range on which this analytical solution is available, and after that to fi nd initial 

conditions for computing the numerical solution. 

 In the following, the asymptotic part of the solution,  r     ∈    [ r  * ;  ∞ ), obtained using 

modifi ed Bessel functions  [Mika 1975]  is presented. For the second part of the solution, 

 r     ∈    (0;  r  * ], mathematical tools for fi nding initial conditions in order to solve the IVP 

numerically are used. 

 The asymptotic solution can be obtained starting from Equation  (8.21) , in which 

(d z /d r ) 2  is neglected because d z /d r     <<    1 at a large enough distance from the crystal, 

and  p  O    =    p  v :
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γ

,     (8.39)  

which can be rewritten in the form

    r
z

r
r

z

r
r

g
z2
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2 0⋅ + ⋅ − ⋅ ⋅ =
d

d

d
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l

lv

ρ
γ

.     (8.40)   

 In order to write this as a standard Bessel equation,  z ( r ) is transformed to  y ( x ) with: 

  r x g= ⋅ ( )γ ρlv l  and   z y g= ⋅ ( )γ ρlv l . Thus, Equation  (8.40)  becomes:

    x
y

x
x

y

x
x y2

2

2

2 0⋅ + ⋅ − ⋅ =
d

d

d

d
    (8.41)   

 Equation  (8.41)  is called a homogeneous modifi ed Bessel differential equation, being of 

the type:

    x y x y x n y2 2 2 0⋅ ′′ + ⋅ ′ − +( ) ⋅ = ,     (8.42)  

with  n    =   0. From the theory of Bessel functions, it is known that the general solution is 

a linear combination between modifi ed Bessel functions of the fi rst and second order, 

respectively:  y ( x )   =    C  1     ·     I n  ( x )   +    C  2     ·     K n  ( x ), where  C  1  and  C  2  are constants which should 

be determined. The general solution of Equation  (8.41)  is:

    y x C I x C K x( ) = ⋅ ( ) + ⋅ ( )1 0 2 0 ,     (8.43)  

because  n    =   0. Moreover, it is known that for  x     >>     n  (this is available in Cz growth 

because for the asymptotic solution  r     ∈    [ r  * ;  ∞ ), and hence  r     >>    0), the modifi ed Bessel 
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functions become:   I x xn
x( ) ≈ e 2π  and   K x xn

x( ) ≈ −e 2π . Thus, the general solution 

 (8.43)  is

    y x C
x

C
x

x x

( ) = ⋅ + ⋅
−

1 2
2 2

e e

π π
.     (8.44)   

 Returning to the problem in  z ( r ), the following general solution for the asymptotic part 

of meniscus shape is obtained:
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 The fi rst modifi ed Bessel function  I  0  ( r )   =    J  0  ( ir ) is complex, but only the real part of the 

solution  (8.45)  is considered:
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which is equivalent to  y ( x )   =    C  2     ·     K  0 ( x ), according to  [Mika 1975] . 

 The solution  (8.46)  satisfi es the boundary condition  (8.23) :

    z r→∞ = 0.   

 In order to fi nd the unique solution, the constant  C  2  must be computed. For that, the 

continuity condition of the fi rst derivative at the connection point  r *   is imposed, i.e. 

the continuity of the fi rst derivatives for asymptotic analytical and numerical solutions at 

 r *  , d z /d r |  r      =      r    *     =    − tan  φ   ( r  * ). Thus, deriving the asymptotic analytical solution  z ( r ) given 

by  (8.46)  and equating that with the corresponding derivative available for the numerical 

solution ( − tan  φ   ( r  * )), gives:

    z r
g

K r
g

K r
g

r( ) = ⋅

⎛
⎝⎜

⎞
⎠⎟

⎛
⎝⎜

⎞
⎠⎟

⋅ ( )γ
ρ

ρ
γ
ρ
γ

φlv

l

l

lv

l

lv

*

0

1 *

tan .     (8.47)   

 Here the derivative property of the modifi ed Bessel function: (d/d x ) ( K  0 ( x ))   =    −  K  1 ( x ) is 

used. Moreover, in this computation the previously used approximation:

    
K r

K r r

0

1

1

1 1

( )
( )

≈
+ ( )

,     (8.48)  
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was considered. If  r    =    r *     =    r  c  in  (8.47) , and using the approximation  (8.48) , then the 

formula of the meniscus height given by  (8.37)  is obtained. Nowadays, it is not necessary 

to use approximation  (8.48)  because modern computers can compute modifi ed Bessel 

functions; this makes it possible to compute the initial conditions:

   z r h
z

r
r r*

d

d
* *( ) = ( ) = − ( )*, tan ,φ  (8.49)  

necessary for solving numerically the nonlinear system of differential equations corre-

sponding to Equation  (8.21) :
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 (8.50)   

 In what follows, the meniscus will be computed, using the analytical - numerical solution 

described above, for a cylindrical silicon crystal grown by the Cz technique. 

 First, it is necessary to fi nd the region for which the asymptotic analytical solution is 

accurate. Using the material parameters of silicon and computing the modifi ed Bessel 

functions
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it follows that their ratio increases to 1 for  r   ≤ 3.7   m, and after that the modifi ed Bessel 

functions exponentially decay to zero, i.e. for  x     >>     n ,

   K x
x

n

x

( ) ≈
( ) ⋅

−e

2 π
;

in our case  n    =   0 or 1, and  x  represents   r gl lvρ γ . This shows that a crucible radius 0.25 

 ≤ 3.7   m   and a value for  r *   which is not far from the crucible radius, e.g.  r *     =   0.19   m, 

should be considered, in order to have an almost fl at meniscus. Hence, we set  r  *    =   0.19   m 

and then fi nd  h  * , i.e. the corresponding meniscus height, and  − tan  φ   ( r  * ), necessary for 

conditions  (8.49) . 

 Replacing  r    =    r  *    =   0.19   m in Equations  (8.47)  and  (8.33)  the following system is 

obtained:
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 (8.51)   
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     Figure 8.9     (a) Meniscus given by the asymptotic analytical solution on the interval [0.19; 
0.25]. (b) Computed meniscus obtained by numerical solution of the initial value problem 
on the interval [0; 0.19]. (c) The analytical - numerical meniscus for a cylindrical silicon 
crystal grown in a crucible of radius 0.25   m.  

 In solving this system we considered those values of   φ   ( r  * ) that belong to the interval 

  (0 1
2

, π). For the above values, only one value is in the required interval:   φ   ( r  * )   =   7.2   s. 

Replacing this in fi rst or second equation gives  h *     =   0.2    μ m. In this way the initial condi-

tion is computed, which permits to fi nd the numerical solution. The asymptotic analytical 

approximation of the meniscus is obtained by plotting function given by  (8.47) , as can 

be seen in Figure  8.9 a. The numerical solution of the meniscus is obtained solving the 

system  (8.50)  with the boundary conditions  (8.49) . The computed meniscus is shown in 

Figure  8.9 b. The union between the analytical and numerical menisci forms the fi nal 

required meniscus (Figure  8.9 c).   
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 The error between the meniscus height  h    =   0.0067   m computed using the analytical -

 numerical solution, and those computed using only the analytical formulas  h  T   (8.32)  and 

 h  B   (8.37) , are of the order 10  − 5 , for a crystal radius  r  c    =   0.0136   m. 

 In the above analytical - numerical model, the idea reported in the literature concerning 

approximation of the meniscus using Bessel functions was used, but the fi rst part of the 

meniscus (situated in the neighbourhood of the crucible) was obtained by computing 

modifi ed Bessel functions, not using the approximation  (8.48) . From these calculations, 

initial conditions necessary to solve the IVP  (8.49) – (8.50)  were found, and the second 

part of the meniscus (situated near the crystal) was computed numerically. In comparison 

with previous approximations  [Huh 1969, Hurle 1983, Mika 1975] , this represents an 

improved result over the analytical - numerical method which gave errors of the order 10  − 4 . 

 As can be seen in the developments presented above, no exact solution of the meniscus 

shape, neither analytical nor numerical, can exist. Always an approximated part of the solu-

tion should be used and the diffi culty is to keep this approximation as low as possible  .  

  8.3   Analytical and Numerical Solutions for the Meniscus Equation 

in the  EFG  Method 

 The meniscus surface equation  (8.3)  and its corresponding boundary conditions for the 

EFG method are considered for sheets and cylindrical crystals.  Qualitative analyses  are 

performed, and when possible (i.e. in very particular cases)  analytical solutions  are given. 

The properties of the menisci obtained from the qualitative studies, are exemplifi ed 

through  numerical examples . 

 In the EFG technique, the main question is: what is the relation between the meniscus 

height  h  (which can be controlled through heat transfer) and the crystal sheet half - 

thickness or crystal rod radius? 

  8.3.1   Sheets 

 The central component of the EFG growth method is the die. The shape of the die defi nes 

the shape and the size of the meniscus, i.e. the liquid bridge retained between the die 

and the crystal (see Chapters  2  and  5 ). In order to obtain a sheet, the upper surface of the 

die has to be rectangular. The main characteristic of the sheet is its thickness (or half -

 thickness  x  c ). Then solutions  z    =    z ( x ) of Equation  (8.3) , depending only on the coordinate 

 x,  are sought. This means that the border effects (which occur on both edges   of the sheet) 

are not considered. This approximation is equivalent to those given by Nutt  [Nutt 1960]  

who neglected the curvature 1/ R  2  from Equation  (8.1)  written in the ( xOz ) frame (Figure 

 8.10 ). It is possible to consider the borders of the sheet as half - cylinders, and the meniscus 

computed for an EFG crystal rod can be used as a fi rst approximation. However, the 

junction between the axisymmetric border meniscus and the two - dimensional sheet 

meniscus remains a problem.   

 Thus, the meniscus equation  (8.1)  without magnetic fi eld and without rotation of the 

liquid becomes:
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which is equivalent to
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 In the EFG method, the pressure  p  O  is the pressure at the origin and it depends on the 

position of the liquid surface outside the die. For example, referring to Figure  8.10 , 

because a liquid surface plane coinciding with the shaper edge plane has been chosen, 

 p  O    =    p  v , and hence Equation  (8.53)  becomes:
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 The solution  z ( x ) of Equation  (8.54)  has to satisfy the following catching boundary 

condition:

    z w( ) = 0,     (8.55)  

where  w    >    0  is the inner half - thickness of the die. It is assumed that the bottom line of 

the meniscus on the die is fi xed on the edge of the die; i.e.  z ( w )   =   0 and  z ( x )     >    0  for  x     <     w  

( x  close to  w )  [Braescu 2003] . 

 At the other end of the meniscus, the growth angle criterion should be imposed, i.e.:
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     Figure 8.10     Two - dimensional model for a sheet grown by the EFG method.  
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     Figure 8.11     Dependence of the sheet half - thickness  x  c  as a function of the meniscus 
height  h  in zero gravity.  

where the meniscus height  h  and the sheet half - thickness  x  c  are unknown. In order to fi nd 

the relation between  h  and  x  c  for a given inner die half - thickness  w , an intermediate 

parameter   α   d  (see Figure  8.10 ) satisfying:

    
d

d
d

z

x
w( ) = tanα     (8.57)  

is used, or   φ   c  if we denote by   φ   c    =    π     −      α   d :

    
d

d
c c

z

x
w( ) = − ∈( )tan , ; .φ φ 0

1

2
π     (8.58)   

 In the following, Equation  (8.54)  will be solved satisfying conditions  (8.55)  and  (8.58)  

for a given die half - thickness  w , and a given angle   φ   c . After that, for the obtained meniscus 

 z ( x ), the growth angle criteria  (8.56)  will be imposed and the dependence of the sheet 

half - thickness  x  c  as a function of the meniscus height  h  will be found. 

 In the particular case of zero gravity the solution  z ( x ) can be expressed in an analytical 

form: Equation  (8.54)  becomes d 2  z /d x  2    =   0 for which the solution is  z ( x )   =    c  1     ·     x    +    c  2 , 

where  c  1  and  c  2  can be determined from the conditions  (8.55)  and  (8.58) . In this way, the 

obtained  analytical solution 

    z x x w( ) = −( ) ⋅ + ⋅tan tanφ φc c    (8.59)  

shows that in zero gravity the meniscus is a straight line. 

 Imposing the growth angle criterion, the parameter   φ   c  is eliminated and the following 

dependence of the sheet half - thickness  x  c  as a function of the meniscus height  h  is 

obtained:

    x h w
h

c ( ) = −
tan

.
α

    (8.60)   

 Using material parameters for silicon (growth angle  α    =   11    °    =   0.1919 radians), and a die 

half - thickness  w    =   0.002   m, the representation shown in Figure  8.11  is obtained.   
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 If gravity is considered, then  an analytical form of the meniscus cannot be obtained , 

but  qualitatively  it is possible to get information about the shape of the meniscus, and  the 

meniscus shape can be computed  using Runge – Kutta method. 

 Thus, using the technique set out in the fi rst section, the nonlinear Equation  (8.54)  is 

transformed into a nonlinear system of two differential equations:

    

d

d

d

d

l

lv

z

x

x

g z

= −

= −
⋅ ⋅

⋅

⎧

⎨
⎪⎪

⎩
⎪
⎪

tan

cos

φ

φ ρ
γ φ

1
    (8.61)  

for which the boundary conditions  (8.55) ,  (8.58)  become:

    z w w( ) = ( ) = ∈( )0 0 2, ; , .φ φ φc c π     (8.62)   

 The functions from the right - hand side of Equation  (8.61)  are defi ned for  z     ∈    ( −  ∞  ;   ∞ ), 

  φ      ∈    ( −  π /2;  π /2) and are independent of  x  (the system is autonomous). These functions 

depend also on the material parameters   ρ   l     ∈    (0;  ∞ ),   γ   lv     ∈    (0;  ∞ ). The functions are real 

analytical, i.e. they can be expanded in a Taylor series in the neighbourhood of any point 

( z ,   φ  ,   ρ   l ,   γ   lv ) from  D    =   ( −  ∞ ; + ∞ )    ×    ( −  π /2;  π /2)    ×    (0; + ∞ )    ×    (0; + ∞ ). Therefore, for the 

Cauchy problem  (8.61) – (8.62) , all the conditions of the Cauchy – Lipschitz theorem con-

cerning the existence and uniqueness of the solution of the problem  (8.61) – (8.62)  are 

satisfi ed. It follows that the problem  (8.61) – (8.62)  has a unique saturated solution defi ned 

on an interval ( a; b ). The solution of  (8.61) – (8.62)  will be denoted by:

    z z x w x w= ( ) = ( ); , , , , ; , , ,φ γ ρ φ φ φ γ ρc lv l c lv l     (8.63)  

and depends on  x  and on the parameters  w,  φ   c ,   γ   lv ,   ρ   l ;  a  and  b  also depend on  w ,   φ   c  ,  γ   lv , 

  ρ   l  and satisfy  a     <     w     <     b.  

 In general, the solution  (8.63)  cannot be expressed in an explicit form (because the 

system is nonlinear). For this reason, the behaviour of the solution will be analysed in 

the neighbourhood of  w   [Balint 2005] . 

 From  (8.61)  and  (8.62)  we have:
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d
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= − <tan ,φ 0     (8.64)  

which shows that there exists  ε  ′     >    0 such that for any  x     ∈    ( w     −     ε  ′ ;  w ] we have d z /d x     <    0. 

It follows that the function  z    =    z  ( x ;  w ,   φ   c ,   γ   lv ,   ρ   l ) is strictly decreasing on the interval 

( w     −     ε  ′ ;  w ] and is strictly positive on ( w     −     ε  ′ ;  w ):

    z z x w x w w= ( ) > ∀ ∈ − ′( ); , , , , ; .φ γ ρ εc lv l 0   

 Taking into account the equality:
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it follows that, in the neighbourhood of  w , the meniscus is convex at any point, which is 

obvious from the Young – Laplace equation:
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shows that there exists   ε  ″      >    0 such that on ( w     −     ε  ″ ;  w ) the function   φ  ( x ;  w ,   φ   c ,   γ   lv ,   ρ   l ) is 

strictly decreasing and

   φ φ φ γ ρ φ ε= ( ) > ∀ ∈ − ′′( )x w x w w; , , , , ; .c lv l c   

 The growth angle is achieved if the following equality holds:

   φ φ γ ρ α φx w; , , , .c lv l( ) = − =
π
2

0     (8.65)   

 In order to obtain more information about the solution  (8.63) , an approximation of the 

solution  (8.63)  by Taylor polynomials, obtained by expansion in  w , is considered:
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 The coeffi cients of these polynomials are obtained from Equations  (8.61)  and conditions 

 (8.62) , and are given by:

   z w z w w( ) = ( ) =; , , , ;φ γ ρc lv l 0     (8.68)  
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x
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d

d
c lv l c; , , , tan ;φ γ ρ φ     (8.69)  

26



    ′′( ) = ( ) =z w
z

x
w w

d

d
c lv l

2

2
0; , , , ;φ γ ρ     (8.70)  

    ′′′( ) = ( ) = − ⋅
⋅

⋅z w
z

x
w w

gd

d
c lv l

c

l

lv

c

3

3 3

1
; , , ,

cos
tan ;φ γ ρ

φ
ρ
γ

φ     (8.71)  

    φ φ φ γ ρ φw w w( ) = ( ) =; , , , ;c lv l c     (8.72)  

    ′( ) = ( ) =φ
φ

φ γ ρw
x

w w
d

d
c lv l; , , , ;0     (8.73)  

    ′′( ) = ( ) = ⋅
⋅

⋅φ
φ

φ γ ρ
φ

ρ
γ

φw
x

w w
gd

d
c lv l

c

l

lv

c

2

2 2

1
; , , ,

cos
sin .     (8.74)   

 Replacing these coeffi cients into  (8.66) – (8.67)  gives the following approximations to the 

solution  (8.63) :
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 These approximations are valid only for  x  close to  w   [Balint 2005] . This will be shown 

numerically for silicon sheets. 

 The attainment of the growth angle at a point (0;  w ] means that the equation:
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has at least one solution on (0;  w ]. Because
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it is easy to see that Equation  (8.77)  can have only one solution on (0;  w ] if the following 

inequalities hold: 
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 These inequalities express the range of the parameter   φ   c  for which the growth angle 

can be achieved. For example, using parameters for silicon and a die half - thickness 

27



     Figure 8.12     Numerical representation of the functions  z    =    z ( x ;  w,  φ   c ,   γ   lv ,   ρ   l ) and 
  φ     =     φ  ( x ;  w,  φ   c ,   γ   lv ,   ρ   l ) for silicon sheets grown using a die with half - thickness  w    =   0.002   m, 
and   φ   c    =   1.04 or 1.11 radians.  
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     Figure 8.13     The computed dependencies  x  c ( h ) (a) and  h ( x  c ) (b).  

 w    =   0.002   m, the inequalities (i) – (ii) show that condition of the growth angle is satisfi ed 

for 1.11    ≤      φ   c     <    1.3787. 

 Indeed, considering 30 values of the parameter   φ   c  and integrating by Runge – Kutta the 

problem  (8.61) – (8.62) , it is found that the growth angle is achieved for 1.04    ≤      φ   c     <    1.3787. 

This proves that the above Taylor approximation is useful for fi nding the range of the 

parameter   φ   c . 

 Concerning the meniscus shape: from Equations  (8.75) – (8.76) , it is easy to see that the 

functions  z  ( x ;  w ,   φ   c ,   γ   1v ,   ρ   l ),   φ  ( x ;  w ,   φ   c ,   γ   lv ,   ρ   l ) are convex in the neighbourhood of  w . 

The growth angle condition imposes the same monotony on the whole interval ( x  c ,  w ) for 

the function   φ  ( x ;  w ,   φ   c ,   γ   lv ,   ρ   l ), i.e. d  φ  /d x     <    0. This implies:

    
d

d

d

d

2

2 2

1
0

z

x x
= − ⋅ >

cos
,

φ
φ

 

i.e. the meniscus convexity on the interval ( x  c ,  w ), as can be seen in Figure  8.12 .   

 The couples ( x  c ,  h ) in which the growth angle is attained were computed for every 

parameter   φ   c  considered. Plotting these couples gives the dependence shown in Figure  8.13 .   
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     Figure 8.14     Axisymmetric model of a cylindrical crystal grown by the EFG method.  

 Because an analytical expression fi tting the above data is useful for practical 

crystal growers, the dependence of the sheet half - thickness  x  c  as function of the meniscus 

height  h :

    x h
h h h

h h
c ( ) =

− ⋅ + ⋅ − ⋅
− ⋅ + ⋅ −
0 002 0 42 87 20500

1 116 2 35500 382500

2 3

2

. .

. 00
0 0 0045

3⋅
∈[ ]

h
h, ; . ,     (8.78)  

and the dependence of the meniscus height  h  as function of the sheet half - thickness  x  c :

   h x
x x x

x x
c

c c c

c c

( ) =
− ⋅ + ⋅ − ⋅

− ⋅ + ⋅
0 004 5 64 2400 334000

1 1044 357000

2 3. .
22 7 3 8 43 86 10 3 10

0 0000012 0 002
− ⋅ ⋅ + ⋅ ⋅

∈[ ]
.

, . ; . ,
x x

x
c c

c   

  (8.78*)  

are obtained, for a silicon sheet grown using a die half - thickness  w    =   0.002   m. 

 The above  qualitative analyses  show that the dependences  x  c ( h ) and  h ( x  c ) are decreasing 

functions. For the confi guration shown in Figure  8.10 , i.e.  p  O    =    p  v , and zero gravity these 

dependences are linear functions, and the growth angle is always attained. In normal 

gravity conditions the above dependences are concave functions (the second derivative 

is negative), and the growth angle is attained if the parameter   φ   c  satisfi es inequalities 

(i) – (ii).  

  8.3.2   Cylindrical Crystals 

 In order to obtain a cylindrical crystal a circular die is used (see Figure  8.14 ). In this case, 

the equation of the meniscus surface is the axisymmetric Young – Laplace equation  (8.12) , 

which becomes:
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⎦
⎥ ,     (8.79)     
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 if the growth process takes place without a magnetic fi eld and without rotation of the 

crucible  [Borodin 1979, Braescu 2004 – 1, Braescu 2004 – 2, Brener 1979 – 1, Brener 1979 –

 2] . In the confi guration in Figure  8.14 , the liquid surface plane coincides with the shaper 

edge plane and hence  p  O    =    p  v . Equation  (8.79)  becomes:
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ρ
γ

.     (8.80)   

 The solution  z ( r ) of Equation  (8.80)  has to verify the following catching boundary 

condition:

    z r0i( ) = 0,     (8.81)  

where  r  0i      >    0  is the inner radius of the die. It is assumed that the bottom line of the 

meniscus on the die is fi xed on the edge of the die; i.e.  z ( r  0i )   =   0 and  z ( r )    >    0 for  r     <     r  0i  

( r  close to  r  0i ). 

 At the other end of the meniscus, the growth angle criteria should be imposed, i.e.:

    z r h
z

r
rc cand

d

d
( ) = ( ) = − tanα     (8.82)  

where the meniscus height  h  and the crystal radius  r  c  are unknown. For fi nding  h  and  r  c  

for a given inner die radius  r  0i , an intermediate parameter   α   d  will be used (see Figure 

 8.14 ) satisfying:

    
d

d
i d

z

r
r0( ) = tan ,α     (8.83)  

or   φ   c  if we denote by   φ   c    =    π     −      α   d :
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d
,i c c
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r
r0 0

2
( ) = − ∈( )tan ; .φ φ

π
    (8.84)   

 In the following, Equation  (8.80)  satisfying conditions  (8.81)  and  (8.84)  will be solved 

for a given die radius  r  0i  and a given angle   φ   c . After that, for the obtained meniscus  z ( r ), 

the growth angle criteria  (8.82)  will be imposed and the dependence of the crystal radius 

 r  c  as function of the meniscus height  h  will be found. 

 In the particular case of zero gravity the solution  z ( r ) can be expressed in an analytical 

form. Equation  (8.80)  becomes:
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which is equivalent to
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where  c  1  is a constant. From this an analytical expression for the derivative of the function 

 z ( r ) is obtained:

    
d

d

z

r
r

c

r c
( ) = ±

−
1

2
1
2

.     (8.86)   

 Imposing the condition  (8.84)  gives the value of the constant  c  1    =    r  0   i      ·    sin  φ   c  and the func-

tion  z ( r ) becomes:

    z r r
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 Thus, the  analytical expression of the meniscus  as function of the parameters is:
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for which the condition  r     ∈    [ r  0i     ·    sin  φ   c ,  r  0i ] is imposed, in order to assure the existence of 

the functions employed  [Braescu 2005] . 

 Imposing the growth angle criterion, the parameter   φ   c  can be eliminated and the depend-

ence of the meniscus height as function of the crystal radius can be found. From the 

condition

    
d

d
c

z

r
r( ) = − tanα  

we get

    sin sin ,φ αc
c
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= ⋅
r

r
    (8.88)  

which substituted into  (8.87)  gives:
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 Since  z  ( r  c )   =    h , the analytical formula of the meniscus height as a function of the crystal 

radius is obtained:

    h r r
r r r

r
c c

0i 0i c

c

( ) = ⋅( ) ⋅
+ − ⋅

+( )
sin ln

sin

cos
.α

α
α

2 2 2

1
    (8.89)   

 Using material parameters for silicon (growth angle  α    =   11    °    =   0.1919 radians), and 

a die radius  r  0i    =   0.002   m, the representation for the curve  (8.89)  is found as shown in 

Figure  8.15 .   

 If gravity is considered, then  an analytical form of the meniscus cannot be obtained , 

but performing  qualitative studies  gives us information about the shape of the meniscus 
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which depends on the pressure, and the  meniscus shape  is computed using Runge – Kutta 

method. 

 Thus, using the technique presented in previous section, the nonlinear equation  (8.60)  

is transformed into the following nonlinear system of two differential equations:
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 (8.90)  

for which the boundary conditions  (8.81) ,  (8.84)  become  [Braescu 2004 – 2] :

   z r r0 00 0
2

i i c c( ) = ( ) = ∈( ), ; , .φ φ φ
π

    (8.91)   

 The functions from the right - hand member of Equations  (8.90)  are defi ned for  r     ∈    (0;  ∞ ), 

 z     ∈    ( −  ∞ ;  ∞ ),   φ      ∈    ( −  π /2;  π /2). They are real analytic functions, i.e. can be expanded into 

Taylor series, and hence for the Cauchy problem  (8.90) – (8.91)  the conditions of existence 

and uniqueness of a solution are satisfi ed. It follows that the Cauchy problem  (8.90) –

 (8.91)  has a unique saturated solution defi ned on an interval ( a ;  b ):

   z z r r r r= ( ) = ( ); , , , , ; , , , ,0 0i c lv l i c lv lφ γ ρ φ φ φ γ ρ     (8.92)  

depending on  r  and on the parameters  r  0i ,   φ   c  ,  γ   lv   ,  ρ   l . The interval extremities  a  and  b  

depend on  r  0i ,   φ   c ,   γ   lv ,   ρ   l  as well and verify 0    <     a     <     r  0i     <     b   [Braescu 2004 - 2] . 

 Generally, the solution  (8.92)  can not be expressed in an explicit form because the 

system is nonlinear; for this reason it is necessary to analyse the behaviour of the solution 

in the neighbourhood of  r  0i . 

 From the system  (8.90)  and the conditions  (8.91)  the following inequalities can be 

obtained:
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     Figure 8.15     Meniscus height  h  as function of the crystal radius  r  c  in zero gravity.  
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 Inequality  (8.93)  shows that there exists   ε  ′      >    0 such that for  r     ∈    ( r  0i     −     ε  ′ ;  r  0i ], d z /d r     <    0. 

It follows that the function  z    =    z  ( r ;  r  0i ,   φ   c ,   γ   1v ,   ρ   l ) is strictly decreasing on ( r  0i     −     ε  ′ ;  r  0i ] 

and is strictly positive on ( r  0i     −     ε  ′ ;  r  0i ):

    z z r r r r r= ( ) > ∀ ∈ − ′( ); , , , , ; .0i c lv l 0i 0iφ γ ρ ε0   

 The inequality   d d
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φ r
r r= < 0 shows that the function   φ     =     φ   ( r ;  r  0i ,   φ   c ,   γ   1v ,   ρ   l ) is strictly 

decreasing on ( r  0i     −     ε  ″ ;  r  0i ] and
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 In addition, since
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in the neighbourhood of  r  0i , it results that the function  z  ( r ;  r  0i ,   φ   c ,   γ   lv ,   ρ   l ) is convex in the 

neighbourhood of  r  0i . 

 In order to get more information about the solution  (8.92) , it will be approximated by 

Taylor polynomials obtained by expansion in  r  0i :
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 The coeffi cients of these polynomials are obtained from  (8.90)  and  (8.91) , being given 

by  [Braescu 2004 - 2]  as:
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has a minimum which is achieved at the point  r  min     >     r  0i :
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0φ
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,  

i.e. the polynomial function of second degree   φ  ( r ;  r  0i ,   φ   c ,   γ    lv ,   ρ   l ) decreases until  r  min  and 

increases after that. 

 The position of  r  min  shows that the function   φ  ( r ;  r  0i ,   φ   c ,   γ    lv ,   ρ   l ) decreases and is 

convex on (0;  r  0i ]. This implies convexity of the meniscus, too. Indeed, because 

  φ  ( r ;  r  0i ,   φ   c ,   γ   lv ,   ρ   l ) decreases, d  φ  /d r     <    0, and hence
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which proves convexity of the function  z  ( r ;  r  0i ,   φ   c ,   γ   lv ,   ρ   l ). 
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 Concerning the growth angle condition: from the monotonicity of   φ  ( r ;  r  0i ,   φ   c ,   γ   lv ,   ρ   l ), 

the growth angle can be achieved in (0;  r  0i ) only if the contact angle   φ   c  is in (0;  π /2    −   α  ]. 

Thus if   φ   c    =    π /2    −   α  , then the growth angle is achieved in  r  0i . If   φ   c     <     π /2    −      α  , then the 

growth angle can be attained on (0;  r  0i ) only once (because   φ   ( r ;  r  0i ,   φ   c ,   γ   lv ,   ρ   l ) decreases). 

Imposing the growth angle condition on the function   φ   ( r ;  r  0i ,   φ   c ,   γ   lv ,   ρ   l ), the following 

equation is obtained:
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which should have one root in (0;  r  0i ). This condition can be satisfi ed if: 
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 These inequalities express the range of the parameter   φ   c  for which the growth angle can 

be achieved. For example, using parameters for silicon and a die radius  r  0i    =   0.002   m, the 

inequalities (i) – (ii) show that the growth angle condition can be satisfi ed for 0    <      φ   c     <    1.378. 

Indeed, considering 30 values of the parameter   φ   c  and integrating by Runge – Kutta for 

the problem  (8.90) – (8.91) , the growth angle is achieved for 0.01    ≤      φ   c     <    1.378. The previ-

ous described convexity and the monotonicity of the functions  z    =    z ( r ;  r  0i ,   φ   c ,   γ   lv ,   ρ   l ), 

  φ     =     φ  ( r ;  r  0i ,   φ   c ,   γ   lv ,   ρ   l ) can be seen in Figure  8.16 . For every considered parameter   φ   c , the 

couples ( r  c ,  h ) in which the growth angle is achieved were computed. Plotting these 

couples gives the dependence showing Figure  8.17 .   

 Because an analytical expression fi tting the above data is useful for practical crystal 

growers, the dependence of the meniscus height  h  as function of the crystal radius  r  c :

     Figure 8.16     Numerical representation of the functions  z    =    z ( r ;  r  oi ,   φ   c ,   γ   lv ,   ρ   l ) and 
  φ     =     φ  ( r ;  r  oi ,   φ   c ,   γ   lv ,   ρ   l ) for cylindrical silicon rods grown using a die radius  r  0i    =   0.002   m, 
and   φ   c    =   1; 0.1 radians.  
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and the dependence of the crystal radius  r  c  as function of the meniscus height  h  are 

obtained for a cylindrical silicon crystal grown using a die radius  r  0i    =   0.002   m. 

 The above  qualitative analyses  show that the dependencies  r  c ( h ) and  h ( r  c ) are parabolic 

functions. For the confi guration presented in Figure  8.14 , i.e.  p  O    =    p  v , and zero gravity, 

the growth angle is always attained for  r     ∈    [ r  0i  sin  φ   c ,  r  0i ]. On Earth, the growth angle is 

achieved if the parameter   φ   c  satisfi es inequalities (i) – (ii).   

  8.4   Analytical and Numerical Solutions for the Meniscus Equation 

in the Dewetted Bridgman Method 

 Dewetted Bridgman is a crystal growth technique in which the crystal is detached from 

the crucible wall by a liquid free surface at the level of the solid – liquid interface, called 

 liquid meniscu s, which creates a gap between the crystal and the ampoule (Figure  8.18 ). 

 The dewetting is explained in Chapter  6  and involves the wetting angle   θ  , the growth 

angle   α  , possible modifi cation of these parameters due to pollution of the melt by the gas 

phase and possible pressure difference between the hot and cold sides of the crucible. 

 There are two problems of interest in dewetting (see Chapter  6 ): 

   •      What is the gap thickness  e , therefore the crystal radius  r  c    =    r  a     −     e ?  

   •      What is the shape of the meniscus? This shape is related to the stability of the process.    

 In order to understand the process which leads to a crystal with a constant radius under 

normal gravity, analytical and numerical studies of axisymmetric meniscus shapes must 

be made and the dependence of the meniscus shape on the pressure difference must be 

established, starting from the Young – Laplace equation of a capillary surface  (8.11)  

written in agreement with the above confi guration  [Duffar 2000] :
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     Figure 8.17     The dependencies  h ( r  c ) (a) and  r  c ( h ) (b).  

36



SOLID

AMPOULE

FURNACE

p(cold)

p(hot)

ra

rc

Hm

L

-h

O

v

g

r

z

θ

α

MELT

b

     Figure 8.18     Schematic dewetted Bridgman crystal growth system.  
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 Here, the external pressure on the melt  p  v    =    p  cold  and the internal pressure applied on the 

liquid,  p  O  is defi ned as:

    p p gH
b

O hot l m
lv= + +ρ

γ2
,  

where  p  hot  and  p  cold  are the vapour pressure at the hot and cold sides of the sample and  b  

is the radius of curvature at the apex of the liquid. Thus the Young – Laplace equation can 

be written as follows:
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,     (8.105)  

where  Δ  p    =    p  cold     −     p  hot  represents the pressure difference between the cold and hot sides 

of the sample and the term 2/ b  is due to the curvature at the top which depends on the 
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wetting angle   θ   and on the crucible radius  r  a   [Duffar 1997] . Under microgravity this can 

be written as follows:

    
1

b r
= −

cos
.

θ
a

  

 What is specifi c for dewetted Bridgman is that the contribution due to the curvature 2/ b  

at the top of the free liquid must be considered in Equation  (8.105) . It is important to 

emphasize that for crucibles with a reasonable practical radius (larger than the melt capil-

lary constant), the curvature of the upper free liquid surface is very small in normal gravity 

conditions, and hence it can be neglected. This is not true in microgravity conditions, 

which is why these cases are treated separately in what follows. 

 From the physical point of view, the dewetting phenomenon is governed by the 

Young – Laplace equation through the Bond ( Bo ), and Laplace ( La ) dimensionless numbers. 

Thus, using the dimensionless numbers  (8.15)  obtained by using the ampoule radius  r  a  as 

length scale, Equation  (8.110)  becomes  [Epure 2010] :
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 where   H̃   m    =    H  m / r  a ,   Bo g r= ⋅ρ γl a lv. 2 , and  La    =    Δ  p  ·  r  a /  γ   lv . 

  8.4.1   Zero Gravity 

 In zero gravity conditions, the dimensionless Young – Laplace equation becomes:
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for which the following wetting boundary condition must be satisfi ed:
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and the choice of axis gives   z̃   (1)   =   0. 

 Equation  (8.107)  can be written as
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 Integrating, we obtain the analytical expression for the derivative of the function   z̃   (    r̃    ):
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 The constant  c  1  is determined from the boundary condition (d  z̃  /d    r̃    ) (1)   =   tan(  θ      −     π /2). It 

follows that
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 Further, the analytical expression of the meniscus can be obtained by integration. The 

integral can be expressed using elementary functions only in some particular cases. 

  8.4.1.1   Case  I :  L  a    =   0,  g    =   0 

 Integrating Equation  (8.110)  gives:

   ɶ ɶ ɶz r r c( ) = ⋅ − +
1

1 2 2
2

cos
cos .

θ
θ     (8.111)   

 Using the boundary condition   z̃   (1)   =   0, the  analytical expression  of the meniscus surface 

in  zero gravity  when  La    =   0 is obtained:

   ɶ ɶ ɶz r r( ) = ⋅ − −( )1
1 2 2

cos
cos sin ,

θ
θ θ     (8.112)  

where     r̃        ∈    [0, 1]. Dewetting occurs when the growth angle   α   is achieved at least at one 

point on the meniscus surface, i.e. when the equation:

   ɶ ɶφ αr( ) = ( ) −π 2     (8.113)  

has at least one solution in the range (0, 1); where   ɶφ  is the angle between the plane   z̃     =   0 

and the tangent plane to the meniscus. For this angle the equality   tan ɶ ɶ ɶφ = d dz r  holds, 

and hence information concerning attainment of the growth angle is given by the 

equation:
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from whence:

   sin cosɶ ɶφ θ= − ⋅r     (8.114)  
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which is equivalent to

    ɶ ɶφ θ= − ⋅( )arcsin cos ,r     (8.115)  

for any     r̃        ∈    [0, 1]. What is remarkable is that Equation  (8.115)  gives a condition for 

dewetting that depends on the growth angle   α   and contact angle   θ  . From the positivity 

of the derivative
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it follows that the function   ɶ ɶφ r( ) is strictly increasing for     r̃        ∈    [0, 1]. Considering this 

monotonicity and the boundary condition (d  z̃  /d    r̃    ) (1)   =   tan (  θ      −     π /2) which is equivalent 

to   ɶφ α1 2( ) = ( ) −π , the growth angle ( π /2)    −      α   can be achieved if   ɶ ɶφ r( ) decreases from 

  θ      −    ( π /2) to ( π /2)    −      α  . This means that ( π /2)    −      α      <      θ      −    ( π /2) and hence   α     +     θ      >     π . In the 

opposite case, when   α     +     θ      <     π , the growth angle cannot be achieved because of the 

monotonicity of   ɶ ɶφ r( ). 
 Assuming that the growth angle can be achieved, i.e.   α  +   θ      >     π , Equations  (8.113)  and 

 (8.114)  give:

    sin cosπ 2 1( ) −( ) = − −( ) ⋅α θɶe  

where   ẽ   represents the nondimensional gap thickness and     r̃     c    =   1    −      ẽ   the nondimensional 

crystal radius. The following  nondimensional gap thickness formula   [Duffar 1997]  results:
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+cos cos

cos

θ α
θ

    (8.116)  

valid under  zero gravity  conditions,  La    =   0, and   α     +     θ      >     π . 

 We now have a remarkable new result concerning the meniscus shape. Because 

  tan ɶ ɶ ɶφ = d dz r  and   d dɶ ɶφ r > 0, the second derivative is:
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 This equation proves that d 2   z̃  /d    r̃     2     >    0, and hence under  zero gravity  and  La     =    0, the  menis-

cus is globally convex  for any     r̃        ∈    [0, 1].  

  8.4.1.2   Case  II :  L  a     ≠    0,  g    =   0 

 To obtain the meniscus equation, Equation  (8.110)  should be integrated, but if  La     ≠    0 this 

integral can not be expressed using elementary functions. In order to obtain information 

about the meniscus shape, attainment of the growth angle, and gap thickness, a qualitative 

study is necessary. 

 Introducing   tan ɶ ɶ ɶφ = d dz r  in Equation  (8.110)  gives:

    sin cos ,ɶ ɶ ɶ
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    (8.117)  
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which is equivalent to

    ɶ ɶ ɶ
ɶ
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    (8.118)  

for any     r̃        ∈    [0, 1]. In a similar way to previous calculations, the sign of the derivative 

  d dɶ ɶφ r  will give information about the shape of the meniscus, and about the condition 

that must be imposed on the sum of the wetting and growth angles to ensure that attain-

ment of the growth angle is feasible. Deriving the relation  (8.118)  gives:
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 The sign of this derivative depends on the sign of the expression depending on     r̃     and  La :
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 The following three cases should be considered: 

   •      If  La     ∈    ( −  ∞ ; 0], then  E  (    r̃    ,  La )    >    0 and hence   d dɶ ɶφ r > 0. Moreover,

    
d

d

d

d

2

2 2

1
0

ɶ

ɶ ɶ

ɶ

ɶ

z

r r
= ⋅ >

cos
,

φ
φ

 

i.e. the meniscus is globally convex, and the growth angle can be achieved only if 

  α     +     θ      >     π .  

   •      If  La     ∈    (0;  − 2cos  θ  ), then the meniscus changes its curvature (concave to convex) at 

the point   ɶr La LaI = − ⋅ −( )2 cosθ , i.e.  E  (    r̃     1 ,  La )   =   0, which is equivalent to
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and the growth angle can be achieved either once or twice, depending on its value.  

   •      If  La     ∈    [ − 2cos  θ  ; + ∞ ), then  E  (    r̃    ,  La )    <    0 and hence   d dɶ ɶφ r < 0. In this case the meniscus 

is globally concave, i.e. d 2   z̃  /d    r̃     2     <    0, and the growth angle can be achieved only if 

  α     +     θ      <     π .    

 The above ranges for the pressure difference give information about the meniscus shape 

and the corresponding cases   α     +     θ      <     π  or   α     +     θ      >     π , in which the growth angle can be 

achieved or, in other words, when dewetting is feasible. 

 Assuming that  La ,   θ  , and   α   are chosen such that the growth angle can be achieved, the 

growth angle condition  (8.113)  is satisfi ed somewhere along the meniscus. From  (8.117) :

    sin cos ,
π
2

1
2

1
2

1

1
−( ) = −( ) ⋅ −( ) − ⋅ −( ) + ⋅

−( )
α θ ɶ ɶ

ɶ
e

La
e

La

e
    (8.121)  
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     Figure 8.19     Meniscus shape   z̃   (  r̃  ) and meniscus angle   ɶ ɶφ r( )  corresponding to  La    =    − 0.655 
and   θ     +     α     =   160    °    +   25    °  for InSb,  g    =   0. The place where the growth angle 
((  π /2 )    −      α     =   1.13446 radians) is reached is shown by the black dot.  

from which the following  gap thickness formulas  available in  zero gravity   [Duffar 1997]  

are obtained:
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 The gap formula  (8.122)  is valid when the growth angle is reached on the convex part of 

the meniscus, and formula  (8.123)  is valid when attainment of the growth angle takes 

place on the concave part of the meniscus. More precisely, the numerical results obtained 

by solving the problem  (8.90) – (8.91)  by the Runge – Kutta method for InSb crystals grown 

in zero gravity by the dewetted Bridgman technique (the parameters for InSb are those 

presented in  [Balint 2008, Braescu 2008 - 2]   ), confi rm the results obtained from the qualita-

tive study: 

   •      If  La     ∈    ( −  ∞ ; 0], then the meniscus is globally convex and the growth angle can be 

achieved once. When the growth angle is reached the gap thickness is given by   ẽ   1 , as 

in  (8.122) . The numerical results reveal this behaviour for  La    =    − 0.655    ∈    ( −  ∞ ; 0] and 

  θ     +     α     =   160    °    +   25    °     >     π , as can be seen in Figure  8.19 . The fi gure shows that the 

meniscus is globally convex and that the growth angle is achieved. The computed gap 

thickness   ẽ     =   1    −        r̃     c1    =   1    −    0.97915   =   0.02085 is equal to the value given by formula 

 (8.122) , i.e.   ẽ   1    =   0.02085.  

   •      If  La     ∈    (0;  − 2cos  θ  ), then the meniscus is concave – convex (i.e it has a point of infl ex-

ion). If the growth angle is attained on the concave part the gap thickness is given by 

  ẽ   2  in  (8.123) ; if on the convex part, the gap thickness is given by   ẽ   1  in  (8.122) . The 

numerical results confi rm this behaviour. The menisci are concave – convex and the 

growth angle can be achieved either once or twice: (a) for   θ     +     α     =   112    °    +   25    °     <     π  and 

 La    =   0.105    ∈    (0;  − 2cos  θ  )   =   (0; 0.749) the growth angle is not achieved (see Figure 
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 8.20 ), but for  La    =   0.262    ∈    (0; 0.749) the growth angle is achieved once, as can be 

seen in Figure  8.21 ; (b) for   θ     +     α     =   160    °    +   25    °     >     π  and  La    =   0.393    ∈    (0;  − 2cos  θ  )   =   (0; 

1.879) the growth angle is achieved twice (Figure  8.22 ). If the growth angle is achieved 

on the concave part of the meniscus, then the computed gap thickness in Figure  8.21  

  ẽ     =   1    −        r̃     c1    =   1    −    0.1505   =   0.8494 is equal to   ẽ   2    =   0.8494 given by  (8.123)  and in Figure 

 8.22 ,   ẽ     =   1    −        r̃     c1    =   1    −    0.2819   =   0.7181 is equal to   ẽ   2 . If the growth angle is reached on 

the convex part of the meniscus, then the computed gap thickness   ẽ     =   1    −        r̃     c2    =   1    −    

0.9374   =   0.0626 is equal to   ẽ   1    =   0.0626 given by  (8.122) , as can be seen in Figure  8.21 .  

   •      If  La     ∈    [ − 2cos  θ  ; + ∞ ), then the meniscus is concave and the growth angle can be 

achieved once. When the growth angle is attained the gap thickness is given by   ẽ   2  in 

 (8.123) . The numerical results show that the meniscus is concave, and that the growth 

angle is achieved for   θ     +     α     =   112    °    +   25    °     <     π , La   =   0.85    ∈    [ − 2cos  θ  ; + ∞ )   =   [0.749; 

+ ∞ ) (Figure  8.23 ). The computed gap thickness   ẽ     =   1    −        r̃     c2    =   1    −    0.4573   =   0.5427 is 

equal to   ẽ   2  as given by  (8.123) .        

     Figure 8.20     Meniscus shape   z̃   (  r̃  ) and meniscus angle   ɶ ɶφ r( )  corresponding to  La    =   0.105 
and   θ     +     α     =   112    °    +   25    °  for InSb,  g    =   0. The growth angle cannot be achieved.  

     Figure 8.21     Meniscus shape   z̃   (  r̃  ) and meniscus angle   ɶ ɶφ r( )  corresponding to  La    =   0.262 
and   θ     +     α     =   112    °    +   25    °  for InSb,  g    =   0. The place where the growth angle 
((  π /2 )    −      α     =   1.13446 radians) is achieved is shown by the black dot.  
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  8.4.2   Normal Gravity 

 Under normal gravity conditions, for a crucible radius larger than the capillary constant 

of the material, the curvature of the upper free liquid surface can be neglected (it is very 

small), and hence the Young – Laplace equation  (8.105)  becomes:
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where the axisymmetric solution   z̃     =     z̃  (    r̃    ) has to satisfy the following boundary 

condition:

d

d

ɶ

ɶ

z

r
1

2 2
( ) = −( ) ∈( )tan , , .θ θ

π π
π  (8.125)  

and, by the choice of origin,   z̃   (1)   =   0. 

     Figure 8.22     Meniscus shape   z̃   (  r̃  ) and meniscus angle   ɶ ɶφ r( )  corresponding to  La    =   0.393 
and   θ     +     α     =   160    °    +   25    °  for InSb,  g    =   0. The places where the growth angle 
((  π /2 )    −      α     =   1.13446 radians) is achieved are shown by the black dots.  

     Figure 8.23     Meniscus   z̃   (  r̃  ) and meniscus angle   ɶ ɶφ r( ) corresponding to  La    =   0.85 and 
  θ  +     α     =   112    °    +   25    °  for InSb,  g    =   0. The place where the growth angle
((  π /2 )    −      α     =   1.13446 radians) is achieved is shown by the black dot.
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 Using the technique presented in section  8.1 , the nonlinear equation  (8.124)  is trans-

formed into the following nonlinear system of two differential equations:
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d

d

d cos
tanm

ɶ

ɶ
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ɶ
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r
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tanφ

φ
φ

φ
1 1

⎪⎪

    (8.126)  

for which the boundary condition  (8.125)  becomes  [Balint 2008, Braescu 2008 - 2] :

    ɶ ɶz 1 0 1
2 2

( ) = ( ) = − ∈( ), ; , .φ θ θ
π π

π     (8.127)   

 The functions on the right - hand side of Equations  (8.126)  are real analytic, i.e. they can 

be expanded in Taylor series, and the conditions of existence and uniqueness of a solution 

are satisfi ed for the problem  (8.126) – (8.127) . The meniscus shape is described by the 

solution

    ɶ ɶ ɶ ɶ ɶ ɶ ɶ ɶz z r La Bo H r La Bo H= ( ) = ( ); , , , , ; , , ,θ φ φ θm m  

which depends on     r̃     and on the parameters   θ , La, Bo,  H̃   m . In what follows, this solution 

is denoted by   z̃     =     z̃   (    r̃    ),   ɶ ɶ ɶφ φ= ( )r . 

 Because of the high nonlinearity of the problem,  an analytical formula for the meniscus 

cannot be obtained,  hence analytical and numerical studies of meniscus shapes are neces-

sary. With this aim, the dependence of meniscus shape on the pressure difference will be 

established, and inequalities of the pressure intervals which assure the feasibility of dewet-

ting will be determined. 

 Because of the different behaviours of the meniscus shape in the cases   α     +     θ      <     π , and 

  α     +     θ      >     π , as already shown in zero gravity, qualitative studies will be performed on each 

case separately. Recent experimental developments  [Sylla 2008 – 1] , confi rmed by ther-

modynamic analysis  [Sylla 2008 – 2] , show that contamination of the system during the 

growth process may greatly increase the wetting angle, leading to an unexpected inequal-

ity between the wetting angle   θ   and growth angle   α  , i.e.   α     +     θ      >     π . 

  8.4.2.1   Case  I :  α    +    θ     <     π  

 In order to make a qualitative study of the meniscus shape (convex, concave – convex, 

convex – concave, concave) as a function of the Laplace number, the function   z̃     =     z̃   (    r̃    ) is 

approximated by a Taylor polynomial of third degree   T rzɶ ɶ
3( ) in the neighbourhood of     r̃       =   1. 

To establish the inequalities of the pressure intervals (i.e.  La  numbers) which assure the 

feasibility of dewetting, the information obtained from Taylor approximation (approxi-

mate meniscus) will be combined with properties deduced from the problem  (8.126) –

 (8.127)  which describes the shape of the real meniscus. Thus, approximating the function 

  z̃     =     z̃   (    r̃    ) by a Taylor polynomial of third degree   T rzɶ ɶ
3( ) in the neighbourhood of     r̃       =   1, 

accurate qualitative results are obtained only in a suffi ciently small neighbourhood of  r  a . 

The third - order Taylor polynomial   T rzɶ ɶ
3( ) which approximates the meniscus surface   z̃     =     z̃  (    r̃    ) 

is given by:

45



    T r z r
z

r
z

rzɶ ɶ ɶ ɶ
ɶ

ɶ
ɶ

ɶ
3 2 3

1 1
1

2
1

1

6
1( ) = ′( ) ⋅ −( ) +
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where   z̃  ′  (1),   z̃  ″  (1),   z̃  ′  ′  ′  (1) represent the fi rst - , second -  and third - order derivatives of the 

function   z̃     =     z̃  (    r̃    ) at     r̃       =   1, and are obtained from the system  (8.126)  and boundary condi-

tions  (8.127)  as follows  [Braescu 2008 - 2] :
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 The concavity or convexity of the meniscus   z̃     =     z̃   (    r̃    ) in a suffi ciently small neighbourhood 

of 1 is given by the sign of the second derivative of the approximated meniscus 

  ɶ ɶ ɶɶz r T rT z( ) = ( )3 :

    

d

d

2 3

2

2 2 3 2 3 3 1
T

r
A La B A La B La C r

E

z
z z z z z

ɶ

ɶ ɶ ɶ ɶ ɶ

ɶ

ɶ
ɶ= − ⋅ + + ⋅ − ⋅ +[ ]⋅ −( )

= zz zE r2 3 1+ ⋅ −( )ɶ ɶ .     (8.132)   

 The sets of  La  values that defi ne convex, concave – convex, convex – concave and 

concave shapes of the approximated menisci are determined by the following 

inequalities: 

   •      if   Ezɶ
2 0>  and   Ezɶ

4 0<  (or   Ezɶ
2 0>  and   Ezɶ

4 1> ), then the approximated meniscus is convex;  

   •      if   Ezɶ
2 0>  and   0 14< <Ezɶ , then the approximated meniscus is concave – convex;  

   •      if   Ezɶ
2 0<  and   0 14< <Ezɶ , then the approximated meniscus is convex – concave;  

   •      if   Ezɶ
2 0<  and   Ezɶ

4 0<  (or   Ezɶ
2 0<  and   Ezɶ

4 1> ), then the approximated meniscus is concave;    

 where   E E Ez z zɶ ɶ ɶ

4 2 31= − ( ). 
 Dewetting occurs if the growth angle   α   is achieved at some point in the interval (0, 1), 

which is given by the solution of the equation:

    ɶ ɶ
ɶ

ɶφ α αr
T

r

z( ) = − = −( )π π
2 2

3

or
d

d
tan .     (8.133)   

 Because   α     +     θ      <     π , the boundary condition for   ɶ ɶφ r( ) shows that the growth angle ( π /2)    −      α   

can be achieved only if   ɶ ɶφ r( ) decreases, i.e.   d dɶ ɶφ r < 0. On the other hand,
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 Hence, if   ɶ ɶφ r( ) decreases then
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( ) = <  

and the real meniscus should be concave in the neighbourhood of 1. For this reason, in 

what follows special attention is paid to the convex – concave (S - shaped), and concave 

meniscus shapes. Moreover, the inequality   Ezɶ
2 0> , which appears in both cases, gives the 

values of  La  resulting in a concave meniscus at 1:

    La
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Bo H

z

z

> = + ⋅ɶ

ɶ

ɶ
2

2
cos .θ m     (8.134)   

 The inequality  (8.134)  states that the gas pressure difference should be larger than the 

hydrostatic pressure plus a term which depends on the capillary parameters. 

 For certain values of  La , the growth angle can be achieved twice for a convex – concave 

approximated meniscus (Equation  (8.133)  has two solutions), and once for a concave 

approximated meniscus (Equation  (8.133)  has one solution). These values of  La  are given 

by the following statements (for details see  [Braescu 2008 - 2] ): 

   •      Statement 1:     The set of  La  values for which the growth angle   α   can be achieved once 

on the approximated meniscus is defi ned by the inequality:
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    (8.135)    

   •      Statement 2:     The set of  La  values for which the growth angle   α   can be achieved twice 

in the interval (0, 1) on the approximated meniscus is defi ned by the following 

inequalities:

    F E E Az z z zɶ ɶ ɶ ɶ
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   •      Statement 3:     For   α     +     θ      <     π :  
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  (i)     If the real meniscus is concave at 1, then  La     >     Bo     ·      H̃   m    +   cos  θ  ;  

  (ii)     If the real meniscus is convex at the triple point  r  c  in which the growth angle is 

achieved  , then  La     <     Bo     ·    (  H̃   m     −      h̃  )    −    cos  α  . 

 Inequalities (i) and (ii) defi ne the interval  La  I  for which dewetted Bridgman growth 

is feasible with a convex – concave (S - shaped) meniscus. Moreover they show that the 

value  La  (concave)  for which the meniscus is concave can be deduced from the pressure 

difference values  La  (convex – concave)  for which the meniscus is S - shaped. 

 The range  La  I  can be refi ned by using the approximation   ɶ ɶφT r( ) of the function   ɶ ɶφ r( ), 
and the condition for attainment of the growth angle on the approximate meniscus   z̃  T  (    r̃    ).    

   •    Statement 4:     A refi ned range  La  approx  of the interval  La  I , for which dewetted Bridgman 

with convex – concave meniscus is feasible and the growth angle is achieved, is deter-

mined by the following inequalities: 

   (i)        Bo H La Bo H h⋅ + < < ⋅ −( ) −ɶ ɶ ɶ
m mcos cosθ α    ,
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 ,

where     r̃     1  ( La ) represents the real root of the equation

    
1

2
03 2 1⋅ − + − =E E Az z zɶ ɶ ɶ

cos

sin

α
α

 

and is in (0, 1)  [Braescu 2008 - 2] . 

 Inequalities (i) are related to the shape of the meniscus: concave at 1 and convex later. 

The inequality (ii)   F Lazɶ
1 0( ) <  indicates that the growth angle   α   is achieved once on 

the approximated meniscus. Inequality (iii) shows that in     r̃     1  ( La ) the approximated 

meniscus is convex.      

 In the following, numerical results are obtained by solving the problem  (8.126) – (8.127)  

for InSb crystals grown in normal gravity by the dewetted Bridgman process  [Balint 2008, 

Braescu 2008 - 2] . 

 Inequalities (i) – (ii), from Statement 4 give the  La  range [51.353; 52.617]. Through 

inequality (iii) this is refi ned to  La  approx    =   [51.353; 52.589] which represents the range of 

the Laplace number for which dewetted Bridgman growth with a convex – concave menis-

cus is possible and where the growth angle is achieved. Numerically integrating the 

system  (8.126) – (8.127)  for different values of the  La  from the refi ned range  La  approx , gives 

 La  real    =   [51.726; 52.458] which represents the real range of the pressure difference that 

gives a convex – concave real meniscus where the growth angle is attained twice (Figure 

 8.24 ). If  La  real     ≥    52.46 then the real meniscus is concave and the growth angle is achieved 

only once, as can be seen in Figure  8.25 .   

 Figures  8.24  and  8.25  show that the approximated meniscus given by the third - degree 

Taylor polynomial   T rzɶ ɶ
3( ) is accurate only in the neighbourhood of 1. However, experi-

mental values of the gap thickness are always much smaller than 1   mm (see Chapter  6 ). 

The points marked on the fi gures represent the points at which the growth angle is 

achieved.  
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     Figure 8.24     Approximated menisci   T rzɶ ɶ
3( )  (dotted line) and real (numerical) convex –

 concave menisci   z̃   (  r̃  ) corresponding to  La    =   51.726 (a) and  La    =   52.446 (b) for InSb, 
 H̃  m    =   10.9. The places where the growth angle ((  π /2 )    −      α     =   1.13446 radians) is achieved 
are shown by the black dots.  

     Figure 8.25     Approximated menisci   T rzɶ ɶ
3( )  (dotted line) and real (numerical) concave 

menisci   z̃   (  r̃  ) corresponding to  La    =   52.46 (a) and  La    =   64.167 (b) for InSb,  H̃  m    =   10.9. 
The places where the growth angle ((  π /2 )    −      α     =   1.13446 radians) is achieved are shown 
by the black dots.  

  8.4.2.2   Case  II :  α    +    θ     >     π  

 During the growth process of classical semiconductors grown in uncoated ampoules (i.e. 

  α     +     θ      <     π ), contamination of the system may greatly increase the wetting angle, leading 

to an unexpected sum of the wetting angle   θ   and growth angle   α  , i.e.   α     +     θ      >     π . For this 

reason, the dependence of the meniscus shape on the pressure difference is studied, in 

order to get conditions that allow dewetting for classical semiconductors grown in 

uncoated crucibles with contamination (or in coated crucibles). To study the meniscus 

shape qualitatively as a function of the Laplace number, only the properties obtained from 

the problem  (8.126) – (8.127)  are used. In the case   α     +     θ      >     π , the meniscus height increases 
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if  La  increases, hence the Taylor polynomial approximations cannot be used because they 

are valid only in a small neighbourhood of 1 (this is the opposite behaviour to the previ-

ous case   α     +     θ      <     π , where increasing  La  leads to a decrease of the meniscus). 

 Thus, considering the inequality   α     +     θ      >      π   and boundary condition for 

  ɶ ɶφ r( ),   ɶφ θ1 2( ) = − ( )π , it follows that the growth angle ( π /2)    −      α   can be achieved if   ɶ ɶφ r( ) 
decreases from   θ      −    ( π /2) to ( π /2)    −      α  , i.e.   d dɶ ɶφ r > 0. On the other hand, from Equations 

 (8.126) :
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d

d
m

ɶ

ɶ

ɶ
φ

θ
θ

r
Bo H La1

1( ) = ⋅ − +[ ]
sin

cos .     (8.140)   

 As   d dɶ ɶφ r 1 0( ) > , the following inequality for the pressure difference is obtained:

   La Bo H< ⋅ +ɶ m cos ,θ     (8.141)  

for which the growth angle can be achieved. 

 Concerning the meniscus shape, because
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d
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d 2   z̃  /d    r̃     2     >    0 in the neighbourhood of 1, which means that the growth angle can be achieved 

if the meniscus is convex in the neighbourhood of 1. 

 Then, for a pressure difference which satisfi es the inequality  (8.141)  the meniscus is 

convex in the neighbourhood of 1 (this includes globally convex or concave – convex 

menisci), and the growth angle can be achieved. 

 Numerical results obtained by solving the problem  (8.126) – (8.127)  for InSb crystals 

grown on the ground by the dewetted Bridgman process for high apparent wetting angle 

(i.e. the contamination case   θ     +     α     =   160    °    +   25    °     >      π  ) prove that if the pressure difference 

satisfi es the inequality  (8.141) , i.e.  La     <    49.794, then the meniscus is globally convex 

(Figure  8.26 ) or concave – convex (see Figure  8.27 ; it is diffi cult to see this shape on the 

fi gure, but it can be seen in the numerical results) and the growth angle is achieved once.   

 Further, there are cases in which the meniscus is concave at 1 and the growth angle 

can be achieved. There are two possible situations: (i) convex – concave meniscus, and (ii) 

globally concave meniscus. 

 For the  convex – concave meniscus  there is a point of infl exion   r̃   I , i.e. (d 2   z̃  /d    r̃     2 ) (  r̃   I )   =   0. 

This condition implies that   d d I
ɶ ɶ ɶφ r r( )( ) = 0 because
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 Because the meniscus is concave at 1, i.e.   d dɶ ɶφ r < 0 in the neighbourhood of 1, the 

meniscus is concave for     r̃        ∈    [  r̃   I ; 1] and the function   ɶ ɶφ r( ) decreases. Attainment of the growth 

angle may be possible on the convex meniscus, i.e. on the left side of   r̃   I  the meniscus is 

convex and   d dɶ ɶφ r > 0. This proves that the growth angle can be achieved if the function 

  ɶ ɶφ r( ) is concave and its maximum is (  ɶ ɶ ɶr rI I; φ ( )). This gives a condition on the second deriva-

tive   d d2 2 0ɶ ɶ ɶφ r r( )( ) <  for     r̃        ∈    (  r̃   I     −     ε ;   r̃   I    +    ε ). Thus, deriving the second equation
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r
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r
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1 1
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from Equations  (8.126) , and replacing     r̃     by   r̃   I , we get:
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     Figure 8.26     Meniscus shape   z̃  (  r̃  ) and meniscus angle   ɶ ɶφ( )r  corresponding to 
 La    =    − 13.095 and   θ     +     α     =   160    °    +   25    °     >     π  for InSb,   H̃   m    =   10.9. The place where the 
growth angle ((  π /2 )    −      α     =   1.13446 radians) is reached is shown by the black dot.  

     Figure 8.27     Meniscus   z̃  (  r̃  ) and meniscus angle   ɶ ɶφ( )r  corresponding to  La    =   49.788 and 
  θ     +     α     =   160    °    +   25    °     >     π  for InSb,  H̃  m    =   10.9. The place where the growth angle 
((  π /2 )    −      α     =   1.13446 radians) is achieved is shown by the black dot.  
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     Figure 8.28     Convex – concave meniscus shape   z̃  (  r̃  ) and meniscus angle   ɶ ɶφ( )r  
corresponding to  La    =   50.679 and   θ     +     α     =   160    °    +   25    °     >     π  for InSb,  H̃  m    =   10.9. The place 
where the growth angle ((  π /2 )    −      α     =   1.13446 radians) is reached is shown by the 
black dot.  

which must be negative. As   ɶ ɶφ θrI( ) ∈ − ( ) ( )( )π π2 2;  and   r̃   I     <    1, from  (8.142)  we have 

that   ɶr BoI > ( ) ⋅1 sinθ , which gives the following limit for the ampoule radius:

    1 1> ( ) ⋅Bo sin .θ     (8.143)   

 Moreover, since   d d I
ɶ ɶ ɶφ r r( )( ) = 0  the following inequality for the pressure difference is 

obtained:

    La Bo H Bo z r< ⋅ − ⋅ ( )ɶ
m I .     (8.144)   

 Here   z̃   (  r̃   I ) is unknown but   z̃   (  r̃   I )    <    0, and hence if

    La Bo H< ⋅ ɶ m     (8.145)  

then inequality  (8.144)  is always satisfi ed. 

 In conclusion, for a convex – concave meniscus, the growth angle can be achieved (the 

crystal can be obtained) if inequalities  (8.143)  and  (8.145)  are satisfi ed. In practice, it is 

not certain whether the growth angle is always attained; this depends on the material and 

process parameters. 

 Numerical results obtained by solving the problem  (8.126) – (8.127)  for InSb crystals 

grown under normal gravity by the dewetted Bridgman process for the case 

  θ     +     α     =   160    °    +   25    °     >     π , show that if  La    =   50.679    <     Bo     ·      H̃   m    =   50.733 and 

  1 1 0 271> ( ) ⋅ =Bo sin .θ , then the meniscus is convex – concave and the growth angle is 

achieved on the convex part of the meniscus (Figure  8.28 ).   

 For the globally concave meniscus   d dɶ ɶφ r < 0, and hence the function   ɶ ɶφ r( ) decreases on 

the interval (0; 1); because ( π /2)    −      α      <      θ      −    ( π /2) the growth angle cannot be achieved on 

the globally concave meniscus. Numerical results show that for  La    =   51.504    >     Bo     ·      H̃   m    =  

 50.733   Pa the meniscus is globally concave and the growth angle is not achieved 

(Figure  8.29 ).   
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 The above analytical and numerical studies of meniscus shapes were performed in order 

to derive the conditions which allow dewetting and lead to a crystal with a constant radius 

under normal gravity. The results are useful for  in situ  control of the process and show 

the importance of a careful calculation of the meniscus shapes for the optimization of 

stable dewetted Bridgman growth.    

  8.5   Conclusions 

 In this chapter, mathematical and numerical analyses of the BVP for the Young – Laplace 

equation have been presented as an essential part of capillarity problems and processes. 

First, a mathematical formulation of the capillary problem and the BVP for the Young –

 Laplace equation in the three - dimenional and axisymmetric cases was presented. 

 After that, the problems were formulated for the Cz, EFG and dewetted Bridgman 

growth techniques. For the confi gurations and specifi c boundary conditions considered, 

analytical solutions of the meniscus were found in some special cases. Due to the high 

nonlinearity of these problems in general cases, the solutions were approached qualita-

tively and proved by numerical computations using the Runge – Kutta method. From these 

analytical and numerical studies, information useful for practical crystal growers was 

reported: meniscus shapes for different growth conditions, the range of some parameters 

for which the growth angle is achieved (i.e. a crystal is obtained), the dependencies 

between the meniscus height and the crystal thickness. A relevant computer program (in 

Mathcad) is presented in the Appendix   . 

 Because of the nonlinearity of the Young – Laplace equation, no simple solution of the 

problem exists in most cases. It is always necessary to perform a qualitative analysis, 

which is problem dependent. After that a numerical solution can be sought. However, as 

shown for the Cz technique, there are confi gurations for which no exact solution is 

available.  

     Figure 8.29     Globally concave meniscus shape   z̃  (  r̃  ) and meniscus angle   ɶ ɶφ( )r  
corresponding to  La    =   51.504 and   θ     +     α     =   160    °    +   25    °     >     π  for InSb,   H̃   m    =   10.9. The 
growth angle ((  π /2 )    −      α     =   1.13446 radians) cannot be achieved.  
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  Appendix: Runge – Kutta Methods 

 The Runge – Kutta methods are single - step methods which approximate solutions of fi rst -

 order differential equations (or systems) with given initial conditions. They are based on 

the Taylor series method in which derivatives are approximated by the forward difference 

and at the same time, keep the desirable property of higher - order local truncation error 

 [Braescu 2008 – 1] . These facts imply a better convergence to the solution. 

 In practice, there are some particular forms of the Runge – Kutta method: the second -

 order method RK2, the third - order method RK3, the fourth - order (standard) method RK4 

and the fi fth - order Runge – Kutta – Fehlberg method RKF5. The RK4 method is discussed 

in more details in the next section, as it is the most commonly used. 

  A.1   Fourth - Order Runge – Kutta Method ( RK 4) 

 Considering the initial value problem:

    ′( ) = ( )y x f x y,  

    y x y0 0( ) =  

where  f :( a; b )    ×    ( c; d )    →      R is an indefi nite derivable function and  x  0     ∈    ( a; b ),  y  0     ∈    ( c; 

d ). The solution  y ( x ) of IVP can be computed numerically using RK4 method along the 

interval [ x  0 ;  x N  ] which is divided in N equidistant subintervals. The RK4 method for this 

problem is summarized by the following equation with differences:

    y y k k k k i Ni i= + + + +( ) =−1 1 2 3 4

1

6
2 2 1, , ,…  

where  x i     =    x i    − 1    +    h ,  i    =   1,  …  ,  N ,  h  represents the step - size (equidistant nodes are considered), 

  
h

x x

N

N=
− 0 ;  x N   is the end value of the interval;  x  0  is the fi rst value of the interval,  N  

represents the number of the solution values in the interval [ x  0 ,  x N  ];  y i   is the approximation 

of  y ( x i  ); and  … 

    k h f x yi i1 1 1= ⋅ ( )− −, ,  

    k h f x
h

y
k

i i2 1 1
1

2 2
= ⋅ + +( )− −, ,  

    k h f x
h

y
k

i i3 1 1
2

2 2
= ⋅ + +( )− −, ,  

    k h f x h y ki i4 1 1 3= ⋅ + +( )− −, .   

 Thus the current value  y i   is determined by the previous value  y i    − 1 , to which is added an 

estimated slope   1
6 1 2 3 42 2k k k k+ + +( ) which represents the weighted average of slopes: 

   •       k  1  is the slope at the beginning of the interval;  

   •       k  2  is the slope at the midpoint of the interval, using the slope  k  1  for determining the 

value of  y  at the point  x i    − 1    +   ( h /2) by Euler ’ s method (fi rst - order Runge – Kutta method);  
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   •       k  3  is the slope at the midpoint of the interval, but now using the slope  k  2  for determining 

the value of  y  at the point  x i    − 1    +   ( h /2) by Euler ’ s method;  

   •       k  4  is the slope at the end of the interval with its  y  - value predicted by  k  3 .    

 In summary, each value of  k i   gives an estimate of the size of the  y  - jump made by the 

actual solution across the whole width of the interval. The fi rst one uses Euler ’ s method, 

the next two use estimates of the solution slope at the midpoint, and the last one uses an 

estimate of the slope at the endpoint. Each  k i   uses the earlier  k i   as a basis for its prediction 

of the  y  - jump. The local truncation error for RK4 is of the order  O ( h  5 ). 

  A.1.1    RK 4 Procedure 

 Input  a, b, c, N, f  //  a, b, c  are the problem - dependent values of  x  0 ,  x N   and  y  0 //. 

  Runge – Kutta4(  c ,  a ,  b ,  N ,  f  )     

    x a

x b

y c

h
x x

N
for i N

k h f x y

k h f x
h

N

N

i i

i

0

0

0

1 1 1

2 1

1

←
←
←

←
−

∈
← ⋅ ( )

← ⋅ +

− −

−

..

,

22 2

2 2

1
1

3 1 1
2

4 1 1 3

,

,

,

y
k

k h f x
h

y
k

k h f x h y k

i

i i

i i

−

− −

− −

+( )
← ⋅ + +( )
← ⋅ + +( ))

← + + + +( )

← +
( )

−

−

y y k k k k

y y h

augment x y

i i

i i

1 1 2 3 4

1

1

6
2 2

,

   

  S:   =   Runge – Kutta4(  c ,  a ,  b ,  N ,  f  ).    

 This method is relatively easy to implement and gives good accuracy, but as it is a con-

stant step size method, the calculation time may become very long, especially if a very 

small step size is needed. Thus, in order to reduce computation time, an  adaptive step 

size  version of the Runge – Kutta method can be used. The general formula for the adaptive 

step size Runge – Kutta method is given by:

    y y c ki i n n

n

+
=

= + ∑1

1

6

 

where:

    
k h f x yi i1 = ⋅ ( ),
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 k h f x a h y b k nn i n i nm m

m

n

= ⋅ + ⋅ +⎛
⎝⎜

⎞
⎠⎟

=
=

−

∑, , , ,
1

1

2 6…

with local truncation error of order  O ( h  6 ). 

 Several sets of  a n  ,  b nm   and  c n   coeffi cients and computer algorithms for implementation 

of this method were reported, e.g. those suggested by Cash and Karp  [Cash 1990] . 

 Thus, in the  adaptive  Runge – Kutta method, the step size is controlled so that the results 

are within the desired accuracy. This is why the numerical computations in Chapter  8  are 

performed using the  adaptive RK4 method . 

 Runge – Kutta methods are available in all standard computer mathematical toolboxes 

such as Matlab, Mathcad, Mathematica, Maple etc. The use of a Runge – Kutta fourth -

 order method with fi xed integration step (a routine called  rkfi xed ), and with step - size 

adaptation ( Rkadapt ) is shown here for Mathcad.    

  A.2   Rkfi xed and Rkadapt Routines for Solving IVP

 The case of cylindrical rods grown in zero gravity using the EFG technique (the confi gu-

ration presented in Figure  8.14 ) is considered as an example. Equation  (8.86)  with the 

initial condition  (8.81)  is solved numerically and the solutions obtained using the routines 

 rkfi xed  and  Rkadapt  are compared with the analytical solution  (8.87) . 

 Thus, the following IVP is solved numerically:

d

d

sin

sin

0i c

0i c

z

r
r

r

r r
( ) = −

⋅

− ⋅( )
φ

φ2 2
 (A8.1)  

z r0 0i( ) =     (A8.2)   

 The exact solution represents the analytical expression of the meniscus as function of 

the parameter   φ   c :

   z r r
r

r r r
r r( ) = ⋅ ⋅

+( )
+ − ⋅

∈ ⋅0i c
0i c

0i c

0i csin ln
cos

sin
, sin ,φ

φ
φ

φ
1
2 2 2

rr0i( ]  (A8.3)   

 The obtained solution of  rkfi xed  and  Rkadapt  routines is a matrix with two columns 

(independent variable values, and the corresponding solution function values). The argu-

ments list of these procedures is as follows: 

  rkfi xed (init,  x  1 ,  x  2 ,  N ,  D ) and  Rkadapt (init,  x  1 ,  x  2 ,  N ,  D)  

 where: 

   •   init is either a vector of  n  real initial values, where  n  is the number of unknowns, or a

single scalar initial value, for a single ordinary differential equation (ODE);

   •       x  1  and  x  2  are real, scalar initial and end points of the interval over which the solution

to the ODE(s) will be evaluated;

   •       N  is the integer number of points beyond the initial point at which the solution is to be

approximated;  
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   •       D  is a derivative vector function of the form  D ( x, y ) specifying the right - hand side of

the system.    

  A.2.1   Example of Implementation in Mathcad 

    r0i m: .= [ ]0 002  

   φc rad: .= [ ]1 3  

   a r c: := =0i; // initial value given at the beginning of the 0 iinterval //

   b r: sin= ⋅ ( ) + −
0i c // final value of the interval //φ 10 9

   N a b: ,= [1000 // number of the solution value in the interval ]] //

   init: = c  

   D x y
r

x r
, :

sin

sin
( ) =

− ⋅

− ⋅( )
0i c

0i c

φ

φ2 2

   S_fixed init: , , , ,= ( )rkfixed a b N D

   R_fixed S_fixed _fixed S_fixed: := =0 1Z

   S_adapt init: , , , ,= ( )Rkadapt a b N D

   R_adapt S_adapt _adapt S_adapt: := =0 1Z

  A.2.2   Conclusion 

 Comparing the solution obtained by  rkfi xed  (i.e. RK4),  Rkadapt  and the analytical solu-

tion, it is easy to see that  Rkadapt  gives better results. In seeking the computed value 

of the function at the endpoint  b  of the interval, it can be observed that the difference 

between the exact solution and the approximate solutions are in the fourth digit for  rkfi xed , 

and the sixth digit for  Rkadapt . Note that the error can be decreased by increasing  N . 

   S_fi xed =    S_adapt =  

   0    1    0    1  

   ••  • •  ••  •  •  • •  ••  •  •  • •  ••    •  •  •  •  ••    ••  •  •  ••

  990    0.001927846    0.000475318    990    0.001927846    0.000475318  
  991    0.001927773    0.000478036    991    0.001927773    0.000478036  
  992    0.0019277   0.000480909    992    0.0019277   0.000480909  
  993    0.001927628    0.000483968    993    0.001927628    0.000483968  
  994    0.001927555    0.000487253    994    0.001927555    0.000487253  
  995    0.001927482    0.000490826    995    0.001927482    0.000490826  
  996    0.001927409    0.000494776    996    0.001927409    0.000494776  
  997    0.001927336    0.000499258    997    0.001927336    0.000499258  
  998    0.001927263    0.00050457   998    0.001927263    0.00050457  
  999    0.00192719    0.000511483    999    0.00192719    0.000511479  

  1000    0.001927117    0.000532588    1000    0.001927117    0.000526005  
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         Figure A8.1     (a) Approximated menisci obtained by RK4 (dotted line) and adaptive RK4 
(full line). (b) Approximated menisci obtained by RK4 (dotted line) and adaptive RK4 
(enlargement of Figure A8.1a).  

 The  exact solution  is given by Equation  (A8.3) . At the end point of the interval the 

exact solution is:

   z b z r( ) = ⋅ ( ) +( ) =−
0i csin . .φ 10 0 00052639039   

 The  approximate solution  given by the  rkfi xed  routine, computed at the endpoint  b , is:

   z_fixed // the last value from the table S_fixe= 0 000532588. dd corresponding to  //b   

 The  approximate solution  given by the  Rkadapt  routine, computed at the endpoint  b , is:

   z_adapt // the last value from the table S_adap= 0 000526005. tt corresponding to  //b   

 After plotting the menisci obtained numerically (Figure  A8.1 a), it is diffi cult to see a 

difference of the order of the fourth or sixth digit and for this reason an enlarged image 

is shown in Figure  A8.1 b.      
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