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Entropy formulation of degenerate parabolic equation with
zero-flux boundary condition

Boris Andreianov and Mohamed Karimou Gazibo

Abstract. We consider the general degenerate hyperbolic-parabolic equation:

ut + div f(u) − ∆φ(u) = 0 in Q = (0, T ) × Ω, T > 0, Ω ⊂ RN ; (E)

with initial condition and the zero flux boundary condition. Here φ is a continuous non decreasing
function. Following [11], we assume that f is compactly supported (this is the case in several
applications) and we define an appropriate notion of entropy solution. Using vanishing viscosity
approximation, we prove existence of entropy solution for any space dimension N ≥ 1 under a
partial genuine nonlinearity assumption on f . Uniqueness is shown for the case N = 1, using the
idea of [2], nonlinear semigroup theory and a specific regularity result for one dimension.

Mathematics Subject Classification (2010). Primary 35F31; Secondary 00A69.
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1. Introduction

Let Ω be a bounded open set of RN with a Lipschitz boundary ∂Ω and η the unit normal to ∂Ω
outward to Ω. We consider the zero-flux boundary problem:

(P )

 ut + div f(u)−∆φ(u) = 0 in Q = (0, T )× Ω,
u(0, x) = u0(x) in Ω,

(f(u)−∇φ(u)).η = 0 on Σ = (0, T )× ∂Ω.

We assume that the convection flux f is a Lipschitz continuous function. Moreover, we require that

f(0) = 0, f(umax) = 0 for some umax > 0. (1.1)

Accordingly, the initial datum is a mesurable function taking values in the interval [0, umax], which
will be the invariant domain for the solutions of (P ) under assumption (1.1). Further, the function φ is
continuous non decreasing on [0, umax]. This assumption means that the problem (P ) is of degenerate
parabolic-hyperbolic type. For the sake of simplicity, we will treat the case φ(.) is constant on [0, uc]
with 0 ≤ uc ≤ umax and φ(.) is strictly increasing on [uc, umax]. The case of a general φ can be treated
without additional difficulty (see Carrillo [16]).

The framework (E) includes conservation law as a particular case and it is well known that in
general, global classical solutions may not exist; and that weak solution in the sense of distributions
may not be unique. The standard way to fix this problem is to work with the so-called entropy so-
lutions (see Kruzhkov [17], for the case of conservation laws, and Carrillo [16], for the adaptation of
this notion to the case of degenerate elliptic-parabolic-hyperbolic equation). There exist many pa-
pers in the literature dealing with Dirichlet boundary condition for (E). The main reference is the
fundamental paper of Carrillo for homogenous Dirichlet boundary condition [16] which establishes
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the uniqueness technique. In [23], Rouvre and Gagneux prove also existence and uniqueness for ho-
mogenous Dirichlet condition under strong regularity requirement on the data. The general Dirichlet
boundary condition received much attention, see Mascia and al [19], Michel and Vovelle [21], Vallet
[24], see also the forthcoming work [3]. However, the Dirichlet boundary condition may not always
provide the most natural setting for this kind of problem on bounded domains. Equation (E) occurs
in several applications, for example it comes from the theory of porous media flow, phenomenological
theory of sedimentation-consolidation processes, road traffic. In practice, it is often supplemented with
the zero-flux (homogeneous Neumann boundary condition), at least on a part of the boundary (see
[12]).

Let us describe more detail one application. Problem (P ) is of interest in describing pressure
filtration of flocculated suspensions. The domain Ω is a filter medium, which lets only the liquid
pass, by a piston which moves downwards due to an applied pressure. The material behavior of the
suspension is described by two model functions, the flux density function or hindered settling factor f
and the effective solid stress function φ, both functions only of the local solids concentration u. Here
f is a nonpositive Lipschitz continuous function with compact support in [0, umax], where umax ≤ 1
is the maximum concentration and the function φ satisfies φ(u) = 0 for u ≤ uc, with 0 ≤ uc ≤ umax,
where uc is a critical concentration value, and φ′(u) > 0 for u > uc. Notice that these assumptions
are exactly those that we have taken in this paper. According to the phenomenological sedimentation-
consolidation theory [12], the evolution of the concentration distribution can be given with Neumann
boundary condition, and this is our motivation.

In [11] Bürger and al. consider the problem (P ) with φ(u) ≡ 0. They introduce a notion of entropy
solution based on the existence of strong trace uτ on ∂Ω under some assumption on the boundary (see
[25]) and the flux f which satisfied (1.1). They prove existence and uniqueness of entropy solution. The
purpose of our paper is to extend the result of Bürger and al ([11]) to degenerate parabolic-hyperbolic
equation. Since the total flux in (E) contains the diffusion flux term ∇φ(u) which is only L2, we
cannot ensure the existence of a strong trace for this term. Therefore, we suppose that this boundary
condition is satisfied in the weak sense only. We propose a new entropy formulation that incorporates
a boundary term which does not contain any trace of u. Its main advantage over the definition of [11]
is that the stability under the L1(Q) convergence of solutions is evident. Notice that we do not need
existence of traces of entropy solutions u of (E), even it could be ensured using the method of [3].

To prove existence of entropy solution, we use a classical vanishing viscosity approximation and
get the a priori estimates useful for passing to the limit in the approximate problem. The main point
for passing to the limit is based on a rather involved local compacity argument of Panov [22]. We
manage to apply this result in our case and prove that the limit of entropy solutions of approximate
problem is an entropy solution of (P ).

We focus on the question of uniqueness of entropy solution for (P ). For this aims, we prove
a version of an important proposition due to Carrillo [16]. This proposition identifies the entropy
dissipation term which is a key ingredient of the uniqueness technique. Then, it is easy to prove
uniqueness of solutions such that boundary condition is satisfied in the sense of strong boundary trace
of the normal component of the flux (f(u) − ∇φ(u)). Unfortunately, we are able to establish this
additional solution regularity only for the stationary problem (S) associated to (P ) (see section 4)
and only in the case of one space dimension. Therefore, we adapt the hint from the paper [2] (see
also [4]) and compare a general solution to (P ) with a regular solution to (S). We conclude by a
standard application of the notion of integral solution coming from the nonlinear semigroup theory
[7]. Eventually, we prove the uniqueness result in one space dimension.

Let us stress that the problem of uniqueness is still open in multiple space dimensions. The
definition of strong traces of the solution with respect to the lateral boundary of the domain Ω
is possible if for example the diffusion term φ(u) is such that f(u) − ∇φ(u) is continuous up to
the boundary ∂Ω. If there existed “sufficiently many” solutions (in the sense of [2], [4]) having this
regularity, uniqueness would follow. We leave the investigation of this regularity question to a future
work. Another open question is how to define entropy solutions in the case where the assumption (1.1)
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does not hold. Indeed, as in [11], the assumption (1.1) ensures that the zero-flux boundary condition
is satisfied literally. When this assumption is dropped, we expect that the boundary condition should
be relaxed, as in the case of Dirichlet boundary condition (see [6]). One example for the zero-flux
hyperbolic problem is given in [5].

The rest of this paper is organized as follows. In section 2, we give some assumptions and prelim-
inaries and state our definition of entropy solution. Section 3 is devoted to existence of approximates
solutions and passage to the limit to prove existence of an entropy solution of (P ). Finally, in section 4
we study the abstract evolution equation associated with (P ) and prove uniqueness of entropy solution
in one space dimension.

2. Entropy Solutions

2.1. Assumptions and preliminaries

We introduce the sign function and its approximations:

sign(r) =

 1 if r > 0,
0 if r = 0,
−1 if r < 0,

signσ(r) =

 1 if r > σ,
r
σ if |r| ≤ σ,
−1 if r < −σ,

sign+(r) = max(sign(r), 0), sign−(r) = min(sign(r), 0),
sign+

σ (r) = 1
σ min(r+, σ) and sign−σ (r) = 1

σ max(−r−,−σ).
We also introduce the cut-off function:

Ta,b(r) =

 a if r < a,
r if a ≤ r ≤ b,
b if r > b.

To apply a strong precompactness result needed for the proof of the existence of entropy solution, we
assume that the couple (f(.), φ(.)) is non-degenerate in the sense of the following definition.

Definition 2.1. Panov [22]. Let φ be zero on [0, uc], strictly increasing on [uc, umax] and a vector
f = (f1, ..., fN ). A couple (f(.), φ(.)) is said to be non-degenerate if, for all ξ ∈ RN\{0}, the functions

λ 7−→
N∑
i=1

ξifi(λ) are not “affine” on the non-degenerate sub intervals of [0, uc].

2.2. Definition of Entropy Solutions

In this section, we give our entropy formulation for the problem P .

Definition 2.2. Let u0 be a measurable [0, umax]-valued function. A measurable function u taking
values on [0, umax] is called weak solution of problem (P ) if : φ(u) ∈ L2(0, T ;H1(Ω)) and for all
ξ ∈ L2(0, T ;H1(Ω)) such that ξt ∈ L1(Q) and ξ(T, .) = 0, one has∫ T

0

∫
Ω

{
uξt +

(
f(u)−∇φ(u)

)
.∇ξ

}
dxdt+

∫
Ω

u0ξ(0, x)dx = 0. (2.1)

Definition 2.3. A measurable function u taking values on [0, umax] is called an entropy solution of the
initial-boundary value problem (P ) if φ(u) ∈ L2(0, T ;H1(Ω)) and ∀k ∈ [0, umax], ∀ξ ∈ C∞([0, T )×RN ),
with ξ ≥ 0, the following inequality hold∫ T

0

∫
Ω

{
|u− k|ξt + sign(u− k)

[
f(u)− f(k)−∇φ(u)

]
.∇ξ

}
dxdt

+

∫ T

0

∫
∂Ω

|f(k).η(x)| ξ(t, x)dHN−1dt+

∫
Ω

|u0 − k|ξ(0, x)dx ≥ 0. (2.2)
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If we remplace (2.2) by one of the following inequalities∫ T

0

∫
Ω

{
(u− k)+ξt + sign+(u− k)

[
f(u)− f(k)−∇φ(u)

]
.∇ξ

}
dxdt

+

∫ T

0

∫
∂Ω

(f(k).η(x))+ξ(t, x)dHN−1dt+

∫
Ω

(u0 − k)+ξ(0, x)dx ≥ 0, (2.3)

∫ T

0

∫
Ω

{
(u− k)−ξt + sign−(u− k)

[
f(u)− f(k)−∇φ(u)

]
.∇ξ

}
dxdt

+

∫ T

0

∫
∂Ω

(f(k).η(x))−ξ(t, x)dHN−1dt+

∫
Ω

(u0 − k)−ξ(0, x)dx ≥ 0, (2.4)

we obtain notions of entropy sub-solution and entropy super-solution respectively. Obviously, a func-
tion u is an entropy solution if and only if u is entropy sub-solution and entropy super-solution
simultaneously.

Remark 2.4. 1. For the case φ= 0, solution of [11] is solution in our sense. The converse assertion
is also true at least for N=1, this is the consequence of the uniqueness of a solution in the sense
of Definition 2.3.

2. The entropy solution in the sense of Definition 2.3 is in particular a weak solution in the sense
of Definition 2.2. Indeed, take in (2.2) k = 0 and k = umax and use (1.1); we find (2.1).

3. Let us stress that, in particular, the zero flux boundary condition (f(u)−∇φ(u)).η = 0 is verified
literally in the weak sense. This contrasts with the properties of the Dirichlet problem (see [3]);
we expect that the boundary condition should be relaxed if assumption (1.1) is dropped (see [5]).

3. Existence of Entropy Solutions

The main result of this section, is the following theorem:

Theorem 3.1. Assume that (1.1) holds and that (f, φ) is non-degenerate in the sense of Definition 2.3.
Then, there exists an entropy solution u for the problem (P ).

3.1. Viscosity Regularized Problem

To show the existence of entropy solutions, we approximate φ(u) by
φε(u

ε) = φ(uε) + εId(uε) for each ε > 0. We obtain the following regularized problem (Pε):

(Pε)

 uεt + div f(uε)−∆φε(u
ε) = 0 in Q = (0, T )× Ω,

uε(0, x) = uε0(x) in Ω,
(f(uε)−∇φε(uε)).η = 0 on Σ = (0, T )× ∂Ω,

where (uε0)ε is a sequence of smooth functions that converges to u0 a.e and respects the mini-
mum/maximum values of u0.

Definition 3.2. A function uε ∈ L2(0, T ;H1(Ω)) is called weak solution of the initial-boundary value
problem (Pε) if for all ξ ∈ L2(0, T ;H1(Ω)) such that ξt ∈ L1(Q) and ξ(T, .) = 0, one has∫ T

0

∫
Ω

{
uεξt +

(
f(uε)−∇φε(uε)

)
.∇ξ

}
dxdt+

∫
Ω

uε0ξ(0, x)dx = 0. (3.1)

Definition 3.3. A measurable function uε ∈ L2(0, T ;H1(Ω)) taking values in [0, umax] is called an
entropy solution of (Pε) if ∀k ∈ [0, umax], ∀ξ ∈ C∞([0, T )× RN ), ξ ≥ 0, the following inequality hold∫ T

0

∫
Ω

{
|uε − k|ξt + sign(uε − k)

[
f(uε)− f(k)−∇φε(uε)

]
.∇ξ

}
dxdt

+

∫ T

0

∫
∂Ω

|f(k).η(x)| ξ(t, x)dHN−1dt+

∫
Ω

|uε0 − k|ξ(0, x)dx ≥ 0. (3.2)
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Theorem 3.4. For u0 ∈ [0, umax] and (1.1) hold, the problem (Pε) admits a weak solution uε which is
also an entropy solution. In particular, we have 0≤ uε≤ umax. In addition, there exists C independent
on ε such that

||
√
ε∇uε||L2(Q) ≤ C; (3.3)

||φε(uε)||L2(0,T ;H1(Ω)) ≤ C. (3.4)

3.2. Strong pre-compactness result and passage to the limit on ε

Theorem 3.5. Panov [22]. Assume that (f, φ) is non degenerate in the sense of Definition 2.1. Suppose
uε, ε > 0, is a sequence such that

∃d > 1,∀a, b ∈ R with a < b

Ta,b(u
ε)t + div

(
f(Ta,b(u

ε))−∇φ(Ta,b(u
ε))
)

is pre-compact in W−1,d
Loc (Q).

Moreover, suppose uε, f(uε), φε(u
ε) are equi-integrable locally on Q. Then, there exists subsequence

(Ta,b(u
ε))ε that converges in L1

Loc(Q).

To prove Theorem 3.5, we need the following result.

Lemma 3.6. Suppose (f, φ) is non degenerate and let uε = uε(t, x) be an entropy solution of (Pε).
Then for all a, b ∈ R such that 0 ≤ a < b ≤ umax,

Ta,b(u
ε)t + div

(
f(Ta,b(u

ε))−∇φε(Ta,b(uε))
)

= κεa,b in D′(Q);

with κεa,b ∈ Mb(Q). Here Mb(Q) represents the set of all Radon measures on Q. Moreover, for each

compact set K ⊂ Q, we have V arκεa,b(K) ≤ C(K, a, b), uniformly in ε ∈ (0, 1).

Proof. By the well known representation property for non-negative distributions, we derive from (3.2)
that for each k ∈ [0, umax]

|uε − k|t + div
[
sign(uε − k)(f(uε)− f(k))−∇|φε(uε)− φε(k)|

]
= −κεk in D′(Q)

where κεk ∈ Mb(Q), κεk ≥ 0. Further, for a compact set K ⊂ Q we choose non-negative function
ξ = ξK(t, x) ∈ C∞0 (Q), which equals 1 on K. Then, we have the estimate

κεk(K) ≤
∫ T

0

∫
Ω

ξ(t, x)dκεk(t, x)

=

∫
Q

{
|uε − k|ξt +

[
sign(uε − k)(f(uε)− f(k))−∇ |φε(uε)− φε(k)|

]
.∇ξ

}
≤
∫
Q

(Jε1 + J2) max (|ξt|, |∇ξ|, |∆ξ|) dxdt =: A(K, k, Jε1); (3.5)

where Jε1(t, x) = |uε|+ |f(uε)|+ |φε(uε)| and J2 = |k|+ |f(k)|+ |φε(k)| are bounded in L1 due to the
fact that uε, f(uε), φε(u

ε) are bounded in L∞, uniformly on ε (see Theorem 3.4). Therefore κεk(K)
can be upper bounded by some quantity A(K, k). Further, notice that for each a, b ∈ R and for any
function g

g(Ta,b(r)) =
1

2

(
sign(r − a)(g(r)− g(a))− sign(r − b)(g(r)− g(b))

)
+

1

2
(g(a) + g(b)) .

From (3.5), we have with g = Id, g = f and g = φε

Ta,b(u
ε)t + div

(
f(Ta,b(u

ε))−∇φε(Ta,b(uε))
)

= κεa,b in D′(Q), (3.6)
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with κεa,b = 1
2 (κb − κa). Moreover, we have

Varκεa,b(K) ≤ 1

2

(
A(K, a) +A(K, b)

)
=: C(K, a, b).

This concludes the proof. �

Notice that for all a, b ∈ R, a < b, we have Ta,b(T0,umax) = Tã,b̃ with ã = max(a, 0) and

b̃ = min(b, umax). Now, we are able to prove Theorem 3.1.

Proof of Theorem 3.1. Take some countable set of values ε→ 0. We derive from Lemma 3.6 and the
above remark that for all a, b ∈ R, a < b,

Ta,b(u
ε)t + div

(
f(Ta,b(u

ε))−∇φ(Ta,b(u
ε))
)

= κεa,b + ε∆Ta,b(u
ε) in D′(Q);

here (κεa,b)ε is a bounded sequence in Mb(K) for each compact set K ⊂Q. Moreover, due to (3.3),

we have ε∆Ta,b(u
ε) tends to zero in H−1(Q). By Sobolev embedding we have H−1(Q)=W−1,2(Q)⊂

W−1,d(Q), d ≤ 2, therefore ε∆Ta,b(u
ε) tends to zero in W−1,d(Q). Since M(K) is compactly embedded

in W−1,d(K) for each d ∈ [1, N+1
N ), we see that Ta,b(u

ε)t + div
(
f(Ta,b(u

ε))− ∇φ(Ta,b(u
ε))
)

is pre-

compact in W−1,d(K). Since (f, φ) is assumed to be non-degenerate, then applying Theorem 3.5, we
find T0,umax(uε) −→ T0,umax(u) as ε→ 0 in L1(K), for a subsequence. Covering Q by a countable set
of compacts K and using diagonal extraction argument, we get uε → u in L1

Loc(Q) ( and actually in
L1(Q), because uε take their values in [0, umax]). Extracting a further subsequence if necessary, we
can assume that uε −→ε→0 u a.e. in Q.
It remains to derive the entropy formulation (2.2) for u. Passing to the limit in relation (3.2), we
claim that the limit function u = u(t, x) satisfies this relation for all k ∈ [0, umax] such that the level
set u−1(k) has zero measure. Indeed, by the continuity of f , we have sign(uε − k)(f(uε)− f(k)) −→
sign(u − k)(f(u) − f(k)) as ε → 0 a.e. in Q, and since φε(uε) is bounded in L2(0, T ;H1(Ω)) and
converge a.e to the limit that is readily identified with φ(u), we deduce that sign(uε− k)∇φε(uε) −→
sign(u−k)∇φ(u) a.e in Q for k such that u−1(k) has zero measure. Notice that the set of such values
of k is dense in [0, umax]. It is easy to see that the left-hand side of (2.2) is continuous with respect to
k, because ∇φ(u) = 0 a.e. on the set [u = k] (cf Lemma 4.4 below). Therefore, by density we inherit
(2.2) for all k ∈ [0, umax]. We conclude that u(t, x) is an entropy solution of (P ). �

4. Uniqueness result of Entropy Solution in one space dimension

The main result of this section is the following theorem:

Theorem 4.1. Suppose that Ω = (a, b) is a bounded interval of R, then (P ) admits a unique entropy
solution.

Let us first recall an essential property of entropy solutions, based on the idea of J. Carrillo [16].

Proposition 4.2. Let ξ ∈ C∞([0, T [×RN ), ξ ≥ 0. Then for all k ∈ [uc, umax], for all D ∈ RN and for
all entropy solution u of (P ), we have∫ T

0

∫
Ω

{
|u− k|ξt + sign(u− k)

[
f(u)− f(k)−∇φ(u) +D

]
.∇ξ

}
dxdt

+

∫
Ω

|u0 − k|ξ(0, x)dx+

∫ T

0

∫
∂Ω

|(f(k)−D).η(x)| ξdHN−1dt

≥ lim
σ→0

1

σ

∫ ∫
Q∩{−σ<φ(u)−φ(k)<σ}

∇φ(u).(∇φ(u)−D)ξ. (4.1)

Remark 4.3. Notice that this proposition makes explicit the information on the dissipation. Let us
stress that in (2.2) D = 0 and k ∈ [0, umax] while in (4.1) D ∈ RN but k ∈ [uc, umax].
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Proposition 4.2 is a key ingredient of the uniqueness technique. To prove this proposition, we
need the following remarks. Firstly, for all u ∈ [0, umax] and for all k ∈ [uc, umax], one has sign(u−k) =
sign(φ(u)− φ(k)). Secondly, recall

Lemma 4.4. For all entropy solution u of (P ), one has:
∇φ(u) = 0 LN a.e. on the set {(t, x) ∈ Q such that u(t, x) ∈ [0, uc]}.

Proof. This result comes from Marcus and Mizel lemma (cf. [20]) which states that for p ∈ (1,∞),
and F in W 1,p, ∇F = 0 a.e on F−1(N ), where N is a set of zero measure on R. Apply this for
a.e. t ∈ (0, T ), for u ∈ [uc, umax], we have ∇φ(u) = 0 on [φ(u)]−1{0} with φ(u) ∈ H1(Ω). Let
EN+1 = {(t, x) such that u(t, x) ∈ [0, uc]} and EN (t) = {x such that u(t, x)∈ [0, uc]}. Then, by Fu-

bini theorem, |EN+1| =
∫ T

0
|EN (t)|dt = 0. �

Proof of Theorem 4.2. Since u is a weak solution of (P ), then for all k ∈ [uc, umax] and D ∈ RN , u is
also a weak solution of the following problem:

(Pk)


(u− k)t + div

[
(f(u)−∇φ(u))− (f(k)−D)

]
= 0 in Q,

u(0, x)− k = u0(x)− k on Ω,((
f(u)−∇φ(u)

)
− (f(k)−D)

)
.η = −(f(k)−D).η on Σ.

Take the test function signσ(φ(u)−φ(k))ξ in the weak formulation of this problem with ξ ∈ C∞([0, T )×
RN ). We have, using the formalism of [1],∫ T

0

〈(u− k)t, signσ(φ(u)− φ(k))ξ〉H1(Ω)∗,H1(Ω) dt

−
∫ T

0

∫
Ω

signσ(φ(u)− φ(k))
[
(f(u)−∇φ(u))− (f(k)−D)

]
.∇ξ

−
∫ T

0

∫
Ω

ξ
[
(f(u)−∇φ(u))− (f(k)−D)

]
.∇signσ(φ(u)− φ(k))

−
∫ T

0

∫
∂Ω

signσ(φ(u)− φ(k))(f(k)−D).ηξ = 0. (4.2)

By the chain rule (see [1], [15]) the first integral of (4.2) give:

−
∫ ∫

Q

∫ u

k

signσ(φ(r)− φ(k))drξt −
∫

Ω

∫ u0

k

signσ(φ(r)− φ(k))drξ(0, x).

Using the fact that k ∈ [uc, umax] and passing to the limit as σ goes to 0, we obtain:∫ T

0

∫
Ω

{∫ u

k

signσ(φ(r)− φ(k))dr

}
ξtdxdt −→

∫ T

0

∫
Ω

|u− k|ξtdxdt,∫
Ω

{∫ u0

k

signσ(φ(r)− φ(k))dr

}
ξ(0, x)dx −→

∫
Ω

|u0 − k|ξ(0, x)dx.

After passing to the limit as σ goes to 0 in the second integral of (4.2), and using the fact that
k ∈ [uc, umax], we obtain the expression∫ T

0

∫
Ω

sign(u− k)
[
(f(u)−∇φ(u))− (f(k)−D)

]
.∇ξ.

The third integral of (4.2) writes∫∫
Q

ξ(f(u)− f(k)).∇signσ(u− k)−
∫∫
Q

ξ(∇φ(u)−D).∇signσ(φ(u)− φ(k)).
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By passing to the limit, the integral in the first term goes to 0, and the second term becomes

lim
σ→0

∫ T

0

∫
Ω

ξ (∇φ(u)−D) .∇signσ(φ(u)− φ(k))

= lim
σ→0

∫ T

0

∫
Ω

ξ (∇φ(u)−D) sign
′

σ(φ(u)− φ(k)).∇φ(u)

= lim
σ→0

1

σ

∫
Q∩{−σ<φ(u)−φ(k)<σ}

∇φ(u).(∇φ(u)−D)ξ.

The limit of last integral of (4.2) can be upper bounded as follows

lim
σ→0

∫ T

0

∫
∂Ω

signσ(φ(u)− φ(k))(f(k)−D).ηξ ≤
∫ T

0

∫
∂Ω

|(f(k)−D).η(x)| ξ.

Then, we obtain the required inequality (4.1). �

Now, we consider the stationary problem associated to problem (P ):

(S)

{
u+ div(f(u)−∇φ(u)) = g in Ω,

(f(u)−∇φ(u)).η = 0 on ∂Ω.

Remark 4.5. If u(x) independent of t is solution of (S) then u(t, x) = u(x) is solution of (P ) with the
source term g−u. Then, we can deduce from Definition 2.3 and Proposition 4.2 their equivalent form
for the stationary problem.

Definition 4.6. Let g a measurable function taking values in [0, umax]. A measurable function u taking
values in [0, umax] is an entropy solution of (S), if φ(u) ∈ H1(Ω) and for all ξ ∈ C∞(RN )+, ∀k ∈
[0, umax],

−
∫

Ω

sign(u− k) u ξdy +

∫
Ω

sign(u− k)
[
f(u)− f(k)−∇φ(u)

]
.∇ξdy

+

∫
∂Ω

|f(k).η(y)| ξdHN−1 +

∫
Ω

sign(u− k)gξdy ≥ 0. (4.3)

Proposition 4.7. Let ξ ∈ C∞(RN ); then for all k ∈ [uc, umax], for all D ∈ RN , for all entropy solution
u of (S), we have:

−
∫

Ω

sign(u− k) u ξdy +

∫
Ω

sign(u− k)
[
f(u)− f(k)−∇φ(u) +D

]
.∇ξdy

+

∫
∂Ω

|(f(k)−D).η(y)| ξdHN−1 +

∫
Ω

sign(u− k) g ξdy

≥ lim
σ→0

1

σ

∫
Ω∩{−σ<φ(u)−φ(k)<σ}

∇φ(u)(∇φ(u)−D)ξ. (4.4)

From now on, we will suppose that Ω=(a, b) is a bounded interval of R.

Proposition 4.8. For all measurable function g taking values in [0, umax] the problem (S) admits a
solution u such that (f(u) − φ(u)y) is continuous up the boundary, i.e., (f(u) − φ(u)y) ∈ C([a, b]).
Moreover, f(u)− φ(u)y is zero at y = a and y = b.

Proof. For existence of entropy solution, we can refer to [18, Chap 2], using Galerkin approximations,
in a way similar to and Theorem 3.4 and 3.1.
Now, if u is a weak solution of (S), this means that (f(u)−φ(u)y)y = g−u inD′. Then (f(u)−φ(u)y)y ∈
L∞([a, b]), which implies that (f(u)− φ(u)y) ∈W 1,∞([a, b]) ⊂ C([a, b]).
Now, as in Remarks 2.4, item 3, from (4.3) we deduce that (f(u)− φ(u)y)|∂Ω

= 0 in the weak sense.
Therefore f(u)− φ(u)y ∈ C0([a, b]). �
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Let us define the (possibly multivalued) operator Af,φ by it resolvent

(u, z)∈ Af,φ =
{
u such that u is an entropy solution of (S), with g = u+ z

}
.

For an operator A : L1(Ω) → L1(Ω), denote by R(A) its range, by D(A) its domain and by R(A),

D(A) their closures in L1(Ω) respectively.
Let us stress that for u∈D(A), f(u)−φ(u)y ∈ C([a, b]) due to Proposition 4.8.

Recall (cf. [7]) that an operator A is accretive if
[
β − β̂, α− α̂

]
L1(Ω)

≥ 0 for all (β, α), (β̂, α̂) ∈ A,

where for β, α ∈ L1(Ω) the bracket [., .]L1(Ω) is defined by [β, α]L1(Ω) =

∫
Ω

sign(β)α+

∫
[β=0]

|α|. If A

is accretive and R(I + λA) = L1(Ω) for some λ > 0, then A is m-accretive.

Proposition 4.9. Let (u, z) ∈ Af,φ, (û, ẑ) ∈ Af,φ. Then for ξ ∈ C∞(Ω)+∫
Ω

|u− û|ξdy +

∫
Ω

sign(u− û)
[
f(u)− f(û)− φ(u)y + φ(û)y

]
.ξydy

≤
∫

Ω

sign(u− û)(g − ĝ)ξdy +

∫
[u=û]

|g − ĝ|ξdy = [u− û, g − ĝ]L1(Ω). (4.5)

Proof. (Sketched) The proof of Proposition 4.5 is actually contained in the proof of Theorem 4.13
below, due to Remark 2.4. Actually a simpler argument applies, because both f(û) − φ(û)y and
f(u)− φ(u)y have strong trace in the context of the stationary problem (S). �

Somewhat abusively, we will write L1(Ω; [0, umax]) for the set of all mesurable functions from
[a, b] to [0, umax].

Proposition 4.10. 1. Af,φ is accretive in L1(Ω).
2. For all λ sufficiently small, R(I+ λAf,φ) contains L1(Ω; [0, umax]).

3. D(Af,φ) = L1(Ω; [0, umax]).

Proof. 1. Let (u, z) ∈ Af,φ, (û, ẑ) ∈ Af,φ. Applying Proposition 4.9 with ξ = 1 in (4.5) and the
standard properties of the bracket, we get

||u− û||L1(Ω) ≤ [u− û, g − ĝ]L1(Ω)

≤ [u− û, u− û+ z − ẑ]L1(Ω)

≤ ||u− û||L1(Ω) + [u− û, z − ẑ]L1(Ω).

We deduce that [u− û, z − ẑ]L1(Ω) ≥ 0, do that Af,φ is accretive.
2. For λ > 0, consider the problem

(Sλ)

{
uλ + λ(f(uλ)− (φ(uλ))y)y = g in Ω,

λ(f(uλ)− φ(uλ)y).η(y) = 0 on ∂Ω.

Notice that the notion of solution for (Sλ) is like in Definition 4.6. Let g ∈ L1(Ω; [0, umax]), and λ > 0
then, there exists uλ entropy solution of (Sλ) such that (uλ,

g−uλ
λ ) ∈ Af,φ. Hence g ∈ R(I + λAf,φ)

and therefore R(I + λAf,φ) ⊃ L1(Ω; [0, umax]), which was to be shown.
3. Let PC([a, b]; [0, umax]) be the set of piecewise constant functions from [a, b] to [0, umax]. Then

PC([a, b]; [0, umax]) is dense in L1([a, b]; [0, umax]). Take g ∈ PC([a, b]; [0, umax]), g =
∑
i

ci1(ai,bi)

where the (ai, bi) are disjoint intervals. There exists un ∈ L∞(a, b) entropy solution of (S 1
n

), i.e, we

have (un, n(g − un)) ∈ Aφ,f . For k ∈ [0, umax], for all ξ ∈ C∞0 (R) we get

1

n

∫ b

a

sign(un − k)
(
f(un)− f(k)− ∂yφ(un)

)
.∂yξdy

+

∫ b

a

sign(un − k)(g − un)ξdy +
1

n

∫
a,b

|f(k).η(y)| ξdσ ≥ 0. (4.6)
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For every i, one can construct ξni such that ξni → 1(ai,bi), as n→∞, suppξni ⊂ (ai, bi), ||∂yξ||L∞ ≤ 2 3
√
n

and, ξni ≡ 1 in (ai + δin, bi − δin) with δin = bi−ai
2 3
√
n

.

Take k = ci and ξ = ξni in (4.6).∫ bi−δin

ai+δin

|un − ci| ≤
1

n

∫ bi−δin

ai+δin

sign(un − ci)(f(un)− f(ci)− ∂yφ(un)))∂yξ
n
i

≤ 2

n
|b− a| ||f ||L∞ |.|∂yξni ||L1 + || 1√

n
∂yφ(un)||L2 .||∂yξni ||L2 .

Then, for all δ > δin, un → g a.e on
⋃
i

(ai + δ, bi − δ). We conclude by the Lebesgue theorem that

un → g in L1([a, b]).
In conclusion, D(Af,φ) is dense in PC([a, b]; [0, umax]) and therefore, also on L1(Ω; [0, umax]). �

Now, we can exploit the notion of integral solution (see, e.g., [7], [8]).

Definition 4.11. Suppose that h ∈ L1(Q), u0 ∈ L1(Ω). A function v ∈ C([0, T ];L1([a, b]; [0, umax])) is
an integral solution of the problem

vt +Af,φ(v) 3 h, v(t = 0) = u0, (4.7)

if v(0, .) = u0(.) and for all (u, z) ∈ Af,φ
d

dt
||v(t)− u||L1(Ω) ≤ [v(t)− u, h(t)− z]L1(Ω) in D′(0, T )

By Proposition 4.10, the operator Af,φ is m-accretive 1 densely defined in L1(Ω; [0, umax]), by
the general theory of non-linear semigroups (cf. [7], [8], [9]), we have the following result.

Corollary 4.12. Let Ω = [a, b], u0, û0 ∈ L1(Ω) and h, ĥ ∈ L1(Q). Let v, v̂ be integral solutions of (4.7)

associated with the data (u0, h) and (û0, ĥ), respectively. Then for a.e. t ∈ [0, T ).

||v(t)− v̂(t)||L1 ≤ ||u0 − û0||L1 +

∫ t

0

||h(τ)− ĥ(τ)||L1dt.

In particular, the integral solution is unique.

Theorem 4.13. Let Ω = [a, b]. Let v be an entropy solution of (P ) and u be an entropy solution of (S).
Then

d

dt
||v(t)− u||L1(Ω) ≤

∫
Ω

sign(v − u)(u− g)dx in D′(0, T ). (4.8)

In particular, v is an integral solution of (4.7) with h = 0.

First, note the following auxiliary result.

Lemma 4.14. Let δ be a positive function with support in [−1, 1] and ||δ||L1=1. Let for all z ∈ [−1, 1],
wn(., z) → w(.) and hn(., z) → h(.) in L1(R) as n → ∞. If in addition ||hn(., z)||L1(R) is bounded
uniformly in n and z, then

lim sup
n→∞

∫∫
signwn(x, z)hn(x, z)δ(z) ≤ [w, h]. (4.9)

Moreover, if for all n∈N and a.e. z ∈ [−1, 1], hn(., z) = 0 a.e. on {wn(., z)=0} and if h = 0 a.e. on
{w = 0}, then there exists

lim
n→∞

∫∫
signwn(x, z)hn(x, z)δ(z) =

∫
sign(w)h. (4.10)

1Rigourously speaking, this statement is false because L1(Ω; [0, umax]) is not a Banach space, but it’s convex subset.

Nonetheless, this subset is invariant for the stationary problem (S), therefore the nonlinear semi-groupe theory applies
without change in our case.
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Proof. Inequality (4.9) claim follows from the definition and the upper semicontinuity of the bracket,
the definition of δ and the Fatou lemma. Inequality (4.10) follows by applying the first one to wn, hn
and to −wn, hn. �

Proof of Theorem 4.13. To start with, note that by the result of [14] an entropy solution v of (P ) is
automaticaly times-continuous with values in L1(Ω; [0, umax]).
Now, we apply the doubling of variables [17] in the way of [2]. We consider v = v(t, x) an entropy
solution of (P ) and u = u(y) an entropy solution of (S). Consider nonnegative functions ξ = ξ(t, x, y)
having the property that ξ(., ., y) ∈ C∞([0, T ) × Ω) for each y ∈ Ω, ξ(t, x, .) ∈ C∞0 (Ω) for each
(t, x) ∈ [0, T )× Ω.
We denote Ωx = {x ∈ Ω; v(t, x) ∈ [0, uc]}; Ωy = {y ∈ Ω;u(y) ∈ [0, uc]} and Ωcx, Ωcy their complemen-
tary in Ω. In (4.1), take ξ = ξ(t, x, y), k = u(y), D = φ(u)y and integrate over Ωcy. We get∫

Ωcy

∫ T

0

∫
x∈Ω

{
|v − u|ξt + sign(v − u)

[
f(v)− φ(v)x − f(u) + φ(u)y

]
.ξy

}
+

∫
Ωcy

∫ T

0

∫
x∈∂Ω

|(f(u)− φ(u)y).η(x)| ξdσdtdy +

∫
Ωcy

∫
x∈Ω

|v0 − u|ξ(0, x, y)

≥ lim
σ→0

1

σ

∫
Ωcy

∫ T

0

∫
x∈Ω∩{−σ<φ(v)−φ(u)<σ}

φ(v)x(φ(v)x − φ(u)y)ξ. (4.11)

In the same way, in (2.2) take ξ = ξ(t, x, y), k = u(y), integrate over Ωy, and use the fact that
φ(u)y = 0 in Ωy. We get∫

Ωy

∫ T

0

∫
x∈Ω

{
|v − u|ξt + sign(v − u)

[
f(v)− φ(v)x − f(u) + φ(u)y

]
.ξy

}
+

∫
Ωy

∫ T

0

∫
x∈∂Ω

|(f(u)− φ(u)y).η(x)| ξ +

∫
Ωy

∫
x∈Ω

|v0 − u|ξ(0, x, y) ≥ 0. (4.12)

Since Ω = Ωx ∪ Ωcx, by adding (4.11) to (4.12) we obtain:∫
Ω

∫ T

0

∫
Ω

{
|v − u|ξt + sign(v − u)

[
f(v)− φ(v)x − f(u) + φ(u)y

]
.ξx

}
+

∫
Ω

∫ T

0

∫
x∈∂Ω

|(f(u)− φ(u)y).η(x)| ξ +

∫
Ω

∫
Ω

|v0 − u|ξ(0, x, y)

≥ lim
σ→0

1

σ

∫
Ωcy

∫ T

0

∫
x∈Ω∩{−σ<φ(v)−φ(u)<σ}

φ(v)x(φ(v)x − φ(u)y)ξ. (4.13)

We proceed in the same way, exchanging the roles of v and u. Starting from (4.4) and (4.3), we deduce∫ T

0

∫
Ω

∫
Ω

sign(v − u)
[
f(v)− φ(v)x − f(u) + φ(u)y

]
.ξydydxdt

+

∫ T

0

∫
Ω

∫
y∈∂Ω

|(f(v)− φ(v)x).η(y)| ξdσdxdt

+

∫ T

0

∫
Ω

∫
Ω

sign(v − u)(u− g(y))ξdxdtdy

≥ lim
σ→0

1

σ

∫
Ωcx

∫ T

0

∫
y∈∩{−σ<φ(u)−φ(v)<σ}

φ(u)y(φ(u)y − φ(v)x)ξ. (4.14)
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Now, sum (4.13) and (4.14) to obtain∫ T

0

∫
Ω

∫
Ω

|v − u|ξtdydxdt+

∫
Ω

∫
Ω

|v0 − u|ξ(0, x, y)dxdy

+

∫ T

0

∫
Ω

∫
Ω

sign(v − u)
[
(f(v)− φ(v)x)− (f(u) + φ(u)y)

]
.(ξx + ξy)

+

∫ T

0

∫
x∈∂Ω

∫
Ω

|(f(u)− φ(u)y).η(x)| ξdσdtdy

+

∫ T

0

∫
Ω

∫
y∈∂Ω

|(f(v)− φ(v)x).η(y)| ξdydσdt

+

∫ T

0

∫
Ω

∫
Ω

sign(v − u)(u− g(y))ξ

≥ lim
σ→0

1

σ

∫ T

0

∫∫
Ωcx×Ωcy∩{−σ<φ(v)−φ(u)<σ}

|φ(v)x − φ(u)y|2ξdydxdt ≥ 0. (4.15)

Next, following the idea of [2] we take the test function ξ(t, x, y) = θ(t)ρn(x, y), where θ ∈ C∞0 (0, T ),
θ≥0, ρn(x, y)=δn(∆) and ∆=(1− 1

n(b−a) )x−y+ a+b
2n(b−a) . Then, ρn ∈ D(Ω×Ω) and ρn|Ω×∂Ω

(x, y) = 0.

Due to this choice ∫ T

0

∫
x∈Ω

∫
y∈∂Ω

|(f(v)− φ(v)x).η(y)| ρnθdydσdt = 0.

By Proposition 4.8, (f(u)− φ(u)y) ∈ C0([a, b]). Therefore we have
|(f(u)− φ(u)y).η(x)| −→ 0 when x→ y, i.e, as n −→∞. We conclude that

lim
n→∞

∫ T

0

∫
x∈∂Ω

∫
y∈Ω

|(f(u)− φ(u)y).η(x)| ρnθdydσdt = 0.

It remains to study the limit, as n→∞

I =

∫ T

0

∫
Ω

∫
Ω

θsign(v − u)
[
(f(v)− φ(v)x)− (f(u)− φ(u)y)

]
.
(
(ρn)x + (ρn)y

)
dydxdt.

By the change of variable (x, y) 7→ (x, z) with z = n(x− y)− 1
b−ax+ a+b

b−a ,

I =
2

b− a

∫ 1

−1

∫ T

0

∫
Ω

sign(v − u)
[
(f(v)− φ(v)x)− (f(u)− φ(u)y)

]
.δ′n(z)θ

=
2

b− a

∫ 1

−1

∫ T

0

∫ b

a

sign(v(t, x)− un(x, z))
[
p(t, x)− qn(x, z)

]
δ′n(z)θ(t),

where un(x, z) := u(y), p(t, x) := f(v)− φ(v)x and qn := f(u)− φ(u)y. For z given, un(., z) converge
to u(.) in L1 and qn(., z) converges to q(.) := f(u)− φ(u)x in L1. From Lemma 4.14, we deduce that
for all z ∈ [−1, 1]

Kn(z) :=

∫
Q

sign(vn(t, x, z))hn(t, x, z)dxdt −→n→∞

∫
Q

sign(v)hdxdt =: K = const,

where vn := v−un, hn := p−qn and h := p−q. ThenKn(.) converge toK independently of z. Moreover,
from the definition of Kn ones finds easly the uniform L∞ bound |Kn| ≤ 2(||p||L1(Q) + T ||q||L1(Ω)),
for n large enough. Hence by the Lebesgue theorem,

lim
n→∞

∫ 1

−1

Kn(z)δ′(z) = K

∫ 1

−1

δ′(z) = 0.
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We have shown that the limit I → 0. The passage to the limit in other terms in (4.15) is straightfor-
ward. Finally (4.15) gives for n −→∞∫ T

0

∫
Ω

|v(t, x)− u(y)|θ′(t)dxdt+

∫ T

0

∫
Ω

sign(v − u)(u− g)θ ≥ 0.

Hence
d

dt
||v(t)− u||L1(Ω) ≤

∫
Ω

sign(v − u)(u− g)dx in D′(0, T ).

Thus, v is an integral solution of (4.7). �

Now, the claim of Theorem 4.1 is a direct consequence of the fact that the entropy solution is
also an integral solution, and of Corollary 4.12.

5. Appendix: Existence of entropy solutions for the viscosity regularized problem

For the sake of completeness, we give a full proof of Theorem 3.4. By C, we denote a generic constant
independent of the approximation parameters ε and m, otherwise, the dependence of C is made explicit
in the notation.

Proof of Theorem 3.4. We need four steps for this proof.
First step: By Faedo-Galerkin method (see e.g., [18]), we construct a sequence of approximate solu-
tions. We choose Vm = 〈e1(x), ..., em(x)〉 with (ei)

∞
i=1 a regular Hilbert basis of H1(Ω) and formulate

the problem in terms of the new unknown wε = φε(u
ε). We seek wεm(t) =

m∑
i=1

cim(t)ei(x), then we

require

ProjVm

(
φ−1
ε (wεm)t + div f(φ−1

ε (wεm))−∆wεm

)
= 0.

Here ProjVm is the orthogonal projection, in L2(Ω), on the subspace Vm. The function φ−1
ε is Lipschitz

continuous, and (φ−1
ε )′ ≤ 1

ε . To start with, we assume that φ is Lipschitz continuous; then (φ−1
ε )′ ≥

α > 0. Then the equation rewrites as

ProjVm

(
(φ−1
ε )

′
(wεm)

m∑
i=1

c
′

imei(x) + div f̃(wεm)−
m∑
i=1

cim(t)∆ei(x)

)
= 0;

where f̃ = f ◦φ−1
ε . To determine the family {cim}i ⊂ C1([0, T ]), we write the weak formulation of the

above equation in Ω with ej as test function: we get

m∑
i=1

c
′

im(t)

∫
Ω

(φ−1
ε )

′
(wεm)ei.ejdx−

∫
Ω

(
f̃(wεm)−

m∑
i=1

cim∇ei(x)

)
.∇ejdx = 0;

1 ≤ j ≤ m. Recall that wεm depends on x and on (cim)i. Notice that the matrix M(ci1, ..., cim) =(∫
Ω

(φ−1
ε )

′
(wεm)ei.ejdx

)
i,j

is invertible due to the fact that for all b = (b1, ..., bm) ∈ Rm

(
Mb, b

)
=

∫
Ω

(φ−1
ε )

′
(wεm)|

m∑
i=1

biei|2 ≥ const(m)α||b||2.

We obtain a system of non-linear differential equations, which is completed with initial condition
wεm(0) = wε0m; wε0m =

∑m
i=1 βimei where βim are chosen to ensure that wε0m −→ φε(u

ε
0) in L2(Ω).

By the Cauchy-Peano theorem of the classical ODE theory, we have existence of solution wεm(t) in
some interval [0, tm], tm > 0. Note that existence of uεm is ensured by the fact that φε is bijective,
moreover, wεm = φε(u

m
ε ) and uεm is in C1(0, tm;Vm).

Now, we have to prove that tm = T .
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Second step: a priori estimates.
We can take wεm as a test function and we integrate over [0, t]; we get∫

Ω

∫ t

0

θε(w
ε
m)sdsdx−

∫ t

0

∫
Ω

f(uεm).∇wεmdxds+ ||∇wεm||2L2(0,t;Ω) = 0. (5.1)

Here θε(w
ε
m) =

∫ wεm

0

rdφ−1
ε (r) and we have used the chain rule for C1 functions of variable t. It is

also possible to rewrite the function θε(w
ε
m) as ψε(u

ε
m) =

∫ uεm

0

φε(r)dr . Since f has its support in

[0, umax], the second integral of (5.1) can be upper bounded as follows∣∣∣∣∣
∫ t

0

∫
Ω

div

(∫ uεm

0

f(r)dφε(r)

)
dxds

∣∣∣∣∣ =

∣∣∣∣∣
∫ t

0

∫
∂Ω

(∫ uεm

0

f(r)dφε(r)

)
.ηdHN−1ds

∣∣∣∣∣
≤ dφε([0, umax])||f ||L∞ |∂Ω|T
≤ (φ(umax) + 1)||f ||L∞ |∂Ω|T.
≤ C = C(T, ∂Ω, ||f ||L∞)

with dφε([0, umax]) the measure of [0, umax] with respect to the Stieltjes measure dφε. Hence,∫
Ω

θε(w
ε
m)(t)dx+ ||∇wεm||2L2(0,t;Ω) ≤ C +

∫
Ω

θε(w
ε
m)(0)dx. (5.2)

The last term in the right-hand side of inequality (5.2) is bounded uniformly in m by
1

ε
sup
m
||wε0m||2L2 .

In fact,∫
Ω

θε(w
ε
m)(0)dx=

∫
Ω

∫ wεm(0)

0

r(φ−1
ε )′(σ)drdx≤1

2
||(φ−1

ε )′||∞||wεm||2L2(Ω)≤
1

ε
sup
m
||wε0m||2L2(Ω).

Then ∇wεm is bounded in L2(Ω) uniformly in m.
Without loss of restriction, we can assume φ ≡ 0 on (−∞, 0] and φ ≡ φ(umax) on [umax,+∞). (Indeed,
we show in the last step that u takes values in [0, umax], therefore the values of φ outside [0, umax] do
not matter.) Then φ′ε = ε outside [0, umax]. Hence, for w /∈ [0, φ(umax) + 1], we have (φ−1

ε )′(w) = 1
ε .

Therefore

|wεm|2 ≤ C(ε)(1 + θε(w
ε
m)). (5.3)

This means that tm = T and wεm is bounded in L2(0, T,H1(Ω)) uniformly in m.
Now, fix δ and consider t such that [t, t + δ] ⊂ [0, T ]. We integrate over s ∈ [t, t + δt]. Then, we take
(by approximation) (wεm(t+ δt, .)− wεm(t, .))1[0,T−δt] as test function

∫ T−δt

0

∫ t+δt

t

∫
Ω

(uεm(s, .))
′
(
wεm(t+ δt, .)− wεm(t, .)

)
dxdtds

−
∫ T−δt

0

∫ t+δt

t

∫
Ω

f(uεm).∇
(
wεm(t+ δt, .)− wεm(t, .)

)
dxdsdt

+

∫ T−δt

0

∫ t+δt

t

∫
Ω

∇wεm(s, x).∇
(
wεm(t+ δt, .)− wεm(t, .)

)
dxdtds = 0. (5.4)
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Denote the three terms in the left-hand side of (5.4) by A, B and D respectively. We calculate

A =

∫ T−δt

0

∫ t+δt

t

∫
Ω

(uεm(s, .))
′
(
wεm(t+ δt, .)− wεm(t, .)

)
dxdtds

=

∫ T−δt

0

∫
Ω

(
wεm(t+ δt, .)− wεm(t, .)

)∫ t+δt

t

(uεm(s, .))
′
dsdxdt

=

∫ T−δt

0

∫
Ω

(
wεm(t+ δt, .)− wεm(t, .)

)(
uεm(t+ δt, .)− uεm(t, .)

)
dxdt; (5.5)

|B| =

∣∣∣∣∣−
∫ T−δt

0

∫ t+δt

t

∫
Ω

f(uεm(s, .)).∇
(
wεm(t+ δt, .)− wεm(t, .)

)
dxdtds

∣∣∣∣∣
≤

∣∣∣∣∣
∫ T−δt

0

∫ t+δt

t

∫
Ω

f(uεm(s, .)).∇
(
wεm(t+ δt, .)− wεm(t, .)

)
dxdtds

∣∣∣∣∣
≤ C(ε)δt

[∫ T−δt

0

∫
Ω

|∇wεm(t+ δt, .)|+
∫ T−δt

0

∫
Ω

|∇wεm(t, .)|

]
.

By a change of variable in the first integral (τ = t+ δt), using Cauchy-Schwarz inequality we obtain

|B| ≤ 2C(ε)δt||∇wεm||L2(Q)||1Q||L2(Q) ≤ C(ε)δt. (5.6)

The last integral of (5.4) is treated similarly

|D| ≤

∣∣∣∣∣
∫ T−δt

0

∫ t+δt

t

∫
Ω

∇wεm(s, .).∇
(
wεm(t+ δt, .)− wεm(t, .)

)∣∣∣∣∣
≤ 2

∫
Ω

∫ T−δt

0

|∇wεm(τ, .).|

(∫ t+δt

t

|∇wεm(s, .)|ds

)
dτdx

≤ 2||∇wεm||L2(Q)

∫
Ω

∫ T−δt

0

(∫ t+δt

t

|∇wεm(s, .)|ds

)2

dτdx

 1
2

.

Using Jensen’s Inequality,(∫ t+δt

t

|∇(wεm(s, .))|ds

)2

≤
∫ t+δt

t

|∇(wεm(s, .))|2ds.

We find

|D| ≤ 2||∇wεm||L2(Q)

√∫
Ω

∫ T

0

∫ t+δt

t

|∇wεm(s, .)|2 ≤ C(ε)
√
δt. (5.7)

The sum of (5.5), (5.6) and (5.7) gives∫ T−δt

0

∫
Ω

∣∣∣(wεm(t+ δt, .)− wεm(t, .)
)(
uεm(t+ δt, .)− uεm(t, .)

)∣∣∣ ≤ C(ε)(δt+
√
δt).

Now, using the fact φ−1
ε is Lipschitz, there exist another constant C(ε) such that

||uεm(t+ δt, .)− uεm(t, .)||L2(0,T−δt;Ω) ≤ C(ε)(
√
δt+ δt). (5.8)

By the characterization theorem for H1(Ω) (see [10]), since Vm ⊂ H1(Ω), and ||∇wεm||L2(Q) ≤ C, we
have for all open subset ω ⊂⊂ Ω

||uεm(t, x+ δx)− uεm(t, x)||L2(0,T ;ω) ≤ C(ε)δx. (5.9)
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Finally, we obtain

||uεm(t+ δt, x+ δx)− uεm(t, x)||L2(0,T−δt;ω) ≤ C(ε)(
√
δt+ δt+ δx). (5.10)

Third step: Passage to the limit (m −→ +∞).
By the estimate ||wεm||L2(0,T ;H1(Ω)) ≤ C(ε), by (5.10) and Fréchet-Kolmogorov compactness criterion,

(uεm)m is relatively compact in the space L2(0, T ;H1(Ω)) weakly and in L1
Loc((0, T ) × Ω) strongly.

Moreover, ||uεm||L2(Q) ≤ C(ε) then, uεm is relatively compact in L1(Q) strongly.
We can take ξ(t)ei(x) as test function in the weak formulation where ξ ∈ D[0, T ), for m ≥ 0, we have∫ T

0

∫
Ω

uεmξ
′
eidxdt+

∫ T

0

∫
Ω

(
f(uεm)−∇wεm

)
.∇eiξdxdt+

∫
Ω

uε0mξ(0)eidx = 0.

We can extract a subsequence wεm such that ∇wεm ⇀ ∇wε in L2(Q) and uεm → uε in L1(Q) and a.e..
The Lebesgue theorem, continuity and boundednes of f permit at last to pass to the limit. Finally we
conclude that (2.2) holds, this means that uε is a weak solution of (Pε) by the density of the linear
span of D(0, T )×D(Ω) in D([0, T )× Ω).
At this point, we can also drop the Lipschitz continuity assumption on φ. Indeed, approximating φ
with a sequence of Lipschitz continous functions φα, on as uniform in α estimates (5.10). Then on can
pass to the limit as α goes to zero in the equation corresponding to φ = φα, with the same argument
as above.
Its remains to prove that uε is an entropy solution.
Fourth step: Now, we prove that weak solution of (Pε) is also an entropy sub-solution and entropy
super-solution.
Since uε is a weak solution of (Pε), then uε is a also weak solution of the following problem

(Pk,ε)


(uε − k)t + div

[
f(uε)−∇φε(uε)− f(k)

]
= 0 in Q,

uε(0, x)− k = uε0(x)− k in Ω,(
f(uε)−∇φε(uε)− f(k)

)
.η = −f(k).η on Σ.

Take sign+
σ (uε − k)ξ in the weak formulation of this problem with ξ ∈ C∞([0, T [×RN ), ξ ≥ 0.

We get (see [1] and [15] for the use of H1(Ω)∗ −H1(Ω) duality)∫ T

0

〈
(uε − k)t, sign

+
σ (uε − k)ξ

〉
H1(Ω)∗,H1(Ω)

−
∫ T

0

∫
∂Ω

sign+
σ (uε − k)f(k).ηξ

−
∫ T

0

∫
Ω

[
f(uε)−∇φε(uε)− f(k)

]
ξ∇sign+

σ (uε − k)

−
∫ T

0

∫
Ω

sign+
σ (uε − k)

[
f(uε)−∇φε(uε)− f(k)

]
.∇ξ = 0. (5.11)

The first integral of 5.11 gives (see [1] and [15] for the use of Chain rule)∫ T

0

〈
(uε − k)t, sign

+
σ (uε − k)ξ

〉
= −

∫ T

0

∫
Ω

{∫ uε

k

sign+
σ (r − k)dr

}
ξtdxdt

−
∫

Ω

{∫ uε0

k

sign+
σ (r − k)dr

}
ξ(0, x)dx.

Passing to the limit as σ goes to 0, we obtain:∫ T

0

∫
Ω

{∫ uε

k

sign+
σ (r − k)dr

}
ξtdxdt −→

∫ T

0

∫
Ω

(uε − k)+ξtdxdt,

∫
Ω

{∫ uε0

k

sign+
σ (r − k)dr

}
ξ(0, x)dx −→

∫
Ω

(uε0 − k)+ξ(0, x)dx.
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The limit of the second integral of (5.11) can be upper bounded as follows

lim
σ→0

∫ T

0

∫
∂Ω

sign+
σ (uε − k)f(k).ηξ ≤

∫ T

0

∫
∂Ω

(f(k).η(x))
+
ξ.

The third integral of (5.11) writes

−
∫∫

Ω

ξ∇φε(uε).∇sign+
σ (uε − k) +

∫∫
Ω

ξ (f(uε)− f(k)) .∇sign+
σ (uε − k).

Here, the first integral is non-positive. Moreover, the second one tends to zero as σ→0. In fact, to see
this, we set Fσ(r)=

∫ r
k−σ(f(s)− f(k))sign+′

σ (s− k)ds. We have |Fσ(r)| ≤ 2 sup
|k−s|<σ

|f(s)− f(k)|. Using

now the Green-Gauss formula, we find∣∣∣∣∫
Ω

sign+′

σ (uε − k)∇uε.(f(uε)− f(k))ξ

∣∣∣∣ =

∣∣∣∣∫
Ω

div(Fσ(uε))ξ

∣∣∣∣
≤ 2 sup

|k−s|<σ
|f(s)− f(k)|

(∫
Ω

|∇ξ|+
∫
∂Ω

|ξ|
)
→ 0 as σ → 0.

Finally, we obtain∫ T

0

∫
Ω

{
(uε − k)+ξt + sign+(uε − k)

[
f(uε)−∇φε(uε)− f(k)

]
.∇ξ

}
dxdt

+

∫
Ω

(u0 − k)+ξ(0, x)dx+

∫ T

0

∫
∂Ω

(f(k).η(x))
+
ξdHn−1dt ≥ 0.

Therefore uε is entropy sub-solution of (Pε). In the same way, we prove that uε is entropy super-
solution of (Pε).
Now we prove that uε is bounded. To this aim take ξ = ξ(t), ( i.e., ∇ξ = 0), take k = 0 in (2.3), and
use (1.1) and the fact that uε0 ∈ [0, umax]. We get∫

Ω

(uε)−(0, .)ξ(0, .) +

∫ T

0

∫
Ω

(uε)−(t, x)ξt =

∫ T

0

(∫
Ω

(
(uε)−(t, x)− (uε0)−(x)

))
ξt ≥ 0.

Let us introduce the function

G(t) ≤


∫

Ω

(
(uε)−(t, x)− (uε0)−(x)

)
dx for t ∈ (0, T ),

0 for t ∈ (−T, 0).

We have
dG

dt
≤ 0 in D′(−T, T ), and therefore since G(t) vanishes for t < 0, we deduce∫

Ω

(uε)−(t, x)dx ≤
∫

Ω

(uε0)−(x)dx = 0, i.e., uε(t, x) ≥ 0.

In the same way, we get uε(t, x) ≤ umax.
Now, we go back to the technique used to get (5.2), recall that we can rewrite θε(w

ε) as ψ(uε). We
find ∫

Ω

ψε(u
ε)(t) + ||∇wε||2L2(0,t;Ω) ≤ C +

∫
Ω

ψε(u
ε)(0). (5.12)

The last term is now bounded uniformly in ε, due to the L∞ bound on uε. Therefore,

||wε||L2(0,T ;H1(Ω)) ≤ C, (5.13)

with C that is now ε−independent.
Finally, if we take uε as test fonction in (3.1), we find

1

2
||uε(t)||2L2(Ω) + ||

√
ε∇uε||2L2(Q) ≤ C +

1

2
||uε0||2L2(Ω).
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Then

||
√
ε∇uε||2L2(Q) ≤ C. (5.14)

This concludes the proof of the Theorem �
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16, route de Gray
25030 Besancon France
e-mail: mgazibok@univ-fcomte.fr


