Jean Krivine

A verification technique for reversible process algebra

A verification method for distributed systems based on decoupling forward and backward behaviour is proposed. This method uses an event structure based algorithm that, given a CCS process, constructs its causal compression relative to a choice of observable actions. Verifying the original process equipped with distributed backtracking on non-observable actions, is equivalent to verifying its relative compression which in general is much smaller. The method compares well with direct bisimulation based methods. Benchmarks for the classic dining philosophers problem show that causal compression is rather efficient both time-and space-wise. State of the art verification tools can successfully handle more than 15 agents, whereas they can handle no more than 5 following the traditional direct method; an altogether spectacular improvement, since in this example the specification size is exponential in the number of agents.

Introduction

Backtracking is commonplace in transactional systems where different components, such as processes accessing a distributed database, need to acquire a resource simultaneously. To ensure unconditional correctness of the overall execution of the transaction, one usually provides a code that incorporates explicit escapes from those cases where a global consensus cannot be met. Such an upfront method generates a large and unstructured state space, which often means verification based on proving that the code is bisimilar to a reference specification becomes unfeasible. Based on earlier work, we propose here an indirect verification method, and show on an example that it can handle larger specifications. The idea is to break down the distributed implementation of a given reference specification in two steps. First, one writes down a code which is only required to meet a weaker condition of causal or forward correctness relative to the specification. This condition is parameterized by a choice of observable actions corresponding to the actions of the specification. Second, the obtained code is equipped with a generic form of distributed backtracking on non-observable actions. A general theorem reduces the correctness of the latter partially reversible code to the causal correctness of the former [START_REF] Danos | Transactions in RCCS[END_REF]. In many transactional examples, this structured programming method works well, and obtains codes which are smaller, and simpler to understand [START_REF] Vincent Danos | Self-assembling trees[END_REF]. It also seems interesting from a correctness perspective, since one never has to deal with the full state space, and it is enough to consider the much smaller state space of the forward code causal compression relative to observable actions. Thus it obtains codes which are also easier to prove correct. It is only natural then to ask whether and to which extent such indirect correctness proofs can be automated. This is the question we address in this paper. Specifically we propose an algorithm, which, under certain rather mild assumptions about the system of interest, will compute its causal compression relative to a choice of observables. The true concurrency semantics tradition of using event structures as an intrinsic process representation comes to the rescue here. Besides event structures are uniquely suited to the handling of causal relationships between various events triggered by a process [START_REF] Winskel | Event structure semantics for CCS and related languages[END_REF]. For these reasons our procedure includes a translation of the process as a recursive flow event structure, and computes the relative causal compression on this intermediate representation. Benchmarks given for the classical example of the dining philosophers show a significant state compression, and a relatively low cost incurred by compression. Direct programming generates a state space that is already too big for being constructed by bisimulation verifiers for 6 agents, whereas our method can go well beyond 15. The language we use to formalize concurrent systems is the Calculus of Communicating Systems (CCS) [START_REF] Milner | Communication and Concurrency[END_REF]. This is a slightly more expressive language than basic models of communicating automata, in that processes can dynamically fork. On the other hand, this communication model includes no name-passing, which is a severe limitation in some applications.

Section 2 starts with a quick recall of CCS [START_REF] Milner | Communication and Concurrency[END_REF]. Section 3 develops its reversible variant RCCS, together with the central notion of causal correctness, and the fundamental result connecting causal correctness of a CCS process and full correctness of its lifting as a partially reversible process in RCCS [START_REF] Danos | Transactions in RCCS[END_REF]. The relative causal compression algorithm, and the accompanying verification method are explained in Section 4. Section 5 compares this method with the traditional direct method, using the dining philosphers problem as a benchmark. The conclusion discusses related work and further directions.

CCS

Syntax

CCS processes interact through binary communications on named channels: an output on channel x is written x, an input on the same channel is simply written x.

Processes p, q ::= a.p

| (p | q) | p + q | D(x) := p | (x)p | 0
We write P for the set of processes, A for the set of actions, and A * for the free monoid of action words. Restriction (x)p binds x in p and the set of free names of p is defined accordingly. In a recursive definition D(x) := p free names of p have to be x.

Operational semantics

A labelled transition system (LTS) is a tuple S, s, L, → where S is called the state space, s the initial state, L the set of labels, and → ⊆ S × L × S the transition relation. One uses the common notation s → a t, and for m = a 1 . . . a n ∈ A * , s → * m t means s → a1 s 1 , . . . , s n-1 → an t for some states s 1 , . . . , s n-1 . The operational semantics of a CCS term p is given by means of such an LTS (P, p, A, →), written TS(p), where → is given inductively by the rules:

a.p + q → a p (act) p → a p q → ā q p | q → τ p | q (synch) p → a p p | q → a p | q (par) p → a p a ∈ {x, x} (x)p → a (x)p (res) p ≡ p → a q ≡ q p → a q (equiv)
The equivalence relation ≡ is the classical structural congruence for choice and parallel composition, together with the recursion unfolding rule D(ỹ) ≡ p {ỹ/x} if D(x) := p.

Process equivalence

Given a set of observable actions, a basic requirement is to decide whether two processes have an equivalent interaction capacity with their environment. Several variants of observational equivalence for CCS processes have been considered. We use here a variant of weak bisimulation based on the choice of a countable distinguished subset K of the set of actions A, which we fix here once and for all. Actions in K are called observable actions. The complement A \ K of nonobservable actions is denoted by K c and also taken to be countable. Let S 1 = (S 1 , s 1 , A, →) and S 2 = (S 2 , s 2 , A, →) be LTSs both with labels in A, a relation R over S 1 × S 2 is said to be a weak simulation between S 1 , S 2 , if s 1 R s 2 and whenever p 1 R p 2 : -if p 1 → a q 1 , a ∈ K c , then p 2 → * m q 2 with m ∈ (K c) * , and q 1 R q 2 ; -if p 1 → a q 1 , a ∈ K, then p 2 → * m q 2 with m ∈ (K c) * a(K c) * , and q 1 R q 2 . The idea is that S 2 has to simulate the behaviour of S 1 regarding observable actions, but is free to use any sequence of non observable ones in so doing. Such a relation R is said to be a weak bisimulation if both R and its inverse R -1 are weak simulations. When there is such a relation, S 1 and S 2 are said to be bisimilar, and one writes S 1 ∼ S 2 . A CCS process p is said to be a correct implementation of a specification LTS S, if TS(p) ∼ S. When the specification is clear from the context, we may simply say p is correct. One thing to keep in mind is that all these definitions are relative to a choice of K. Usually, K is taken to be A \ {τ }, but this more flexible definition will prove convenient.

We turn now to a quick intuitive introduction to RCCS. Consider the following CCS process:

(x) x | x | x.x.a.p | x.x.b.q (1)
Both subprocesses a.p and b.q require two communications on x to execute, so the whole process may reach a deadlocked state (x) x.a.p | x.b.q where neither a nor b may be triggered. If the intention is that the system implements the mutual exclusion process a.p + b.q, a possible fix is to give both subprocesses the possibility to release x:

(x) x | x | R p (x, a) | R q (x, a) (2) with R p (x, a) := x. τ.(R p (x, a) | x) + x.(τ.(R p (x, a) | x | x) + a.p) .
This example helps in realising two key things: first the original code (1) although not correct, is partially correct in the sense that any successful action a or b leads to a correct state p or q; second the proposed fix can be made an instance of a generic distributed backtracking mechanism. The idea of RCCS is to provide such a mechanism, in a way that partial or causal correctness (yet to be defined formally) in CCS, can be proved to be equivalent to full correctness of the same process once lifted to RCCS [START_REF] Danos | Reversible communicating systems[END_REF].

Syntax

RCCS forward actions are the same actions as CCS, namely A. Recall these are split into K and its complement K c . In the RCCS context actions in K are also called irreversible, or sometimes commit actions (following the transaction terminology); actions in K c are also called reversible, since these are the ones one wants to backtrack. RCCS therefore also has backward actions written a -, with a ∈ K c .

RCCS processes are composed of threads of the form m p, where m is a memory, and p is a plain CCS process:

r ::= m p | (r | r) | (x)r
Memories are stacks used to record past interactions:

m ::= θ, a, p • m | θ • m | ↑ • m |
where θ is a thread identifier drawn from a countable set. Open memory elements θ, a, p are used for reversible actions and contain a thread identifier θ, the action last taken, and the alternative process that was left over by a choice if any.

Closed memory elements θ are used for irreversible actions, and only contain an identifier. Eventually the memory element ↑ keeps track of the forking structure of processes (see congruence rules below)1 . The prefix relation on memories is defined as m m if there is an m such that m • m = m .

Processes are considered up to the usual congruence for parallel composition together with the following specific rules:

m D(ỹ) ≡ m p {ỹ/x} if D(x) := p m (p | q) ≡ (↑ • m p) | (↑ • m q) m (x)p ≡ (x)(m p) if x ∈ m
Any CCS process p can be lifted to RCCS with an empty memory (p) := p, and conversely, there is a natural forgetful map ϕ erasing memories and mapping back RCCS to CCS. Clearly ϕ((p)) = p. When we want to insist that the lift operation is parameterised by the set K, we write K (p).

Operational semantics

The operational semantics of RCCS is also given as an LTS with transitions given inductively by the rules:

a ∈ K c θ ∈ m m a.p + q → θ a θ, a, q • m p (act) a ∈ K c θ, a, q • m p → θ - a m a.p + q (act *) k ∈ K θ ∈ m m k.p + q → θ k θ • m p (commit) r → Θ a r Θ ∈ s r | s → Θ a r | s (par) r → Θ a r s → Θ ā s r | s → Θ τ r | s (synch) r → Θ a r a = x, x (x)r → Θ a r (res) r ≡ r → Θ a s ≡ s r → Θ a s (equiv)
In the contextual rules Θ stands either for θ or θ -. The freshness of the thread identifier θ is guaranteed by the side conditions θ ∈ m in the (act) and (commit) rules, and θ ∈ s in the (par) rule. The use of such identifiers corresponds to the notation introduced in Ref. [START_REF] Phillips | Reversing algebraic process calculi[END_REF] and equivalent to the one introduced originally for RCCS [START_REF] Danos | Transactions in RCCS[END_REF], as shown in Ref. [START_REF] Krivine | Algèbres de Processus Réversibles[END_REF]. Note that backtracking as defined in the operational semantics is a binary communication mechanism of exactly the same nature as usual forward communication. However, since threads are required to backtrack with the exact same thread with which they communicated earlier, backtrack can be shown to be confluent, at least for those processes that are reachable from the lifting of a CCS process. The (commit) rule uses a closed memory element θ • m indicating that the information contained in m is no longer needed, since by definition actions in K are not backtrackable. Supposing r is a process where any recursive process definition is guarded by a commit, an assumption to which we will return later on, this bounds the total size of open memory elements in any process reachable from r.

The fundamental property

The question is now to determine what are the possible (definitive) interactions of K (p) with the context. A first approach would be to find, for each p, a specification that would be bisimilar to the LTS engendered by K (p) (in which we would not observe θ on transitions). But then RCCS would be mere progress over CCS with explicit backtracking since one would need to consider every transitions of K (p) to check for bisimulation.

The question is now to see whether it is possible to obtain a characterisation of the behaviour of a lifted process K (p) solely in terms of p. Intuitively, K (p) being p enriched with a mechanism for escaping computations not leading to any observable actions, one might think that K (p) is bisimilar to the transition system generated by those traces of p which lead to an observable action. This is almost true.

To give a precise statement, we need first a few notations and definitions. An RCCS transition as defined above is fully described by a tuple t = r, a, Θ, r where r is the source of t, r its target, a its label and Θ its identifier. If a ∈ K we say that t is a commit transition, otherwise it is a reversible transition. If Θ = θ (Θ = θ -) we say t is forward (backward). A trace is a sequence of composable transitions, and we write r → * σ s (p → * σ q) whenever σ is an RCCS (CCS) trace with source r (p) and target s (q). A trace is said to be forward if it contains only forward transitions.

A final and key ingredient is the notion of causality between transitions in a given forward trace. For CCS this is usually defined using the so-called proof terms [START_REF] Boudol | Permutation of transitions: An event structure semantics for CCS and SCCS. In Linear Time, Branching Time and Partial Order in Logics and Models for Concurrency[END_REF], but one can also use RCCS memories.

The set of memories involved in a forward transition t = r, a, θ, r is defined as µ(t) := {m ∈ r | ∃a, q : θ, a, q .m ∈ r }; this is either a singleton, if no communication happened, or a two elements set, if some did.

Definition 1 (Causality). Let σ : t 1 ; . . . ; t n be a forward RCCS trace: -t i and t j with i < j, are in direct causality relation, written t i < 1 t j if there is m ∈ µ(t i), m ∈ µ(t j) such that m m ; one says that t i causes t j , written t i < t j , if t i < * 1 t j . -σ is said to be causal if for all transitions t i with i < n, t i < t n ; it is said to be k-causal if it is causal, its last transition t n is labelled with k ∈ K, and all preceding transitions are labelled in K c .

One extends this terminology to CCS traces by saying a CCS trace p → * σ p is causal, if it lifts to a causal trace K (p) → * σ r with ϕ(r) = p . We are now ready to state the property that explicits the effects of a commit transitions. Say a process r is initial if there is no possible backward transition with source r.

Proposition 1 (Committed trace.). Let σ be a RCCS trace with an initial source. Then the target of σ is also initial if and only if σ is in k-causal form.

This property says that whenever a commit is taken, then any other process can no longer cancel an action that played a role in the transaction; this expresses the durability of the transaction.

With the notion of causal trace in place, we can define the causal compression of a process p relative to K.

Definition 2 (Relative causal compression). Let p be a CCS process, its causal compression relative to K, written CTS K (p), is the LTS P, p, K, where k is defined as q k q if q → * σ q for some k-causal trace σ. We are now ready to state the theorem that characterizes the behaviour of K (p) in terms of the simpler process p.

Theorem 1 ([DK05]). Let TS K (p) := R, K (p), A, → be the LTS associated to the lift K (p), TS K (p) ∼ CTS K (p).
As said above, it is not true that TS K (p) is bisimilar to the transition system of traces of p leading to observable actions, one has to be careful to restrict to causal traces. A trivial but useful rephrasing of this result is:

Corollary 1. Let p be a CCS process, and S be its specification, if

CTS K (p) ∼ S then K (p) ∼ S.
In words, this says that to check the correctness of K (p) with respect to S, it is enough to check the correctness of CTS K (p).

If one goes back to the example at the beginning of this section, this says that {a,b} ((x) x | x | x.x.a.p | x.x.b.q) is equivalent to a.p + b.q, as long as the causal compression of p = (x) x | x | x.x.a.p | x.x.b.q relative to {a, b} is. This is easily seen in this example, and in fact, as often in practice, CTS K (p) and S turn out to be equal.

The interest of this fundamental property lies in the fact that the causal compression relative to K, CTS K (p), is significantly smaller than the partially reversible process K (p). A natural question is therefore, given a process p, to compute CTS K (p). By finding an efficient way to do this, one would obtain an efficient verification procedure. This is the object of the next section.

Causal compression

A first idea to extract the causal transition system of a process p is to use the LTS generated by (p) and screen off non causal traces. One cannot know however whether a trace can be extended into a k-causal form until a commit is effectively taken, and such an approach would likely lead to both superfluous (because lots of traces will not be causal) and redundant (because of trace equivalence) computations. A more astute approach is to look only at traces that will eventually be in a k-causal form. This requires a bottom up view of traces where one starts from commits inside a term, and then reconstructs causal traces triggering this commit by consuming its predecessors in every possible way.

However, there is no need to work directly in the syntax, and event structures [START_REF] Winskel | Event structure semantics for CCS and related languages[END_REF] provide exactly what is needed here: a truly concurrent semantics that abstracts from the interleaving of concurrent transitions, and more importantly an explicit notion of causality. Among the various types of event structures the most often considered are prime ones, because consistent runs can be simply characterized. Yet they lead to quite large data structures. 2 Our algorithm uses instead flow event structures (FES) [START_REF] Boudol | Permutation of transitions: An event structure semantics for CCS and SCCS. In Linear Time, Branching Time and Partial Order in Logics and Models for Concurrency[END_REF][START_REF] Boudol | Flow event structures and flow nets[END_REF][START_REF] Van Glabeek | Well-behaved flow event structures for parallel composition and action refinement[END_REF]]. On the one hand, there is a simple inductive translation of CCS terms into FESs that incurs no computational cost; on the other hand, FES are algorithmically convenient compact forms of event structures.

We first explain how to extract the causal compression CTS K (p) from the translation of p into an FES. Then we discuss computational issues such as how to make this an algorithm, and how some of the apparent computational costs can be circumvented at the level of the implementation.

Flow event structures

A (labelled) flow event structure is a tuple E = E, ≺, #, λ where -E is a set of events, -≺ ⊆ E × E is the flow relation which has to be irreflexive, -# ⊆ E × E is the conflict relation which is symmetric, -and λ : E → A a labelling function. The idea is that the flow relation gives all immediate possible causes of an event, while the conflict relation indicates a conflicting choice between two events.

Definition 3. Let E = E, ≺, #, λ be an FES, a set X ⊆ E is a configuration of E, written X ∈ C(E), if it is: -conflict free: # ∩ (X × X) = ∅,
cycle free: ≺ * /X is a partial order, -and left-closed up to conflicts: if e ∈ X and there is d ∈ E such that d ≺ e then either d ∈ X or there exists f ∈ X such that f ≺ e and f #d.

The last two conditions are the price to pay for working with FESs, and are not needed for prime ones. The first one will require some optimised structuring of the conflict relation, we'll return to this point soon.

A configuration X in E with e ∈ X is e-minimal if ∀e ∈ X : e ≺ * e. The set of e-minimal configurations is denoted by C E, e .

There is an easy inductive translation u unfolding any CCS process into a FES, where events correspond to communications, and configurations are those subsets of events that a trace can trigger. We recall now this translation, defined by induction on the structure of the CCS process, from [START_REF] Boudol | Permutation of transitions: An event structure semantics for CCS and SCCS. In Linear Time, Branching Time and Partial Order in Logics and Models for Concurrency[END_REF]. def = E q , ≺ q , # q , λ q with E p ∩ E q = ∅, we have u(p + q) def = E p E q , ≺, #, λ where:

-(Prefix) Let u(p) def = E, ≺, #,
-e#e if (e, e) ∈ E p × E q or if either e# p e or e# q e def = E q E q E, ≺, #, λ where:

-≺ / E p × E p def = ≺ p and ≺ / E q × E q def = ≺ q -(
-

E def = e (e ,e) | (e , e) ∈ E p × E q & λ p (e) = λ q (e) -∀e ∈ E p E q E, λ(e) def = λ p (e) if e ∈ E p , λ(e) def = λ q (e) if e ∈ E q and λ(e) def = τ else.
-∀(e, e) ∈ (E p E q E) 2 , we have e ≺ e if either:

-π 0 (e) ≺ p π 0 (e) -π 1 (e) ≺ q π 1 (e) -e#e if:

-π i (e) = π i (e) for some i ∈ {1, 2} -π 0 (e)# p π 0 (e) -π 1 (e)# q π 1 (e) The correctness of the unfolding function u is given by the following representation theorem:

Theorem 2 ([START_REF] Boudol | Flow event structures and flow nets[END_REF]). Let p be a CCS process, and T (p) stand for the traces of p quotiented by trace equivalence, then (T (p), ≤) and (C(u(p)), ⊆) are isomorphic.

One can define a transition system out of an FES. To do this, we define E|X, the residual of E by a configuration X in C(E).

Definition 4 (Residual)

. Let E = E, ≺, #, λ be an FES, X be a configuration of E, and define X # := {e ∈ E | ∃e ∈ X : e #e}. The residual of E by X is E|X := E , ≺ , # where:

E := E \ (X ∪ X #) ≺ :=≺ ∩ (E × E) # := # ∩ (E × E)
The LTS associated to E = E, ≺, #, λ has initial state E, and transition relation given by E

→ X E if X ∈ C(E) and E = E |X.
It is here that our reframing of the compression question in terms of event structures pays off, since to obtain the causal compression of the transition system above, all one has to do is to restrict labels to e-minimal configurations such that λ(e) ∈ K. The causal LTS associated to E, written CTS K (E), has initial state E, and transition relation given by E k E if there is an event e ∈ E such that E → X E with X ∈ C E , e and λ(e) ∈ K. As a consequence of the representation theorem one gets: Lemma 1. Let p be a CCS process, then CTS K (p) and CTS K (u(p)) are isomorphic.

At this point, we have an equivalent definition of CTS K (p) in terms of the FES u(p), and it remains to see how one can turn this definition into an algorithm. This is what we discuss now.

Algorithmic discussion

First, the unfolding u(p) is in general an infinite object even if we restrict to finite state processes. To keep with finite internal data structures, we require each recursive process definition to be guarded by a commit action. This seems a reasonable constraint, in that there is a priori no reason to model a transactional mechanism with a process that allows infinite forward inconclusive traces.

To compute CTS K (u(p)), we use instead of u, a partial unfolding u fin that coincides with u except it does not unfold any recursive definition. The constraint above ensures that every commit k that is reachable by a single causal transition can be seen by this partial unfolding. Only after triggering the event corresponding to k, are the recursive calls guarded by k (if any) unfolded, and their translations by u fin added to the residual of the obtained event structure. One then checks whether the obtained residual event structure is isomorphic with some obtained previously, and adds it to the state space if not. Given a process p, the algorithm to compute CTS K (u(p)) proceeds as follows:

0. E = E, ≺, #, λ := u fin (p) 1.
For all e ∈ E such that λ(e) ∈ K, compute the e-minimal configurations X e ∈ C E, e . 2. For each such X e build the residual E|X e , with recursive definitions guarded by e unfolded using u fin .

Add the transitions E

k E|X e , where k = λ(e), to the CTS under construction. 4. For each residual E|X e not isomorphic to any previous one, set E := E|X e and goto step 1.

By the representation theorem, this algorithm will terminate as soon as CTS K (p) is finite. In practice most of the isomorphism tests can be avoided by using a quite discriminative equality test between FES signatures which is linear in the number of events. Another efficiency problem one has to deal with is the internal representation of the conflict relation (which is involved in step 1 because of the conflict-free condition on configurations). In prime event structures conflict is inherited by causality, that is to say if e#e and e ≺ e , then e#e . Hence a rather compact way to represent conflict is to keep only (e, e) ∈ # and deduce when needed that e#e by heredity.

We have found that a similar compact structure, which we call a conflict tree can be used for FESs. Conflict trees are built during process partial unfoldings, and result in a typically logarithmically compact representation of conflict, for a low computational cost. An example of a conflict tree is given on the right: conflicts are predicated of intervals, and [nm]#[nm] means that any pair of events indexed within {n, . . . , m} × {n , . . . , m } is in conflict.

Benchmark

To get a sense of how well our verification technique performs compared with straight bisimulation based verification, we ran several tests 2 using encodings the dining philosophers problem. This timeless example of distributed consensu involves n philosophers eating together around a table. Each of them needs tw chopsticks to start eating, and has to share them with his neighbours. Whe a philosopher has eaten, he releases his chopsticks after a while and goes bac to the initial state. In the partial implementation, say p part , once a philosophe takes a chopstick he never puts it back unless he has successfully eaten. In th fully correct one, say p full , he may release chopsticks at any time (thus avoidin deadlocks). The CCS processes p part and p full for n = 2 correspond roughly t

Benchmark

The relative compression algorithm was implemented as a prototype in Ocaml in order to get a sense of how well our verification technique performs compared with a straight bisimulation based verification. To do so we ran several tests 4 using encodings of the dining philosophers problem. This timeless example of distributed consensus involves n philosophers eating together around a table. Each of them needs two chopsticks to start eating, and has to share them with his neighbours. When a philosopher has eaten, he releases his chopsticks after a while and goes back to the initial state. In the partial implementation, say p part , once a philosopher takes a chopstick he never puts it back unless he has successfully eaten. In the fully correct one, say p full , he may release chopsticks at any time (thus avoiding deadlocks). The CCS processes p part and p full for n = 2 correspond roughly to the earlier examples (1) and (2). (See [START_REF] Danos | Transactions in RCCS[END_REF] for a general definition and detailed study.) There are two main reasons for taking the dining philosophers example. First it is a paradigmatic example of distributed consensus, so the way to solve it without access to the scheduler (by adding additional semaphores for instance) has to involve backtracking. Second, it turns out that the number of possible states of the specification is given by a Fibonacci sequence.

S(1) = 1 S(2) = 3 S(n + 1) = S(n) + S(n -1)
This is convenient in that it gives a simple means to compare the time of computation with the size of the specification state space. Verifying correctness of p full using the Mobility Workbench (MWB) [START_REF] Victor | The Mobility Workbench -a tool for the π-calculus[END_REF] (see top curve, Fig. 1) proved to be impossible beyond 5 philosophers (around 160 specification states) because of memory limitations. By using first the our prototype (see bottom curve, Fig. 1) to extract the causal transition system of p part , we could verify up to 19 philosophers (around 15, 000 specification states) within a time which stayed roughly proportional to the number of states. Since CTS(p part) is in this case equal to the specification, the remaining part of the correctness proof takes negligible time (MWB needs 0.4s for 10 philosophers).

Conclusion

We have proposed a method for the verification of distributed systems which uses an algorithm of relative causal compression. The method does not always apply: the process one wants to verify must use a generic backtracking mechanism. This may seem a limitation, but it often obtains a much simpler code, and many examples of distributed transactions lend themselves naturally to this constraint. When the method does apply, however, it proves very effective as we have shown in the dining philosophers example.

State space explosion in automated bisimulation proofs is a well known phenomenon, and trace compression techniques have been proposed to avoid the redundancy created by the interleaving of transitions [START_REF] Boudol | Permutation of transitions: An event structure semantics for CCS and SCCS. In Linear Time, Branching Time and Partial Order in Logics and Models for Concurrency[END_REF][START_REF] Godefroid | Using partial orders for the efficient verification of deadlock freedom and safety properties[END_REF], and used in model-checking applications [BCDP95,AQR + 04]. These compressions preserve bisimilarity, whereas our does not, and is of a completely different nature. Besides, and because our algorithm uses event structures, we also benefit from this classical kind of compression.

Conclusion

We have proposed a method for the verification of distributed systems which uses an algorithm of relative causal compression. The method does not always apply: the process one wants to verify must use a generic backtracking mechanism. This may seem a limitation, but it often obtains a much simpler code, and many examples of distributed transactions lend themselves naturally to this constraint. When the method does apply, however, it proves very effective as we have shown in the dining philosophers example.

State space explosion in automated bisimulation proofs is a well known phenomenon, and trace compression techniques have been proposed to avoid the redundancy created by the interleaving of transitions [6,12], and used in modelchecking applications [13,14]. These compressions preserve bisimilarity, whereas our does not, and is of a completely different nature. Besides, and because our algorithm uses event structures, we also cash in on this classical kind of compression.

There is no reason why this verification method should be limited to CCS. Other concurrent models can be equipped with backtracking, and forward and backward aspects of correctness can be split there as well. Recent work extends the concept of partially reversible computations to various process algebras [15],

Relative causal compression using our algorithm:

Conclusion

We have proposed a method for the verification of distributed systems which uses an algorithm of relative causal compression. The method does not always apply: the process one wants to verify must use a generic backtracking mechanism. This may seem a limitation, but it often obtains a much simpler code, and many examples of distributed transactions lend themselves naturally to this constraint. When the method does apply, however, it proves very effective as we have shown in the dining philosophers example.

State space explosion in automated bisimulation proofs is a well known phenomenon, and trace compression techniques have been proposed to avoid the redundancy created by the interleaving of transitions [6,12], and used in modelchecking applications [13,14]. These compressions preserve bisimilarity, whereas our does not, and is of a completely different nature. Besides, and because our algorithm uses event structures, we also cash in on this classical kind of compression.

There is no reason why this verification method should be limited to CCS. Other concurrent models can be equipped with backtracking, and forward and backward aspects of correctness can be split there as well. Recent work extends the concept of partially reversible computations to various process algebras [15], There is no reason why this verification method should be limited to CCS. Other concurrent models can be equipped with backtracking, and forward and backward aspects of correctness can be split there as well. Recent work extends the concept of partially reversible computations to various process algebras [PU06,PU07,LMS10,LMSS11], and it is possible to define an analogue of RCCS for the π-calculus. New advances in event structure semantics for πcalculus [VY10,CVY12] might allow to extend the causal compression algorithm, so as to cover the important case of name-passing calculi.

2

 λ be the FES corresponding to P and let e ∈ E, then for any prefix action α we have u(α.p) def = E {e} , ≺ , #, λ where:-≺ / E × E def = ≺ and ∀e ∈ E, e ≺ e Specifically in prime event structure causes of an event must be uniquely determined, and this forces duplication of the future of an event each time it is engaged in a synchronization.-λ / E × E def = λ and λ(e) def = α -(Choice) Let u(p) def = E p , ≺ p , # p , λ p and u(q)

 Parallel product) with use the notation e (e0,e1) to denote the event resulting from the synchronization of events e 0 and e 1 . We use the traditional projection π 0 (e (e0,e1)) def = e 0 and π 1 (e (e0,e1)) def = e 1 . In addition for every event e that is not a synchronization we consider π 0 (e) def = π 1 (e) def = e. With these conventions, we define the unfolding u(p | q)

0 def=

 0 Consider for instance the process p = a.b.0 | b.ā.0. Using the above unfolding function one obtains the following FES, where arrows represent causality and dotted edges represent conflict: With the convention that λ(e α) = α and λ(e α, ᾱ) = τ , for all α ∈ a, ā, b, b . It follows from Definition 3, that maximal configurations 3 of u(p) are: X {e a , e b , eb, e ā} X 1 def = e a , e b, b, e ā X 2 def = {eb, e a,ā , e b }

Fig. 5 .

 5 Fig. 5. Conflict tree of a 3 .(b 0 | c 2 + d 1) + e 4

Direct bisimulation test for p full :

Fig. 6 .Fig. 7 .

 67 Fig. 6. Direct bisimulation test for p full .

Fig. 6 .Fig. 7 .

 67 Fig. 6. Direct bisimulation test for p full .

Fig. 1 .

 1 Fig. 1. Benchmark results for the dining philosophers

The convention used here for keeping track of forking processes differs slightly from Ref.[START_REF] Danos | Reversible communicating systems[END_REF].

A configuration X is maximal if there is no additional event e such that e X is a valid configuration.

Tests were made with an Intel Pentium 4 CPU 3.20GHz with 1GB of RAM.

This work has been partially supported by the French National Research Agency (ANR), project REVER n • ANR 11 INSE 007