Entropy formulation of degenerate parabolic equation with zero-flux boundary condition - Archive ouverte HAL Access content directly
Journal Articles Journal of Applied Mathematics and Mechanics / Zeitschrift für Angewandte Mathematik und Mechanik Year : 2013

Entropy formulation of degenerate parabolic equation with zero-flux boundary condition

Abstract

We consider the general degenerate hyperbolic-parabolic equation: \begin{equation}\label{E}\tag{E} u_t+\div f(u)-\Delta\phi(u)=0 \mbox{ in } Q = (0,T)\times\Omega,\;\;\;\; T>0,\;\;\;\Omega\subset\mathbb R^N ; \end{equation} with initial condition and the zero flux boundary condition. Here $\phi$ is a continuous non decreasing function. Following [B\"{u}rger, Frid and Karlsen, J. Math. Anal. Appl, 2007], we assume that $f$ is compactly supported (this is the case in several applications) and we define an appropriate notion of entropy solution. Using vanishing viscosity approximation, we prove existence of entropy solution for any space dimension $N\geq 1$ under a partial genuine nonlinearity assumption on $f$. Uniqueness is shown for the case $N=1$, using the idea of [Andreianov and Bouhsiss, J. Evol. Equ., 2004], nonlinear semigroup theory and a specific regularity result for one dimension.
Fichier principal
Vignette du fichier
Article01.pdf (235.04 Ko) Télécharger le fichier
Origin : Publisher files allowed on an open archive
Loading...

Dates and versions

hal-00697593 , version 1 (15-05-2012)
hal-00697593 , version 2 (04-10-2012)

Licence

Attribution - NonCommercial - CC BY 4.0

Identifiers

Cite

Boris Andreianov, Mohamed Karimou Gazibo. Entropy formulation of degenerate parabolic equation with zero-flux boundary condition. Journal of Applied Mathematics and Mechanics / Zeitschrift für Angewandte Mathematik und Mechanik, 2013, 164 (5), pp. 1471-1491. ⟨10.1007/s00033-012-0297-6⟩. ⟨hal-00697593v2⟩
522 View
231 Download

Altmetric

Share

Gmail Facebook Twitter LinkedIn More