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The paper addresses the stability problem of linear time delay system. In the literature, the most popular approach to tackle this problem relies on the use of Lyapunov-Krasovskii functionals. Many results have proposed new functionals and techniques for deriving less and less conservative stability conditions. Nevertheless, all these approaches use the same trick, the well-known Jensen's inequality which generally induces some conservatism difficult to overcome. In light of those observations, we propose to reduce the conservatism of Lyapunov-Krasovskii functionals by introducing new classes of integral inequalities called Wirtinger inequalities. This integral type inequality is firstly shown to encompass Jensen's inequality and is then employed to derive new stability conditions. To this end, a slightly modified Lyapunov functional is proposed. Several examples illustrate the effectiveness of our methodology.
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INTRODUCTION

The last decade has shown an increasing research activity on time-delay systems analysis and control due to both emerging adapted theoritical tools and also practical issues in the engineering field and information technology as well as for biology, economics or ecology (see [START_REF] Sipahi | Stability and stabilization of systems with time delay[END_REF] for a recent survey).

In the case of linear time delay system with a constant delay, three different techniques allow to derive efficient criteria proving the stability of such a system. The first classical methodology relies on the study of the roots of the associated characteristic equation, a quasi-polynomial in s and e -hs . Even very effective in practice (see the monograph [START_REF] Gu | Stability of timedelay systems[END_REF] and the survey [START_REF] Sipahi | Stability and stabilization of systems with time delay[END_REF]), these technics generally lead to a perfect description of the stability with respect to the delay. Nevertheless, these methods reveal themselves restrictive in the sense that they cannot be extended straightforwardly to the robust case and to the case of time varying delay.

Another important technic comes from the robust analysis framework. In that case, the basic idea is pull out the delay element from a nominal system and to merge it into a unstructured uncertainty. The original time delay system is then modeled as nominal system without delay submitted to a perturbation. The use of classical robustness tools like Small Gain theorem [START_REF] Niculescu | Frequency sweeping tests for asymptotic stability: a model transformation for multiple delays[END_REF], [START_REF] Zhang | Stability of time-delay systems: Equivalence between Lyapunov and scaled small-gain conditions[END_REF]), IQC approach [START_REF] Kao | Stability analysis of systems with uncertain time-varying delays[END_REF]) or quadratic separation approach [START_REF] Ariba | Stability interval for time-varying delay systems[END_REF]) allow then to develop effective criteria. The sources of conservatism are then twofold: the way to model the interconnection between the nominal system and the delay uncertainty and the accuracy of the delay covering set (the more precise the uncertainty set is, the less conservative is the criterion).

The third approach and the most popular remains the use a Lyapunov-Krasovskii functional. In the linear case, its general structure is perfectly known but is numerically difficult to handle (see [START_REF] Gu | Stability of timedelay systems[END_REF] for a concise introduction). According to the important literature devoted to this subject [START_REF] Ariba | An augmented model for robust stability analysis of time-varying delay systems[END_REF], [START_REF] Kim | Note on stability of linear systems with timevarying delay[END_REF], [START_REF] Shao | New delay-dependent stability criteria for systems with interval delay[END_REF], [START_REF] Sun | Improved delay-range-dependent stability criteria for linear systems with time-varying delays[END_REF]), conservative results are then provided often expressed in terms of LMIs if some additional hypothesis are formulated on the Lyapunov functional. The challenge is then to reduce the conservatism of such approaches by either choosing extended state based Lyapunov-Krasovskii functional [START_REF] Ariba | An augmented model for robust stability analysis of time-varying delay systems[END_REF], [START_REF] Kim | Note on stability of linear systems with timevarying delay[END_REF]) and/or discretized Lyapunov functional [START_REF] Gu | Stability of timedelay systems[END_REF]). Furthermore, apart the choice of an appropriate Lyapunov-Krasosvkii V , an important source of conservatism is the way to bound some cross terms arisen when manipulating the derivative of V . According to the literature on this subject (see [START_REF] Park | Reciprocally convex approach to stability of systems with time-varying delays[END_REF], [START_REF] He | Further improvement of free-weighting matrices technique for systems with time-varying delay[END_REF], [START_REF] Shao | New delay-dependent stability criteria for systems with interval delay[END_REF] for some recent papers), a common feature of all these techniques is the use of slack variables [START_REF] Jiang | Delay-dependent robust stability for uncertain linear systems with interval time-varying delay[END_REF]) and Jensen inequality [START_REF] Shao | New delay-dependent stability criteria for systems with interval delay[END_REF], [START_REF] Sun | Improved delay-range-dependent stability criteria for linear systems with time-varying delays[END_REF]). At the price of an increasing conservatism, this last inequality allows to get some LMIs which may be solved efficiently with Semi-Definite Programming (SDP) solvers.

In this preliminary work, we aim at reducing the conservatism of Lyapunov-Krasovskii techniques by considering an accurate integral inequality which includes the Jensen's one as a special case : the Wirtinger inequality. This new class of inequalities has been already employed in the stability of sampled-data systems by [START_REF] Liu | Wirtinger's inequality and lyapunov-based sampled-data stabilization[END_REF]. In this paper, its use combined with some special properties of sampled data systems has led to some inter- 

PRELIMINARIES

Looking at the huge literature devoted to the stability analysis of time-delay systems, the use of Lyapunov-Krasovskii functionals generally leads to some matrix inequalities quite difficult to handle. In order to get numerically tractable inequalities (generally some LMIs to be optimized), researchers have been extensively used the well-known Jensen's inequality which is recalled in the following lemma. Lemma 1. For given symmetric positive definite matrices R > 0 and for any differentiable signal ω in [a, b] → R n , the following inequality holds:

b a ω(u)R ω(u)du ≥ 1 b -a ω(b) ω(a) T R -R * R ω(b) ω(a) (1) 
In the context of time-delay systems, this inequality has been the core of several important contributions [START_REF] Gu | Stability of timedelay systems[END_REF], [START_REF] He | Further improvement of free-weighting matrices technique for systems with time-varying delay[END_REF]) although an inherent conservatism which has studied since several years in a Lyapunov-Krasovskii or robust analysis context (see for instance [START_REF] Briat | Convergence and equivalence results for the Jensen's inequality -application to time-delay and sampled-data systems[END_REF] and [START_REF] Gouaisbaut | Robust stability of timedelay systems with interval delays[END_REF]). In the present article, we aim at improving the resulting stability tests by employing a new class of integral inequalities called Wirtinger inequalities, which encompass the Jensen's inequality. In control theory, these types of inequalities have been successfully employed in [START_REF] Liu | Wirtinger's inequality and lyapunov-based sampled-data stabilization[END_REF] in the case of sampled data systems and have shown to reduce drastically the conservatism. In this paper [START_REF] Liu | Wirtinger's inequality and lyapunov-based sampled-data stabilization[END_REF], the authors used the following inequality

Lemma 2. Let z ∈ W [a, b) and z(a) = 0. Then for any n × n matrix R > 0, the following inequality holds b a z T (s)Rz(s)ds ≤ 4(b -a) 2 π 2 b a żT (s)R ż(s)ds (2)
There exists also another Wirtinger inequality that can be found in [START_REF] Kammler | A first Course in Fourier Analysis[END_REF], which leads to a more precise inequality using a stronger assumption on the function z. Indeed, the previous inequality can be refined as follows:

Lemma 3. Let z ∈ W [a, b) and z(a) = z(b) = 0. Then for any n × n matrix R > 0, the following inequality holds b a z T (s)Rz(s)ds ≤ (b -a) 2 π 2 b a żT (s)R ż(s)ds (3) 
In this paper, we aim at understanding how these inequalities can help in the context of assessing stability of time-delay systems. In particular, in the next section, we propose a novel inequality which is proved to be less conservative than the Jensen's one.

APPLICATION OF THE WIRTINGER'S INEQUALITIES

3.1 How to encompass Jensen's inequality?

In the sequel, we present a first new inequality that allows to derive less conservative stability conditions for time delay systems. Lemma 4. For a given symmetric positive definite matrix R > 0 and any differentiable signal ω in [a, b] → R n , then the following inequality holds:

b a ω(u)R ω(u)du ≥ b a Ω T (u) 6W 0 (R) + π 2 W 1 (u) 6(b -a) 2 Ω(u)du (4) where Ω = ω T (b) ω T (a) ω T (u)
T and (5) Consider now the left-hand side of the Wirtinger inequality. Developing this expression leads to: 

W 0 (R) = R -R 0 * R 0 * * 0 , W 1 (u) =      2R R -6 (u -a) (b -a) R * 2R -6 (b -u) (b -a) R * * 6R      . Proof :
a z T (u)Rz(u)du = b a (b -u) 2 ω T (a)Rω(a)du + b a (u -a) 2 ω T (b)Rω(b)du +2 b a (b -u)(u -a)ω T (a)Rω(b)du -2(b -a)ω T (b)R b a (u -a)ω(u)du -2(b -a)ω T (a)R b a (b -u)ω(u)du +(b -a) 2 b a ω T (u)Rω(u)du, (6) or equivalently, b a z T (u)Rz(u)du = (b -a) 3 3 ω T (a)Rω(a) + (b -a) 3 3 ω T (b)Rω(b) + 2 (b -a) 3 6 ω T (a)Rω(b) -2(b -a)ω T (b)R b a (u -a)ω(u)du -2(b -a)ω T (a)R b a (b -u)ω(u)du +(b -a) 2 b a ω T (u)Rω(u)du.
(7) This last equality can be rewritten as

b a z T (u)Rz(u)du = (b -a) 2 6 b a Ω T (u)W 1 (u)Ω(u)du.
(8) We conclude the proof by applying the Wirtinger inequality which leads to

π 2 6(b -a) 2 b a Ω T (u)W 1 (u)Ω(u)du ≤ b a ωT (u)R ω(u)du - 1 (b -a) 2 b a (ω(b) -ω(a)) T R(ω(b) -ω(a))du, (9) 
which is equivalent to the inequality proposed in Lemma 4. ♦

The previous lemma presents an improved version of the Jensen's inequality. Effectively, by splitting the integral given in the right-hand side of the inequality (4), we can highlight the difference with the Jensen's inequality:

b a ωT (u)R ω(u)du ≥ 1 (b -a) ω(b) ω(a) T R -R * R ω(b) ω(a) + π 2 6(b -a) 2 b a Ω T (u)W 1 (u)Ω(u)du.
(10) As equation ( 8) ensure that the last term of the previous inequality is positive, Lemma 4 gives a more accurate results than the Jensen's inequality.

However, a simple inspection of the right-hand side of the inequality (10) shows that this new inequality is difficult to handle since the matrix W 1 is polynomial of the integration variable. It is therefore not directly suitable for assessing the stability of time delay systems via numerical tools like LMIs. In the following, a more practical inequality is derived using a method based on integral manipulations introduced in the discretization method from [START_REF] Gu | Stability of timedelay systems[END_REF].

An appropriate inequality

As mentioned above, we cannot use the Lemma 4 to derive directly a numerically tractable stability criterion. In this subsection, we propose a more suitable formulation by finding a lower bound expressed only in terms of signals 

a ωT (u)R ω(u)du ≥ 1 b -a ω(b) ω(a) ν T W 2 (R) ω(b) ω(a) ν , (11) 
where

ν = 1 b -a b a ω(u)du, W 2 (R) = W 0 (R) + π 2 4 R R -2R * R -2R * * 4R
.

Proof : Consider the inequality (10), which is satisfied for any symmetric positive definite matrix R and any function ω. We aim at finding an appropriate lower bound of the right-hand side of this inequality by studying only the last integral of inequality (10), b a Ω T (u)W 1 (u)Ω(u)du, which can be rewritten as follows

I = b a ω(b) ω(a) ω(u) T W 1 1 W 2 1 (u) * 6R ω(b) ω(a) ω(u) du ( 12 
)
where

W 1 1 = 2R R * 2R , W 2 1 (u) = - 6 (b -a) (u -a)R (b -u)R
In order to find a lower-bound, we apply a similar transformation proposed in [START_REF] Gu | Stability of timedelay systems[END_REF] (Proposition 5.21). For any > 0, consider the integral

I * = b a ξ T (u) 1 + 6 R -1 I * 6R ξ(u)du,
where

ξ(u) =   W 2 1 T (u) ω(b) ω(a) ω(u)   .

By virtue of the Schur complement, this choice of ensures

that 1 + 6 R -1 I * 6R > 0.
The integral I * is then strictly positive for all > 0. Developing the previous integral we get

I * = 1 + 6 ω(b) ω(a) T b a W 2 1 (u)R -1 W 2 1 T (u)du ω(b) ω(a) +2 ω(b) ω(a) T b a W 2 1 (u)ω(u)du +6 b a ω T (u)Rω(u)du.
It yields that

I = I * + (b -a) ω(b) ω(a) T W 1 1 ω(b) ω(a) - 1 + 6 ω(b) ω(a) T b a W 2 1 (u)R -1 W 2 1 T (u)du ω(b) ω(a) , Furthermore, simple computations show that b a W 2 1 (u)R -1 W 2 1 T (u)du = 36 (b -a) 2     b a (u -a) 2 duR b a (u -a)(b -u)duR * b a (b -u) 2 duR     = 36(b -a) 3 6(b -a) 2 W 1 1 = 6(b -a)W 1 1 ,
and consequently,

I = I * + (b -a) ω(b) ω(a) T W 1 1 ω(b) ω(a) -(1 + )(b -a) ω(b) ω(a) T W 1 1 ω(b) ω(a) I = I * -(b -a) ω(b) ω(a) T W 1 1 ω(b) ω(a) .
Following the same method proposed in [START_REF] Gu | Stability of timedelay systems[END_REF], it is possible to apply the Jensen's inequality to the integral I * . This leads to

I * ≥ 1 b -a b a ξ(u)du T 1 + 6 R -1 I * 6R b a ξ(u)du and noting that b a ξ(u)du =     -3(b -a) [ R R ] ω(b) ω(a) b a ω(u)du     ,
we have

I * ≥ 9(1 + )(b -a) 6 ω(b) ω(a) T R R R R ω(b) ω(a) -6 ω(b) ω(a) T R R b a ω(u)du + 6 b -a b a ω(u)du T R b a ω(u)du .

Now, introducing the vector

Ξ = 1 b -a b a Ω(u)du =     ω(b) ω(a) 1 b -a b a ω(u)du     ,
we have that, for all > 0

I - 3(b -a) 2 Ξ T R R -2R * R -2R * * 4R Ξ ≥ (b -a) 2 ω(b) ω(a) T 3 R R * R -2W 1 1 ω(b) ω(a) ≥ - (b -a) 2 (ω(b) -ω(a)) T R(ω(b) -ω(a))
Note that the left-hand side of the previous inequality does not depend on the parameter while the right-hand does.

The previous inequality holds for all > 0. Then taking → 0 leads to the following inequality.

I ≥ 3(b -a) 2 Ξ T R R -2R * R -2R * * 4R Ξ
Replacing I by its lower bound into (10) proves the results. ♦ At this stage, we have provided a useful inequality which has been proved to be less conservative than Jensen'inequality. The next section is devoted to the construction of a new stability criterion.

STABILITY ANALYSIS OF SYSTEMS WITH CONSTANT DELAY

A Lyapunov-Krasovskii functional approach

We present in this sub-section the main result of the article which is based on the use of the Wirtinger's inequality developed in section 3. This approach is based on a modified Lyapunov-Krasovskii functional and allows us to establish the main theorem for the robust delay range stability analysis. Consider a linear time-delay system of the form:

ẋ(t) = Ax(t) + A d x(t -h) ∀t ≥ 0, x(t) = φ(t) ∀t ∈ [-h max , 0], (13) 
where x(t) ∈ R n is the state vector, φ is the initial condition and A, A d ∈ R n×n are constant matrices. The delay h is a positive scalar ans satisfies the constraints: h ∈ [h min , h max ] (14) where h min , h max are given positive constants. In the following, we aim at assessing the stability of system (13) with delay constraints (14) via the an appropriate Lyapunov-Krasovskii functional. Based on the previous inequality, the following theorem is provided. Theorem 6. For a given constant delay h, assume that there exist n × n matrices

P = P T > 0, S = S T > 0 and R = R T > 0 Π 1 (h) > 0, Π 2 (h) < 0 (15) with Π 1 (h) = P Q * Z + S/h , (16) 
Π 2 (h) = Π 0 2 (h) - 1 h W 2 (R), (17) 
Π 0 2 =   ∆ 0 2 P A d -Q hA T Q + hZ * -S hA T d Q -hZ * * 0   +   A T A T d 0   hR   A T A T d 0  
where ∆ 0 2 = P A+A T P +S+Q+Q T and the matrix W 2 (R) is given in Lemma 5, then the system (13) is asymptotically stable for the constant delay h.

Proof : Consider a Lyapunov-Krasovskii functional of the form

V (x t , ẋt ) =   x(t) t t-h x(s)ds   T P Q Q T Z   x(t) t t-h x(s)ds   + t t-h x(s)Sx(s)ds + t t-h (h -t + s) ẋ(s)R ẋ(s)ds (18)
The previous functional is the one of the simplest type of functionals to derive delay-dependent stability conditions. First of all, following [START_REF] Gu | Stability of timedelay systems[END_REF] and using Jensen inequality, a lower-bound for V can be easily found:

V (x t , ẋt ) ≥   x(t) t t-h x(s)ds   T Π 1 (h)   x(t) t t-h x(s)ds   + t t-h (h -t + s) ẋ(s)R ẋ(s)ds, ( 19 
)
and it is clear that the positive definiteness of the matrices P , S, R and Π 1 (h) implies the positive definiteness of the functional V . The derivative of the functional along the trajectories of the system (13) leads to

V (x t , ẋt ) = 2x T (t)P [Ax(t) + A d x(t -h)] +2x T (t)Q(x(t) -x(t -h)) +2[Ax(t) + A d x(t -h)] T Q t t-h x(s)ds +2(x(t) -x(t -h)) T Z t t-h x(s)ds +x T (t)Sx(t) -x T (t -h)Sx(t -h) +h[Ax(t) + A d x(t -h)] T R[Ax(t) + A d x(t -h)] - 0 -h ẋT (t + s)R ẋ(t + s)ds.
The previous equality can be reformulated as

V (x t , ẋt ) =     x(t) x(t -h) 1 h t t-h x(s)ds     Π 0 2 (h)    x(t) x(t -h) 1 h t t-h x(s)ds     - 0 -h ẋT (t + s)R ẋ(t + s)ds.
According to Lemma 5, the following upper-bound of the derivative of the functional is then obtained:

V (x t , ẋt ) =     x(t) x(t -h) 1 h t t-h x(s)ds     Π 2 (h)     x(t) x(t -h) 1 h t t-h x(s)ds     (20)
where Π 2 (h) is defined in (17). Then if the condition (15) from Theorem 6 are satisfied, the solutions of the system (13) are asymptotically stable. ♦

Delay range stability criterion

At this stage, the proposed criterion of Theorem 6 can perform the stability analysis only for a given delay h and not for a delay satisfying the constraints (14) h ∈ [h min , h max ]. Nevertheless, this can be done by modifying slightly the LMIs conditions as proposed in the following theorem.

Theorem 7. For a given constant delay h satisfying the delays constraints ( 14) h ∈ [h min , h max ], assume that there exist n × n matrices P = P T > 0, S 1 = S T 1 > 0 and

R 1 = R T 1 > 0 Π1 > 0, Π2 (h min ) < 0, Π2 (h max ) < 0, (21) with Π1 
= P Q * Z + S 1 , Π2 (h) = Ũ -W 2 (R 1 ) Ṽ * -R 1 , Ũ =   Υ 0 2 P A d -Q hA T Q + hZ * -hS 1 hA T d Q -hZ * * 0   , Υ 0 2 = P A + A T P + hS 1 + Q + Q T , Ṽ =   hA T R 1 hA T d R 1 0   ,
then the system ( 13) is asymptotically stable for the all constant delays h ∈ [h min , h max ].

Proof : Applying Theorem 6 by choosing

S 1 = 1 h S, R 1 = 1 h R yields to Π1 > 0 and Π 2 (h) = Π 0 2 (h) -W 2 (R 1
) < 0, where the matrix W 2 (R 1 ) is given in Lemma 5 and where

Π 0 2 =   Υ 0 2 P A d -Q hA T Q + hZ * -hS 1 hA T d Q -hZ * * 0   +   hA T R 1 hA T d R 1 0   R -1 1 [ hR 1 A hR 1 A d 0 ] .
Using Schur's complement to the inequality Π 2 (h) = Π 0 2 (h) -W 2 (R 1 ) < 0 leads to Π2 (h) < 0. Hence, the system (13) is stable for a given delay h if Π1 > 0 and Π2 (h) < 0. Therefore, simple inspection shows that Π2 (h) is affine and thus convex, in h. So, the condition Π2 (h) has to be assessed only at the two vertices of the polytope generated by the interval of h which concludes the proof. ♦

EXAMPLES

First example: delay dependent case

Consider the linear time-delay systems (13) with the matrices

A = -2 0 0 -0.9 , A d = -1 0 -1 -1
This system is a well-known delay dependent stable system, that is the delay free system is stable and the maximum allowable delay h max = 6.1721 can be easily computed by delay sweeping techniques. To demonstrate the effectiveness of our approach, results are compared to the literature and are reported in burden, compared to our proposal. Notice that the robust approach [START_REF] Kao | Stability analysis of systems with uncertain time-varying delays[END_REF] give a very good upperbound with a similar computational complexity than our result.

Theorem 7 addresses also the stability of systems with interval delays, which may be unstable for small delays (or without delays) as it is illustrated with the second example.

Second example: delay range case

Consider the linear time-delay systems (13) with the matrices A = 0 1 -2 0.1 , A d = 0 0 1 0 As Re(eig(A + Ad)) = 0.05 > 0, the delay free system is unstable and in this case, the results to assess the stability of this system are much more scarce. They are often related to robust analysis [START_REF] Ariba | Stability interval for time-varying delay systems[END_REF] or discretized Lyapunov-Krasovskii functionals [START_REF] Gu | Stability of timedelay systems[END_REF]. The results are reported in Table 2. In this example, Theorem 6 delivers better result than [START_REF] Gu | Stability of timedelay systems[END_REF] and [START_REF] Ariba | Stability interval for time-varying delay systems[END_REF] with a fewer number of variables to be optimized. Notice that with the discretization technique from [START_REF] Gu | Stability of timedelay systems[END_REF], increasing N yields to a better result approaching the analytical bound.

CONCLUSIONS

In this paper, we have provided a new useful inequality which encompass the Jensen's inequality. In combination with a simple Lyapunov-Krasovskii functional, this inequality leads to new stability criteria for linear time delay system. This new result has been expressed in terms of LMIs and has shown on numerical examples a large improvement of existing results using only a limited number of matrix variables. More generally, this preliminary result can be extended to all existing results which are using the Jensen's inequality, especially the case of time varying delay or sampled data systems.

  The proof is based on the second Wirtinger inequality. Consider the function z(u) = (b -u)ω(a) + (u -a)ω(b) -(b -a)ω(u) where u ∈ [a, b]. As the function z(u) satisfies the conditions of Lemma 3, i.e. z(a) = z(b) = 0, we apply the second Wirtinger inequality to z(u). The derivative of z with respect to u is given by: d du z(u) = ω(b) -ω(a) -(b -a) ω(u), and the right-hand-side of the Wirtinger inequality can be rewritten as: b a żT (u)R ż(u)du = (b -a) 2 b a ωT (u)R ω(u)du b a (ω(b) -ω(a)) T R(ω(b) -ω(a))du.

  b

  For given symmetric positive definite matrices R > 0 and for any differentiable signal ω in [a, b] → R n , the following inequality holds: b

Table 1 .

 1 All papers except[START_REF] Kao | Stability analysis of systems with uncertain time-varying delays[END_REF] use Lyapunov theory in order to derive stability criteria. Many recent papers give the same result since they are intrinsically based on the same Lyapunov functional and use the same bounding cross terms technique i.e. Jensen inequality. Some papers[START_REF] Ariba | Stability interval for time-varying delay systems[END_REF],[START_REF] Sun | Improved delay-range-dependent stability criteria for linear systems with time-varying delays[END_REF], which use an augmented Lyapunov can go further but with a numerically increasing

	Theorems	hmax	number of variables
	Gouaisbaut and Peaucelle [2006]	4.472	1.5n 2 + 1.5n
	He et al. [2007]	4.472	3n 2 + 3n
	Shao [2009]	4.472	2.5n 2 + 1.5n
	Sun et al. [2010]	4.472	3n 2 + 3n
	Kao and Rantzer [2007]	6.1107	1.5n 2 + 9n + 9
	Ariba et al. [2010]	5.120	7n 2 + 4n
	Sun et al. [2010]	5.02	18n 2 + 18n
	Kim [2011]	4.97	69n 2 + 5n
	Gu et al. [2003] (N=1)	6.059	5.5n 2 + 2.5n
	Th.6	5.901	3n 2 + 2n
	Th.6 with Q = Z = 0	4.472	1.5n 2 + 1.5n

Table 1 .

 1 Results for Example 1.

	Theorems	h min	hmax	number of variables
	He et al. [2007]	∅	∅	3n 2 + 3n
	Ariba et al. [2010]	0.102	1.424	7n 2 + 4n
	Gu et al. [2003] (N=1) 0.1006 1.4272	5.5n 2 + 2.5n
	Th.6	0.1006	1.473	3n 2 + 2n
	Th.6 with Q = Z = 0	∅	∅	1.5n 2 + 1.5n

Table 2 .

 2 Results for Example 2.