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A framework for manipulation and locomotion

with realtime footstep replanning

Duong Dang, Florent Lamiraux and Jean-Paul Laumond

Abstract—This paper focuses on realization of tasks with
locomotion on humanoid robots. Locomotion and whole body
movement are resolved as one unique problem. The same planner
and controller are used for both stages of the movement. Final
posture and footprint placements are found by resolving an
optimization problem on the robot augmented by its footprints.
Footstep replanning is done in realtime to correct perception
and execution errors. The framework is demonstrated with the
HRP-2 robot in a number of different scenarios.

Index Terms—locomotion, footsteps, replanning, realtime, vi-
sual servoing

I. INTRODUCTION

L
OCOMOTION and manipulation are among the most

exciting topics in humanoid robotics research. Numerous

works have been carried out in the past years in walking and

running generation [1]–[7], notably with the introduction of

the zero momentum point (ZMP). On manipulation, task-based

methods have been developed since the eighties of the last

century for industrial robot and robotic arms, [8], [9]. These

methods have been extended to humanoids in recent years as

more and more robots have been made available for research

[10]–[12].

While both locomotion and manipulation generate on their

own great interests for research and can be treated separatedly

as is often the case, it is intriguing how much one can extend

the capability of robots when combining these two problems in

the same context. With locomotion coupled with manipulation,

the robot is no longer constrained to manipulate only objects

in its workspace. In fact, the workspace is extended with

locomotion that just becomes another task. In addition to

creating new capability and new task, there is a real need

to build the bridge between locomotion and manipulation.

There are many cases where the coupling is so important

that one cannot separate both problems. A humanoid robot

might need to make steps before manipulating some objects. A

dynamically demanding manipulation scenario might require

that the robot end up at some exact configuration at the end

of the locomotion stage. For instance, to manipulate an object

at ground level, constraints have to be put on feet placement

and affect the way locomotion should be conducted.

Resolving locomotion and a complex upper body manipu-

lation is, however, not a simple task in practice. Typically, a

computationally expensive planning stage is involved at first.

The resulting plan may be expressed either in configuration
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Fig. 1. Footprints replanning during locomotion in a
waling-grasping scenario on HRP2. (Videos available at
http://homepages.laas.fr/nddang/humanoids2011)

space, which can be executed directly on the robot, or in terms

of tasks to be given to the controller. Yet, no sensing system

is perfect, the information obtained at the planning stage is

usually different from reality. In addition, execution errors,

due for instance to sliding while walking make open loop

execution unrealistic. As a consequence, correction has to be

done online. This is a challenging task since a time-consuming

replanning can prevent the robot from being reactive. Online

generation of footsteps have been studied previously by several

research groups [13]–[15] but usually in the context of a

decoupled locomotion problem.

In this paper, a framework is proposed to treat both

manipulation and locomotion with online replanning. Sources

of errors such as perception system, execution error, moving

objective are taken into account online by the motion planner,

which in turn, produces in real time up-to-date instructions to

the controller in the form of task space trajectories for the feet

(steps) and for the upper-body (manipulation).

Approach and contribution

The motion planner in this paper extends the work of

Kanoun et al. [16], [17], where robot motion is resolved in

the form of an optimization problem. The humanoid robot is

augmented by its footprints and tasks are expressed on this

this augmented robot. Modifications have been made to the

initial method in order to make it run on-line. First, instead of

resolving the problem in the configuration space of the robot,

only an intermediate state of the resolution is performed and

fed to the controller: namely final posture and foot placements

during walking.

The main contribution of this paper is the integration of

the method described in [16] into a control framework that
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Fig. 2. Architecture

achieves real time replanning during walking. The entire

framework is then validated with a number of different

scenarios on the dynamic simulator OpenHRP and validated

on the real robot with the scenario described in Section IV-C

(Figure 1).

II. IMPLEMENTATION

A. Architecture overview

Figure 2 depicts how different components interact with

each other. At first, a complete plan is made and fed to

the system. This is done only once hence the dotted arrow.

In the execution loop, images from the robot cameras are

transmitted to the perception module. This module analyses

the images to detect and localize objects of interest in the

environment with respect to the robot. The visual servo uses

3D position of tracked object to replan in real time upcoming

footprints and upper body tasks (hand task, posture task,

etc.). Footprints are passed to a preview controller which also

computes trajectories of critical operation points of the lower

body, which is responsible for walking or keep the robot

balanced while standing, namely, trajectories of left foot, right

foot and the center of mass. The controller combines these

tasks all together within a prioritized stack and computes the

appropriate control signal that is sent to the robot. Since the

controller makes no distinction between walking and object

manipulation, it only executes tasks, there is no "gap" between

the walking and manipulation stages.

B. Footstep and posture planning

The core of the plannner is the resolution of a hierachical

system of inequality and equality tasks [16], [17]. The special

feature of this approach is the possibility of having inequality

tasks in higher priority than equality task. This is extremely

helpful in humanoid robots where a lot of contraints have to

be expressed as inequality tasks.

1) Prioritized linear and inequality systems: Considering a

system of linear equalities and inequalities:

Ax = b (1)

Cx ≤ d (2)

for which the solution can be expressed as an optimization

problem

min
x∈Ω,w∈ℜn

1

2
||Ax− b||2 +

1

2
||w||2 (3)

subject to

Cx− w ≤ d (4)

In an prioritized linear system, one can resolve 3 iteratively

at each level as follows:

S0 = ℜn (5)

Sk+1 = argmin min
x∈Ω,w∈Rn

1

2
||Ax− b||2 +

1

2
||w||2 (6)

subject to Ckx− w ≤ dk (7)

In robotics, a task is typically represented by its Jacobian

J . The classic example is a position task in operational space

with T (q) = 0 is the goal and T (q) = c the current

error. The solution q̇ to achieve exponential convergence

c = C0 exp(−λt) is written as

Jq̇ = −λc , J =
∂T

∂q
(q) (8)

Other tasks can be written as inequalities T (q) ≤ 0 such

as collision and self-collision avoidance, joint limits, etc.̇ The

resolution of a prioritized set of task can be computed by:

Find q̇∗ ∈ Sk:

S0 = ℜn

Si = arg

{

min
q̇∈Si−1

1

2
||Jiq̇ − ei||

2

}

for equality tasks

Si = arg

{

min
w,q̇∈Si−1

1

2
||w||2 s.t. Jiq̇ − ei ≤ w

}

for inequality tasks

2) Application to footstep planning: As explained earlier,

the determination of footsteps and final posture defining the

motion executed on the robot is achieved in one problem

by using the previous resolution of equality and inequality

system. The main idea of this approach is to add a virtual

joint (Figure 3) with three degree of freedoms for each step.

Let us consider a robot of n degrees of freedom executing k

steps, the resulting virtual kinematic chain adds 3k degrees of

freedom to the real robot to form a n + 3k d.o.f. kinematic

chain. Constraints on how far the robot can physically step or

turn become joint limits for theses new joints. The constraints

that the robot should not step one foot on one another becomes

auto-collision avoidance. On this new robot with this set of

constraints in addition, a set of appropriate tasks can then be

applied, namely:



Fig. 3. Virtual kinematic chain

Fig. 4. Deployment of virtual kinematic chain

• inequality constraints, in order, joint limits, projection of

the center of mass, self-collision avoidance of robot, self-

collision avoidance for the virtual manipulator, position

and orientation of the supporting foot

• object manipulation task. e.g. grasp, reach for an object

with 2 hands, etc.

• parallel task for the upper body during walking,

• gaze task (keep objects of interest in the vision field).

Figure 5 depicts how the upperbody task "attracts" the

augmented robot hence initiate footeps. The last n degrees

of freedoms in the result represent the final posture, and

the final position of the virtual kinematic chain represents

footsteps. The complete motion in configuration space can

then be found by passing the footsteps to a preview controller

which output trajectories for left foot, right foot and the center

of mass. These trajectories in turn, in addition with the upper

body task at the final step can be given as equality tasks to

the prioritized stack. The resulting motion is therefore never

computed before-hand. It is instead the result of the control

architecture.

Determine the number of steps: In the previous section,

it was assumed that the number of steps k was known before

hand. However, the target detected by the vision system can be

found in a wide range of distance. Therefore, it is difficult to

guess in advance how many steps the robot should make. One

important point in this section and also the first modification

made on this paper to the original method is the fact this

parameter k can be found automatically by the optimizer. The

algorithm is summarized as follows:

Figure 5. depicts the exploration of the virtual kinematic

chain in space.

III. ONLINE FOOTSTEP REPLANNING

One big challenge in our context is the use of stereo-vision

to detect and localize objects. Localization errors grow dra-

matically with the distance between the object and the sensor.

Usually, this distance is maximal in the initial configuration

of the robot, when motion planning is performed.

Algorithm 1 Footsteps planning with variable number of steps

Require: initial position.

Require: manipulation task.

Require: obstacle positions.

Ensure: footprints and final posture Initialize solver with 0

virtual link.

repeat

Solve the optimization problem.

if Reach local minimum then

Add new virtual link

end if

Check manipulation task error

until goal reached

Fig. 5. Find the number of steps automatically by the optimizer

The resolution to a complete motion in joint space described

in previous section typically takes up to one minute for a

long motion. Yet, to be reactive, replanning should finish

at least once every stepping interval of the robot (typically

under a second). It is clear that replanning the motion up to

configuration space motion is not feasible in practice.

A. Footsteps and final posture replanning

As explained ealier intermediate results, i.e. final posture

and footsteps, of the planning stage are sufficient for the

controller. This is where replanning becomes feasible since

the computation of footsteps and posture is typically from 3 to

10s, a replanning could be well below 1s and hence guarantee

reactivity. The augmented robot then starts at previous state

and update its tasks according to new sensory information

about landmarks. Algorithm 2 describes the stages of planning,

the results are shown in Figure 6. The solver converges

more quickly than planning footsteps and posture from initial

position since the current configuration is already closed to

the goal configuration. Table I shows replanning time for

a grasping task with goal as a ball on the ground at a

distance around 2 meters. The modification is taken randomly

in arbitrary directions.

Fig. 6. Footsteps replanning



Algorithm 2 Footprint replanning

Require: curent plan.

Ensure: new plan

1: loop

2: replan_needed← false

3: check position of target in camera

4: check current step number

5: if Goal position changes then

6: Update gaze and hand task

7: replan_need← true

8: end if

9: if current step number changes then

10: Update virtual manipulator in solver

11: replan_need← true

12: end if

13: if replan_needed then

14: Replan to new solution

15: end if

16: end loop

Goal modification (m) Max (ms) Min(ms) Average (ms)

0.01 2615 251 595.1
0.02 2159 275 673.2
0.05 2343 488 920.7
0.1 2498 593 1299.8
0.2 4166 608 1977.0
0.5 7123 610 3685.3

TABLE I
CPU TIME FOR REPLANNING OF FINAL POSTURE AND FOOTSTEPS

(MILISECONDS) FOR A LOCOMOTION-GRASP TASK (FIGURE 1)

The replanning process for the whole-body and footsteps

depends greatly on configuration and it is not guarantied

a computing time less than stepping time (0.8s). Without

modification, small corrections (e.g. due to drifting) can be

dealt with. Otherwise, an execution strategy must be applied

at the planning-control bridge to deal with large errors, such

as the case of stereo vision system.

Stop and go: One obvious approach to address the

realtime issue is to stop the robot or let it step in place if

the planner takes too long to response.

Interative optimisation: As shown in Section II-B, the

complexe robot tends towards the goal during the optimisation

process. At early stages, i.e. when the robot starts, having the

full solution with all footsteps and final pose is not necessary.

In fact, even a full solution is found, it is highly likely that

this solution will change during walking motion to compensate

sensory errors. The planner can keep up with the controller

by only replan, at each correction, to an intermediate state.

Namely, line 14 in Algorithm 2 will be modified to: "replan

to new solution or timeout", where the timeout chosen is one

stepping period.

While stop and go strategy guarantees optimised trajectory

at each replanning stage, it produces unnatural movements on

the robot. Using interative approach, the robot does not have to

stop while correcting its paths towards the new goal. However,

this method relies on the assumption that the intermediate

Goal modification (m) Max (ms) Min(ms) Average (ms)

0.01 16 8 10.7
0.02 38 7 11.4
0.05 12 9 11.0
0.1 48 9 15.5
0.2 23 11 20.0
0.5 117 15 33.6

TABLE II
CPU TIME FOR REPLANNING FOOTSTEPS (MILISECONDS) FOR A

LOCOMOTION-GRASP TASK FOR A LOCOMOTION-GRASP TASK (FIGURE 1)

stage found at each timeout is safe for the robot.

As it turns out, there exists a third strategy which consists

in reducing the dimension of the optimisation problem in

replanning stage by blocking some or all joints belonging

to the upper body. At each replanning step, optimised foot

placements and posture are found without compromising the

time constraint. Without having to interupt the optimisation

process at each timeout as the second approach, this method is

also simpler to implement on the robot. This thrird strategy is

chosen for experiement and is detailed in the following section.

B. Realtime footstep replanning

While footsteps have to be changed to correct execution

drift or perception error, the posture does not. In fact, unless

new obstacles are found near the goal the previous posture

stays valid. For example, if the robot is to approach and open a

door, even the position of the door on its reference has change,

the previous posture still guarantees dynamic equilibium. This

scenario covers most cases in experiment. The most part of

the last n degrees of freedom of the the augmented robot can

be ’frozen’ while other joints are free to move. Suppose l

degrees of freedom are locked. This translates into reducing

the dimension of the Jacobians, hence the complexity of the

problem.

Table II shows replanning time in a grasping scenario

similar to the one described in previous section with the

posture of the standing robot "frozen". This is the other

extreme case compared to Table I where every joint in the

standing robot is free to move. In the first replanning scheme,

the robot can barely correct small errors, so the robot has to

make many small corrections at a time, hence a large amounts

of supplement steps have to be added to the locomotion stage.

In the second replanning schema however, the replan time is

much less than time necessary for the robot to make a step.

This guarantees a realtime replanning running behind the scene

and updating robot footprints continuously.

Extension to footstep replanning of an arbitrary initial

path: In cases where all upper-body joints are blocked in the

replanning phase, this method can be extended to a variety

of motion. In fact, the inputs for the planner is just initial

footsteps and postures, which can be given by a different

planner than the one described in section II-B, for example,

an RRT planner. The robot can therefore deals with more

complexe cases, typically scenarios where the optimisation

method fails due to local minima, for example, a long wall

is placed between the robot and goal.
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Fig. 7. Stack of task during walking (left) and manipulation (right)

C. Control

With the plan (final posture and footsteps) being updated

in realtime, it is up to the controller to executed the plan.

In this framework the "stack-of-tasks" [18]–[20] is used. The

principle of task-based control is similar to the formulation of

optimisation problem in Section II-B.

In this framework the control law q̇i is written as following:

q̇i = −λJ
+
i ei (9)

J+
i is the pseudo-inverse of the Jacobian Ji [9]. ei is

the difference between desired feature s∗
i

(i.e. a position in

operational space, a posture, etc. ) and its current value si:

ei = si − s∗
i

(10)

The control law on a set of tasks is written [21]:

q̇i = q̇i−1 + λiJ̄
+
i (ėi − Jiq̇i−1), q̇1 = λ1J̄

+
1 ė1 (11)

when J̄i is the projection of Ji in the null space of the

augmented Jacobian

JA
i = [J1, J2, . . . Ji−1]

T
(12)

J̄i = JiP
A
i−1, PA

i = I − (JA
i )+JA

i (13)

J̄+
1 is simply J+

1 . One recovers (9) if there is one task in the

stack. This formulation guarantees that the task at ith stage

does not disturb the previous tasks, i.e. with higher priority. It

allows, for instance, to realize a reaching movement without

moving the center of mass, which is required for stability.

1) Application: In the controller perspective, there is no

difference between walking and manipulating an object. Each

of those stages is just a collection of tasks. Figure 7. depicts

the corresponding stack in the two cases.

a) Walking: To ensure the dynamic equilibrium of the

robot during walking, a preview control on the Zero Moment

Point (ZMP) is used. The principle of this approach is to use

an inverted pendulum model [4], the mass of the pendulum

being that of the robot positioned at the height of the center

of mass. The dynamic walking of a humanoid robot is

Fig. 8. Blocking position due to reaching task

modeled by a moving cart model [5], [6] [22]. The inputs

of the preview-controller are the footprints to be realized. The

outputs are the trajectories of the feet, center of mass, and the

ZMP. These trajectories are injected into the StackOfTasks as

position and orientation tasks on corresponding operational

points. Obviously, self-collision avoidance tasks are put into

the stack with the highest priority, next comes the task of

monitoring trajectories (feet, CoM) in the final task was the

vertically of the upper body.

b) Upper body manipulation: Object manipulation is

done in a similar manner. In fact, using the stack-of-tasks

manipulation and walking are merged in the same framework.

Stability in the manipulation phase is ensured by the fact that

the task of the center of mass is at highest priority, just like

in the locomotion phase.

One last issue is the situations depicted in Figure 8. In these

cases, simply adding the grasping task at the same time as

posture task, the controller might try to get the hand the fastest

possible to the goal and the hand gets stucked behind the body.

The remedy here is activating the posture task first, then using

a simple heuristic to activate hand task only after sometime

at an appropriate time. In practice, placing a threshold on

the hand task error and activating the hand task accordingly

provides good results.

IV. EXPERIMENTS

Described here are some scenarios with the humanoid robot

HRP-2 using the proposed method.

A. Reach and open a door

In this scenario, (Figure 9) the robot has to walk towards

a door, reaching for the handle and pull to open the door by

walking backwards.

B. Catching a flying balloon

The robot must follow and catch a falling balloon. (Fig-

ure 10). No assumption is made about the dynamics of the

balloon. The robot simply try to place its hands at certain

height at the right position to catch the ball. In simulation, a

user alters the wind condition to change the trajectory of the

balloon hand changing robot planned motion online.

C. Grasping a moving ball on the ground at distance

This example illustrates probably the best the connection

between locomotion and manipulation since precise conditions

have to be met for the robot footsteps to make the grasping



Fig. 9. Reach and open a door

Fig. 10. Catching a flying balloon

dynamically stable. Similar to the catching scenario, the

position of the ball changes during walking and the robot must

adapt to this change (Figure 1).

V. CONCLUSION REMARKS AND FUTURE WORKS

A generic method for footstep and posture planning and real

time replanning has been presented in this paper. Numerous

scenarii have demonstrated the applicability of this framework.

All demonstrated motion have been tested dynamically with

the simulator OpenHRP. On the real robot, the goal dectection

and tracking using using CAMShift [23] algorithm acts as the

perception module. Experiments have been conducted on the

robot with HRP-2 following and reaching a ball on the ground,

with the goal eventually moved during experiment.

Expansion can be made to this scheme of footsteps re-

planning in more dynamically intensive cases, e.g˙ catching

a volleyball instead of a balloon. In this cases, more precise

model for the ZMP will have to be investigated to make fast

steps possible. Modifications will also need to be done in the

feasibility constraints of the virtual kinematic chain.
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