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A verification technique for reversible process
algebra

Jean Krivine ?

Univ. Paris Diderot, Sorbonne Paris Cité,
Laboratoire PPS, UMR 7126, F-75205 Paris, France

Abstract. A verification method for distributed systems based on de-
coupling forward and backward behaviour is proposed. This method uses
an event structure based algorithm that, given a CCS process, constructs
its causal compression relative to a choice of observable actions. Ver-
ifying the original process equipped with distributed backtracking on
non-observable actions, is equivalent to verifying its relative compres-
sion which in general is much smaller. The method compares well with
direct bisimulation based methods. Benchmarks for the classic dining
philosophers problem show that causal compression is rather efficient
both time- and space-wise. State of the art verification tools can suc-
cessfully handle more than 15 agents, whereas they can handle no more
than 5 following the traditional direct method; an altogether spectacular
improvement, since in this example the specification size is exponential
in the number of agents.

1 Introduction

Backtracking is commonplace in transactional systems where different compo-
nents, such as processes accessing a distributed database, need to acquire a
resource simultaneously. To ensure unconditional correctness of the overall exe-
cution of the transaction, one usually provides a code that incorporates explicit
escapes from those cases where a global consensus cannot be met. Such an up-
front method generates a large and unstructured state space, which often means
verification based on proving that the code is bisimilar to a reference specifi-
cation becomes unfeasible. Based on earlier work, we propose here an indirect
verification method, and show on an example that it can handle larger speci-
fications. The idea is to break down the distributed implementation of a given
reference specification in two steps. First, one writes down a code which is only
required to meet a weaker condition of causal or forward correctness relative to
the specification. This condition is parameterized by a choice of observable ac-
tions corresponding to the actions of the specification. Second, the obtained code
is equipped with a generic form of distributed backtracking on non-observable ac-
tions. A general theorem reduces the correctness of the latter partially reversible
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code to the causal correctness of the former [DK05]. In many transactional exam-
ples, this structured programming method works well, and obtains codes which
are smaller, and simpler to understand [DKT07]. It also seems interesting from a
correctness perspective, since one never has to deal with the full state space, and
it is enough to consider the much smaller state space of the forward code causal
compression relative to observable actions. Thus it obtains codes which are also
easier to prove correct. It is only natural then to ask whether and to which ex-
tent such indirect correctness proofs can be automated. This is the question we
address in this paper. Specifically we propose an algorithm, which, under certain
rather mild assumptions about the system of interest, will compute its causal
compression relative to a choice of observables. The true concurrency semantics
tradition of using event structures as an intrinsic process representation comes
to the rescue here. Besides event structures are uniquely suited to the handling
of causal relationships between various events triggered by a process [Win82].
For these reasons our procedure includes a translation of the process as a recur-
sive flow event structure, and computes the relative causal compression on this
intermediate representation. Benchmarks given for the classical example of the
dining philosophers show a significant state compression, and a relatively low
cost incurred by compression. Direct programming generates a state space that
is already too big for being constructed by bisimulation verifiers for 6 agents,
whereas our method can go well beyond 15. The language we use to formalize
concurrent systems is the Calculus of Communicating Systems (CCS) [Mil89].
This is a slightly more expressive language than basic models of communicat-
ing automata, in that processes can dynamically fork. On the other hand, this
communication model includes no name-passing, which is a severe limitation in
some applications.

Section 2 starts with a quick recall of CCS [Mil89]. Section 3 develops its
reversible variant RCCS, together with the central notion of causal correctness,
and the fundamental result connecting causal correctness of a CCS process and
full correctness of its lifting as a partially reversible process in RCCS [DK05].
The relative causal compression algorithm, and the accompanying verification
method are explained in Section 4. Section 5 compares this method with the
traditional direct method, using the dining philosphers problem as a benchmark.
The conclusion discusses related work and further directions.

2 CCS

2.1 Syntax

CCS processes interact through binary communications on named channels: an
output on channel x is written x̄, an input on the same channel is simply written
x.

Processes p, q ::= a.p | (p | q) | p+ q | D(x̃) := p | (x)p | 0
We write P for the set of processes, A for the set of actions, and A∗ for the free
monoid of action words. Restriction (x)p binds x in p and the set of free names



of p is defined accordingly. In a recursive definition D(x̃) := p free names of p
have to be x̃.

2.2 Operational semantics

A labelled transition system (LTS) is a tuple 〈S, s, L,→〉 where S is called the
state space, s the initial state, L the set of labels, and→ ⊆ S×L×S the transi-
tion relation. One uses the common notation s→a t, and for m = a1 . . . an ∈ A∗,
s→∗m t means s→a1 s1, . . . , sn−1 →an t for some states s1, . . . , sn−1. The oper-
ational semantics of a CCS term p is given by means of such an LTS (P, p,A,→),
written TS(p), where → is given inductively by the rules:

a.p+ q →a p
(act)

p→a p
′ q →ā q

′

p | q →τ p′ | q′
(synch)

p→a p
′

p | q →a p′ | q
(par)

p→a p
′ a 6∈ {x, x̄}

(x)p→a (x)p′
(res)

p ≡ p′ →a q
′ ≡ q

p→a q
(equiv)

The equivalence relation ≡ is the classical structural congruence for choice and
parallel composition, together with the recursion unfolding rule D(ỹ) ≡ p {ỹ/x̃}
if D(x̃) := p.

2.3 Process equivalence

Several variants of observational equivalence for CCS processes have been con-
sidered. We use here a variant of weak bisimulation based on the choice of a
countable distinguished subset K of the set of actions A, which we fix here once
and for all. Actions in K are called observable actions. The complement A \K
of non-observable actions is denoted by Kc and also taken to be countable.

Let S1 = (S1, s1, A,→) and S2 = (S2, s2, A,→) be LTSs both with labels in
A, a relation R over S1 × S2 is said to be a weak simulation between S1, S2, if
s1 R s2 and whenever p1 R p2:
— if p1 →a q1, a ∈ Kc, then p2 →∗m q2 with m ∈ (Kc)∗, and q1 R q2;
— if p1 →a q1, a ∈ K, then p2 →∗m q2 with m ∈ (Kc)∗a(Kc)∗, and q1 R q2.

The idea is that S2 has to simulate the behaviour of S1 regarding observable
actions, but is free to use any sequence of non observable ones in so doing. Such
a relation R is said to be a weak bisimulation if both R and its inverse R−1

are weak simulations. When there is such a relation, S1 and S2 are said to be
bisimilar, and one writes S1 ∼ S2. A CCS process p is said to be a correct
implementation of a specification LTS S, if TS(p) ∼ S. When the specification
is clear from the context, we may simply say p is correct. One thing to keep
in mind is that all these definitions are relative to a choice of K. Usually, K is
taken to be A \ {τ}, but this more flexible definition will prove convenient.



3 Reversible CCS

We turn now to a quick intuitive introduction to RCCS. Consider the following
CCS process:

(x)
(
x | x | x̄.x̄.a.p | x̄.x̄.b.q

)
(1)

Both subprocesses a.p and b.q require two communications on x to execute, so
the whole process may reach a deadlocked state (x)

(
x̄.a.p | x̄.b.q

)
where neither

a nor b may be triggered. If the intention is that the system implements the
mutual exclusion process a.p+ b.q, a possible fix is to give both subprocesses the
possibility to release x:

(x)
(
x | x | Rp(x, a) | Rq(x, a)

)
(2)

with Rp(x, a) := x̄.
(
τ.(Rp(x, a) | x) + x̄.(τ.(Rp(x, a) | x | x) + a.p)

)
.

This example helps in realising two key things: first the original code (1)
although not correct, is partially correct in the sense that any successful action
a or b leads to a correct state p or q; second the proposed fix can be made an
instance of a generic distributed backtracking mechanism. The idea of RCCS is
to provide such a mechanism, in a way that partial or causal correctness (yet to
be defined formally) in CCS, can be proved to be equivalent to full correctness
of the same process once lifted to RCCS [DK04].

3.1 Syntax

RCCS forward actions are the same actions as CCS, namely A. Recall these
are split into K and its complement Kc. In the RCCS context actions in K are
also called irreversible, or sometimes commit actions (following the transaction
terminology); actions in Kc are also called reversible, since these are the ones
one wants to backtrack. RCCS therefore also has backward actions written a−,
with a ∈ Kc.

RCCS processes are composed of threads of the form m . p, where m is a
memory, and p is a plain CCS process:

r ::= m . p | (r | r) | (x)r

Memories are stacks used to record past interactions:

m ::= 〈θ, a, p〉 ·m | 〈〈θ〉〉 ·m | 〈〉

where θ is a thread identifier drawn from a countable set. Open memory elements
〈θ, a, p〉 are used for reversible actions and contain a thread identifier θ, the action
last taken, and the alternative process that was left over by a choice if any.
Closed memory elements 〈〈θ〉〉 are used for irreversible actions, and only contain
an identifier. The prefix relation on memories is defined as m v m′ if there is an
m′′ such that m′′ ·m = m′.



Processes are considered up to the usual congruence for parallel composition
together with the following specific rules:

m .D(ỹ) ≡ m . p {ỹ/x̃} if D(x̃) := p
m . (p | q) ≡ (m . p) | (m . q)
m . (x)p ≡ (x)(m . p) if x 6∈ m

Any CCS process p can be lifted to RCCS with an empty memory `(p) := 〈〉 . p,
and conversely, there is a natural forgetful map ϕ erasing memories and mapping
back RCCS to CCS. Clearly ϕ(`(p)) = p. When we want to insist that the lift
operation is parameterised by the set K, we write `K(p).

3.2 Operational semantics

The operational semantics of RCCS is also given as an LTS with transitions
given inductively by the rules:

a ∈ Kc θ 6∈ m
m . a.p+ q →θ

a 〈θ, a, q〉 ·m . p
(act)

a ∈ Kc

〈θ, a, q〉 ·m . p→θ−
a m . a.p+ q

(act∗)

k ∈ K θ 6∈ m
m . k.p+ q →θ

k 〈〈θ〉〉 ·m . p
(commit)

r →Θ
a r′ θ 6∈ s

r | s→Θ
a r′ | s (par)

r →Θ
a r′ s→Θ

ā s′

r | s→Θ
τ r′ | s′ (synch)

r →Θ
a r′ a 6= x, x̄

(x)r →Θ
a r′

(res)
r ≡ r′ →Θ

a s′ ≡ s
r →Θ

a s
(equiv)

In the contextual rules Θ stands either for θ or θ−. The freshness of the thread
identifier θ is guaranteed by the side conditions θ 6∈ m in the (act) and (commit)
rules, and θ 6∈ s in the (par) rule. The use of such identifiers corresponds to
the notation introduced in Ref. [PU06] and equivalent to the one introduced
originally for RCCS [DK05], as shown in Ref. [Kri06]. Note that backtracking
as defined in the operational semantics is a binary communication mechanism
of exactly the same nature as usual forward communication. However, since
threads are required to backtrack with the exact same thread with which they
communicated earlier, backtrack can be shown to be confluent, at least for those
processes that are reachable from the lifting of a CCS process.

The (commit) rule uses a closed memory element 〈〈θ〉〉 ·m indicating that the
information contained in m is no longer needed, since by definition actions in
K are not backtrackable. Supposing r is a process where any recursive process
definition is guarded by a commit, an assumption to which we will return later
on, this bounds the total size of open memory elements in any process reachable
from r.



3.3 The fundamental property

The question is now to see whether it is possible to obtain a characterisation of
the behaviour of a lifted process `K(p) solely in terms of p. Intuitively, `K(p)
being p enriched with a mechanism for escaping computations not leading to
any observable actions, one might think that `K(p) is bisimilar to the transition
system generated by those traces of p which lead to an observable action. This
is almost true.

To give a precise statement, we need first a few notations and definitions. An
RCCS transition as defined above is fully described by a tuple t = 〈r, a,Θ, r′〉
where r is the source of t, r′ its target, a its label and Θ its identifier. If a ∈ K we
say that t is a commit transition, otherwise it is a reversible transition. If Θ = θ
(Θ = θ−) we say t is forward (backward). A trace is a sequence of composable
transitions, and we write r →∗σ s (p→∗σ q) whenever σ is an RCCS (CCS) trace
with source r (p) and target s (q). A trace is said to be forward if it contains
only forward transitions.

A final and key ingredient is the notion of causality between transitions in
a given forward trace. For CCS this is usually defined using the so-called proof
terms [BC89], but one can also use RCCS memories.

The set of memories involved in a forward transition t = 〈r, a, θ, r′〉 is de-
fined as µ(t) := {m ∈ r | ∃a, q : 〈θ, a, q〉.m ∈ r′}; this is either a singleton, if no
communication happened, or a two elements set, if some did.

Definition 1 (Causality). Let σ : t1; . . . ; tn be a forward RCCS trace:
— ti and tj with i < j, are in direct causality relation, written ti <1 tj if there
is m ∈ µ(ti), m′ ∈ µ(tj) such that m @ m′; one says that ti causes tj, written
ti < tj, if ti <

∗
1 tj.

— σ is said to be causal if for all transitions ti with i < n, ti < tn; it is said
to be k-causal if it is causal, its last transition tn is labelled with k ∈ K, and all
preceding transitions are labelled in Kc.

One extends this terminology to CCS traces by saying a CCS trace p →∗σ p′ is
causal, if it lifts to a causal trace `K(p)→∗σ′ r′ with ϕ(r′) = p′.

With the notion of causal trace in place, we can define the causal compression
of a process p relative to K.

Definition 2 (Relative causal compression). Let p be a CCS process, its
causal compression relative to K, written CTSK(p), is the LTS 〈P, p,K,_〉
where _k is defined as q _k q

′ if q →∗σ q′ for some k-causal trace σ.

We are now ready to state the theorem that characterizes the behaviour of `K(p)
in terms of the simpler process p.

Theorem 1 (Fundamental property [DK05]). Let TSK(p) := 〈R, `K(p), A,→
〉 be the LTS associated to the lift `K(p), TSK(p) ∼ CTSK(p).

As said above, it is not true that TSK(p) is bisimilar to the transition system
of traces of p leading to observable actions, one has to be careful to restrict to
causal traces. A trivial but useful rephrasing of this result is:



Corollary 1. Let p be a CCS process, and S be its specification, if CTSK(p) ∼ S
then `K(p) ∼ S.

In words, this says that to check the correctness of `K(p) with respect to S, it
is enough to check the correctness of CTSK(p).

If one goes back to the example at the beginning of this section, this says
that `{a,b}((x)

(
x | x | x̄.x̄.a.p | x̄.x̄.b.q

)
) is equivalent to a.p+ b.q, as long as the

causal compression of p = (x)
(
x | x | x̄.x̄.a.p | x̄.x̄.b.q

)
relative to {a, b} is. This

is easily seen in this example, and in fact, as often in practice, CTSK(p) and S
turn out to be equal.

The interest of this fundamental property lies in the fact that the causal
compression relative to K, CTSK(p), is significantly smaller than the partially
reversible process `K(p). A natural question is therefore, given a process p, to
compute CTSK(p). By finding an efficient way to do this, one would obtain an
efficient verification procedure. This is the object of the next section.

4 Causal compression

A first idea to extract the causal transition system of a process p is to use the LTS
generated by `(p) and screen off non causal traces. One cannot know however
whether a trace can be extended into a k-causal form until a commit is effectively
taken, and such an approach would likely lead to both superfluous (because lots
of traces will not be causal) and redundant (because of trace equivalence) com-
putations. A more astute approach is to look only at traces that will eventually
be in a k-causal form. This requires a bottom up view of traces where one starts
from commits inside a term, and then reconstructs causal traces triggering this
commit by consuming its predecessors in every possible way.

However, there is no need to work directly in the syntax, and event struc-
tures [Win82] provide exactly what is needed here: a truly concurrent semantics
that abstracts from the interleaving of concurrent transitions, and more impor-
tantly an explicit notion of causality. Among the various types of event structures
the most often considered are prime ones, because consistent runs can be simply
characterized. Yet they lead to quite large data structures.1 Our algorithm uses
instead flow event structures (FES) [BC89,Bou90,vGG03]. On the one hand,
there is a simple inductive translation of CCS terms into FESs that incurs no
computational cost; on the other hand, FES are algorithmically convenient com-
pact forms of event structures.

We first explain how to extract the causal compression CTSK(p) from the
translation of p into an FES. Then we discuss computational issues such as how
to make this an algorithm, and how some of the apparent computational costs
can be circumvented at the level of the implementation.

1 Specifically in prime event structure causes of an event must be uniquely determined,
and this forces duplication of the future of an event each time it is engaged in a
synchronization.



4.1 Flow event structures

A (labelled) flow event structure is a tuple E = 〈E,≺,#, λ〉 where
— E is a set of events,
— ≺ ⊆ E × E is the flow relation which has to be irreflexive,
— # ⊆ E × E is the conflict relation which is symmetric,
— and λ : E → A a labelling function.
The idea is that the flow relation gives all immediate possible causes of an event,
while the conflict relation indicates a conflicting choice between two events.

Definition 3. Let E = 〈E,≺,#, λ〉 be an FES, a set X ⊆ E is a configuration
of E, written X ∈ C(E), if it is:
— conflict free: # ∩ (X ×X) = ∅,
— cycle free: ≺∗ /X is a partial order,
— and left-closed up to conflicts: if e ∈ X and there is d ∈ E such that d ≺ e
then either d ∈ X or there exists f ∈ X such that f ≺ e and f#d.

The last two conditions are the price to pay for working with FESs, and are not
needed for prime ones. The first one will require some optimised structuring of
the conflict relation, we’ll return to this point soon.

A configuration X in E with e ∈ X is e-minimal if ∀e′ ∈ X : e′ ≺∗ e. The
set of e-minimal configurations is denoted by C〈E , e〉.
There is an easy inductive translation u unfolding any CCS
process into a FES [BC89], where events correspond to com-
munications, and configurations are those subsets of events
that a trace can trigger. We will not recall here this transla-
tion, and only give an example on the right, corresponding
to the process p := α.c.α.0 | ᾱ.0.

α1

c ᾱ#

#

#

(α2, ᾱ)
#

α2
#

(α1, ᾱ)

Fig. 4. FES representation of p := α.c.α.0 | ᾱ.0. Events are named after their labels
when these are not ambiguous.

translation, and only give an example (see Fig. 4). The correctness of u is given
by the following representation theorem:

Theorem 2 ([7]). Let p be a CCS process, and T!(p) stand for the traces of p
quotiented by trace equivalence, then (T!(p),≤) and (C(u(p)),⊆) are isomorphic.

One can define a transition system out of an FES. To do this, we define E|X,
the residual of E by a configuration X in C(E).

Definition 4 (Residual). Let E = 〈E,≺,#,λ〉 be an FES, X be a configura-
tion of E, and define X# := {e ∈ E | ∃e′ ∈ X : e′#e}. The residual of E by X
is E|X := 〈E′,≺′,#′〉 where:

E′ := E \ (X ∪ X#) ≺′:=≺ ∩ (E′ × E′) #′ := # ∩ (E′ × E′)

The LTS associated to E = 〈E,≺,#,λ〉 has initial state E , and transition relation
given by E ′ →X E ′′ if X ∈ C(E ′) and E ′′ = E ′|X.

It is here that our reframing of the compression question in terms of event
structures pays off, since to obtain the causal compression of the transition
system above, all one has to do is to restrict labels to e-minimal configurations
such that λ(e) ∈ K. The causal LTS associated to E , written CTSK(E), has
initial state E , and transition relation given by E ′ →→k E ′′ if there is an event
e ∈ E′ such that E ′ →X E ′′ with X ∈ C〈E ′, e〉 and λ(e) ∈ K. As a consequence
of the representation theorem one gets:

Lemma 1. Let p be a CCS process, then CTSK(p) and CTSK(u(p)) are isomor-
phic.

At that point, we have an equivalent definition of CTSK(p) in terms of the FES
u(p), and it remains to see how one can turn this definition into an algorithm.
This is what we discuss now.

4.2 Algorithmic discussion

First, the unfolding u(p) is in general an infinite object even if we restrict to
finite state processes. To keep with finite internal data structures, we require
each recursive process definition to be guarded by a commit action. This seems a

The correctness of u is given by the following representation theorem:

Theorem 2 ([Bou90]). Let p be a CCS process, and T'(p) stand for the traces
of p quotiented by trace equivalence, then (T'(p),≤) and (C(u(p)),⊆) are iso-
morphic.

One can define a transition system out of an FES. To do this, we define E|X,
the residual of E by a configuration X in C(E).

Definition 4 (Residual). Let E = 〈E,≺,#, λ〉 be an FES, X be a configura-
tion of E, and define X# := {e ∈ E | ∃e′ ∈ X : e′#e}. The residual of E by X
is E|X := 〈E′,≺′,#′〉 where:

E′ := E \ (X ∪X#) ≺′:=≺ ∩ (E′ × E′) #′ := # ∩ (E′ × E′)

The LTS associated to E = 〈E,≺,#, λ〉 has initial state E , and transition relation
given by E ′ →X E ′′ if X ∈ C(E ′) and E ′′ = E ′|X.

It is here that our reframing of the compression question in terms of event
structures pays off, since to obtain the causal compression of the transition
system above, all one has to do is to restrict labels to e-minimal configurations



such that λ(e) ∈ K. The causal LTS associated to E , written CTSK(E), has
initial state E , and transition relation given by E ′ _k E ′′ if there is an event
e ∈ E′ such that E ′ →X E ′′ with X ∈ C〈E ′, e〉 and λ(e) ∈ K. As a consequence
of the representation theorem one gets:

Lemma 1. Let p be a CCS process, then CTSK(p) and CTSK(u(p)) are isomor-
phic.

At this point, we have an equivalent definition of CTSK(p) in terms of the FES
u(p), and it remains to see how one can turn this definition into an algorithm.
This is what we discuss now.

4.2 Algorithmic discussion

First, the unfolding u(p) is in general an infinite object even if we restrict to
finite state processes. To keep with finite internal data structures, we require
each recursive process definition to be guarded by a commit action. This seems a
reasonable constraint, in that there is a priori no reason to model a transactional
mechanism with a process that allows infinite forward inconclusive traces.

To compute CTSK(u(p)), we use instead of u, a partial unfolding ufin that
coincides with u except it does not unfold any recursive definition. The con-
straint above ensures that every commit k that is reachable by a single causal
transition can be seen by this partial unfolding. Only after triggering the event
corresponding to k, are the recursive calls guarded by k (if any) unfolded, and
their translations by ufin added to the residual of the obtained event structure.
One then checks whether the obtained residual event structure is isomorphic
with some obtained previously, and adds it to the state space if not. Given a
process p, the algorithm to compute CTSK(u(p)) proceeds as follows:

0. E = 〈E,≺,#, λ〉 := ufin(p)
1. For all e ∈ E such that λ(e) ∈ K, compute the e-minimal configurations
Xe ∈ C〈E , e〉.

2. For each such Xe build the residual E|Xe, with recursive definitions guarded
by e unfolded using ufin .

3. Add the transitions E _k E|Xe, where k = λ(e), to the CTS under con-
struction.

4. For each residual E|Xe not isomorphic to any previous one, set E := E|Xe

and goto step 1.

By the representation theorem, this algorithm will terminate as soon as CTSK(p)
is finite. In practice most of the isomorphism tests can be avoided by using a
quite discriminative equality test between FES signatures which is linear in the
number of events. Another efficiency problem one has to deal with is the internal
representation of the conflict relation (which is involved in step 1 because of the
conflict-free condition on configurations). In prime event structures conflict is
inherited by causality, that is to say if e#e′ and e′ ≺ e′′, then e#e′′. Hence a
rather compact way to represent conflict is to keep only (e, e′) ∈ # and deduce
when needed that e#e′′ by heredity.



We have found that a similar compact structure, which we
call a conflict tree can be used for FESs. Conflict trees are
built during process partial unfoldings, and result in a typi-
cally logarithmically compact representation of conflict, for
a low computational cost. An example of a conflict tree is
given on the right: conflicts are predicated of intervals, and
[n − m]#[n′ − m′] means that any pair of events indexed
within {n, . . . ,m} × {n′, . . . ,m′} is in conflict.

[0-4]

[0-3]

[4]

#

[1]

[2]

#

Fig. 5. Conflict tree of a3.(b0 | c2 + d1) + e4

5.1 Benchmark

To get a sense of how well our verification technique performs compared with a
straight bisimulation based verification, we ran several tests2 using encodings of
the dining philosophers problem. This timeless example of distributed consensus
involves n philosophers eating together around a table. Each of them needs two
chopsticks to start eating, and has to share them with his neighbours. When
a philosopher has eaten, he releases his chopsticks after a while and goes back
to the initial state. In the partial implementation, say ppart , once a philosopher
takes a chopstick he never puts it back unless he has successfully eaten. In the
fully correct one, say pfull , he may release chopsticks at any time (thus avoiding
deadlocks). The CCS processes ppart and pfull for n = 2 correspond roughly to
the earlier examples (1) and (2). (See [1] for a general definition and detailed
study.)

There are two main reasons for taking the dining philosophers example. First
it is a paradigmatic example of distributed consensus, so the way to solve it
without access to the scheduler (by adding additional semaphores for instance)
has to involve backtracking. Second, it turns out that the number of possible
states of the specification is given by a Fibonacci sequence3

S(1) = 1 S(2) = 3 S(n + 1) = S(n) + S(n − 1)

This is convenient in that it gives a simple means to compare the time of compu-
tation with the size of the specification state space. Verifying correctness of pfull

using the Mobility Workbench (MWB) [11] (see Fig. 6) proved to be impossi-
ble beyond 5 philosophers (around 160 specification states) because of memory
limitations. By using first the Causal module (see Fig. 7) to extract the causal
transition system of ppart , we could verify up to 19 philosophers (around 15, 000
specification states) within a time which stayed roughly proportional to the
number of states. Since CTS(ppart ) is in this case equal to the specification, the
remaining part of the correctness proof takes negligible time (MWB needs 0.4s
for 10 philosophers).

2 Tests were made with an Intel Pentium 4 CPU 3.20GHz with 1GB of RAM.
3 Thanks to Hubert Krivine (LPTMS) for showing us this nice result.
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There are two main reasons for taking the dining philosophers example. First
it is a paradigmatic example of distributed consensus, so the way to solve it
without access to the scheduler (by adding additional semaphores for instance)
has to involve backtracking. Second, it turns out that the number of possible
states of the specification is given by a Fibonacci sequence.

S(1) = 1 S(2) = 3 S(n+ 1) = S(n) + S(n− 1)

This is convenient in that it gives a simple means to compare the time of com-
putation with the size of the specification state space. Verifying correctness of
pfull using the Mobility Workbench (MWB) [VM94] (see Fig. ??) proved to be
impossible beyond 5 philosophers (around 160 specification states) because of
memory limitations. By using first the our prototype (see Fig. ??) to extract the
causal transition system of ppart , we could verify up to 19 philosophers (around
15, 000 specification states) within a time which stayed roughly proportional to
the number of states. Since CTS(ppart) is in this case equal to the specification,
the remaining part of the correctness proof takes negligible time (MWB needs
0.4s for 10 philosophers).

2 Tests were made with an Intel Pentium 4 CPU 3.20GHz with 1GB of RAM.
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6 Conclusion

We have proposed a method for the verification of distributed systems which uses
an algorithm of relative causal compression. The method does not always apply:
the process one wants to verify must use a generic backtracking mechanism.
This may seem a limitation, but it often obtains a much simpler code, and many
examples of distributed transactions lend themselves naturally to this constraint.
When the method does apply, however, it proves very effective as we have shown
in the dining philosophers example.

State space explosion in automated bisimulation proofs is a well known phe-
nomenon, and trace compression techniques have been proposed to avoid the
redundancy created by the interleaving of transitions [6, 12], and used in model-
checking applications [13, 14]. These compressions preserve bisimilarity, whereas
our does not, and is of a completely different nature. Besides, and because our
algorithm uses event structures, we also cash in on this classical kind of com-
pression.

There is no reason why this verification method should be limited to CCS.
Other concurrent models can be equipped with backtracking, and forward and
backward aspects of correctness can be split there as well. Recent work extends
the concept of partially reversible computations to various process algebras [15],
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an algorithm of relative causal compression. The method does not always apply:
the process one wants to verify must use a generic backtracking mechanism.
This may seem a limitation, but it often obtains a much simpler code, and many
examples of distributed transactions lend themselves naturally to this constraint.
When the method does apply, however, it proves very effective as we have shown
in the dining philosophers example.

State space explosion in automated bisimulation proofs is a well known phe-
nomenon, and trace compression techniques have been proposed to avoid the
redundancy created by the interleaving of transitions [6, 12], and used in model-
checking applications [13, 14]. These compressions preserve bisimilarity, whereas
our does not, and is of a completely different nature. Besides, and because our
algorithm uses event structures, we also cash in on this classical kind of com-
pression.
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Other concurrent models can be equipped with backtracking, and forward and
backward aspects of correctness can be split there as well. Recent work extends
the concept of partially reversible computations to various process algebras [15],

6 Conclusion

We have proposed a method for the verification of distributed systems which uses
an algorithm of relative causal compression. The method does not always apply:
the process one wants to verify must use a generic backtracking mechanism.
This may seem a limitation, but it often obtains a much simpler code, and many
examples of distributed transactions lend themselves naturally to this constraint.
When the method does apply, however, it proves very effective as we have shown
in the dining philosophers example.

State space explosion in automated bisimulation proofs is a well known phe-
nomenon, and trace compression techniques have been proposed to avoid the re-
dundancy created by the interleaving of transitions [BC89,GW91], and used in
model-checking applications [BCDP95,AQR+04]. These compressions preserve
bisimilarity, whereas our does not, and is of a completely different nature. Be-
sides, and because our algorithm uses event structures, we also benefit from this
classical kind of compression.

There is no reason why this verification method should be limited to CCS.
Other concurrent models can be equipped with backtracking, and forward and
backward aspects of correctness can be split there as well. Recent work ex-
tends the concept of partially reversible computations to various process al-
gebras [PU06,PU07,LMS10,LMSS11], and it is possible to define an analogue
of RCCS for the π-calculus. New advances in event structure semantics for π-
calculus [VY10,CVY12] might allow to extend the causal compression algorithm,
so as to cover the important case of name-passing calculi.
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