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Abstract. The severe wildfires in western Russia during
July–August 2010 coincided with a strong heat wave and led
to large emissions of aerosols and trace gases such as carbon
monoxide (CO), hydrocarbons and nitrogen oxides into the
troposphere. This extreme event is used to evaluate the ability
of the global MACC (Monitoring Atmospheric Composition
and Climate) atmospheric composition forecasting system to
provide analyses of large-scale pollution episodes and to test
the respective influence of a priori emission information and
data assimilation on the results. Daily 4-day hindcasts were
conducted using assimilated aerosol optical depth (AOD),
CO, nitrogen dioxide (NO2) and ozone (O3) data from a
range of satellite instruments. Daily fire emissions were used
from the Global Fire Assimilation System (GFAS) version
1.0, derived from satellite fire radiative power retrievals.

The impact of accurate wildfire emissions is dominant on
the composition in the boundary layer, whereas the assimi-
lation system influences concentrations throughout the tro-
posphere, reflecting the vertical sensitivity of the satellite
instruments. The application of the daily fire emissions re-
duces the area-average mean bias by 63 % (for CO), 60 %
(O3) and 75 % (NO2) during the first 24 h with respect to
independent satellite observations, compared to a reference
simulation with a multi-annual mean climatology of biomass
burning emissions. When initial tracer concentrations are fur-
ther constrained by data assimilation, biases are reduced by

87, 67 and 90 %. The forecast accuracy, quantified by the
mean bias up to 96 h lead time, was best for all compounds
when using both the GFAS emissions and assimilation. The
model simulations suggest an indirect positive impact of O3
and CO assimilation on hindcasts of NO2 via changes in the
oxidizing capacity.

However, the quality of local hindcasts was strongly de-
pendent on the assumptions made for forecasted fire emis-
sions. This was well visible from a relatively poor forecast
accuracy quantified by the root mean square error, as well
as the temporal correlation with respect to ground-based CO
total column data and AOD. This calls for a more advanced
method to forecast fire emissions than the currently adopted
persistency approach.

The combined analysis of fire radiative power observa-
tions, multiple trace gas and aerosol satellite observations, as
provided by the MACC system, results in a detailed quanti-
tative description of the impact of major fires on atmospheric
composition, and demonstrate the capabilities for the real-
time analysis and forecasts of large-scale fire events.

1 Introduction

In summer 2010, western Russia experienced a long at-
mospheric blocking period (Matsueda, 2011, Dole et al.,
2011) resulting in a strong heat wave, which started around
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27 June and lasted until 14 August. Within a region of
1000×1000 km2 around Moscow, temperatures were ap-
proximately 5–10◦C warmer and relative humidity was 20–
40 % lower than normal (Dole et al., 2011; Witte et al., 2011).
The combination of high temperatures and drought made the
vegetation vulnerable to fires, including the peat soil deposits
that are common in this region. The Moderate Resolution
Imaging Spectroradiometer (MODIS) instrument observed
increased intensities of fire radiative power (FRP) over west-
ern Russia from 20 July onwards, and these fires resulted in
periods of high pollution levels in Moscow and its vicinity.
The combination of hot temperatures and pollutants emitted
from the fires was estimated to have led to a significant in-
crease in deaths in Moscow (van Donkelaar et al., 2011).

A range of observations were used in various studies
to characterize the tropospheric composition during this
episode, including in-situ data for fine and coarse aerosol
mass (PM2.5 and PM10, van Donkelaar et al., 2011), aerosol
optical thickness (Chubarova et al., 2012) ozone (O3) and
carbon monoxide (CO) (Konovalov et al., 2011; Elansky et
al., 2011), CO total columns (Yurganov et al., 2011), as well
as space-based information of CO total columns from Atmo-
spheric Infrared Sounder (AIRS), and aerosol optical depth
(AOD) and single-scattering albedo from Ozone Monitoring
Instrument (OMI) (Witte et al., 2011; Mei et al., 2011).

In addition, it had been shown before that fire episodes can
be analyzed by the Infrared Atmospheric Sounding Interfer-
ometer (IASI) CO (Turquety et al., 2009) as well as nitrogen
dioxide (NO2) and formaldehyde (HCHO) observations from
the OMI and Scanning Imaging Absorption SpectroMeter
for Atmospheric ChartographY (SCIAMACHY) instruments
(e.g., Mebust et al., 2011; Stavrakou et al., 2009). Model
studies assessing estimates of emissions for CO (Konovalov
et al., 2011, Yurganov et al., 2011, Fokeeva et al., 2011), and
aerosol (van Donkelaar et al., 2011; Kaiser et al., 2012) have
been reported for the 2010 Russian fires.

The pollution levels by aerosol, CO and O3 in Moscow
varied greatly during the period, both due to changing wind
directions, and due to variations in fire emissions. Mete-
orological conditions during a heat wave are well known
to affect tropospheric composition (Ordóñez et al., 2010).
Changes in land surface parameters can alter dry deposition
over vegetation (Vautard et al., 2005), and biogenic emis-
sions (Lee et al., 2006, Solberg et al., 2008). Apart from these
direct effects, trace gas concentrations vary due to perturba-
tions of the chemical production and loss rates (e.g., Duncan
et al., 2003). Additionally, depending on the optical proper-
ties of emitted aerosol, O3 and NO2 photolysis rates can be
reduced (Real et al., 2007).

All these factors demand a comprehensive modeling
framework in order to produce a realistic analysis and fore-
cast of all aspects influencing tropospheric composition. This
includes the use of data assimilation of meteorology and
chemical composition, as well as accurate time- and space

resolved near real-time (NRT) emission estimates (Hodzic et
al., 2007, Menut and Bessagnet, 2010).

Several systems exist that aim to combine various obser-
vational data sources to obtain a complete and consistent
view of the atmospheric composition. In the United States,
an assimilation system for atmospheric composition is devel-
oped at the National Aeronautics and Space Administration
(NASA)/Global Modeling and Assimilation Office (GMAO;
seehttp://gmao.gsfc.nasa.gov). Also the National Oceanic
and Atmospheric Administration (NOAA)/National Weather
Service (NWS) in collaboration with the US Environmen-
tal Protection Agency (EPA) developed a data assimilation
system that is used for operational air quality forecasting.
Other examples of chemical data assimilation strategies are
described in Sandu and Chai (2011).

In this context the MACC (Monitoring Atmospheric
Composition and Climate,http://www.gmes-atmosphere.eu)
project is a European initiative to achieve a complete and
consistent view of the atmospheric composition, and to
establish connections between chemical composition and
weather forecasts, which in future may improve weather
forecasts (Zhang, 2008; Grell and Baklanov, 2011).

In MACC, analyses and forecasts of atmospheric compo-
sition are routinely produced based on the coupled system
CTM-IFS (Chemistry Transport Model – Integrated Forecast
System, Flemming et al., 2009), extended with an aerosol
model within the IFS (Morcrette et al., 2009, Benedetti
et al., 2009). This data assimilation system makes use of
analyses of both meteorology and chemical composition
(Hollingsworth et al., 2008). Thus, it is able to monitor vari-
ations in chemical composition due to varying meteorology,
such as episodes of increased ozone levels caused by heat
waves (Ord́oñez et al., 2010), or the onset of the ozone hole
(Flemming et al., 2011).

The impact of fire emissions on atmospheric composition
is long recognized (e.g., Duncan et al., 2003). Various sys-
tems for the generation of up-to-date, or even NRT global
fire emission estimates have been reported (van der Werf et
al., 2010; Wiedinmyer et al., 2010). Chemical composition
in fire plumes is assessed using a range of satellite instru-
ments as well as model results from various systems, some
of them including chemical data assimilation (Verma et al.,
2009; Dupont et al., 2012; Val Martin et al., 2006; Real et
al., 2007). Uncertainties in fire inventories on the modeling
of atmospheric composition, e.g., Williams et al. (2012), and
long-range transport (Miller et al., 2011; McMillan et al.,
2010; Elguindi et al., 2010) have previously been quantified.

Within MACC, a NRT daily fire emission estimate based
on FRP observations from MODIS was developed: the
Global Fire Assimilation System (GFAS, Kaiser et al., 2012).
In this study we assess the capability of the MACC system
using NRT fire emission estimates to forecast chemical com-
position a few days in advance. These forecasts are relevant
to serve as boundary conditions to regional air quality mod-
els, as distant emissions can potentially influence air quality
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Table 1. Summary of satellite data used in the assimilation. Blacklist criteria: variational quality control (QC), Solar Elevation (SOE) and
latitude (LAT).

Species Instrument Satellite Data Averaging Blacklist Reference
product kernels used criteria

CO IASI METOP-A Total column yes QC>0 Hurtmans et al. (2012)
O3 SCIAMACHY ENVISAT Total colum no QC>0 SOE<6◦ Eskes et al. (2005)
O3 OMI AURA Total column no QC>0 SOE<10◦ Levelt et al. (2006)
O3 SBUV/2 NOAA-17, NOAA-18 Partial column no QC>0 SOE<6◦ Bhartia et al. (1996)
O3 MLS AURA Profiles no QC>0 Waters et al. (2006)
NO2 OMI AURA Tropospheric column yes QC>0 LAT<60◦ S LAT>60◦ N Boersma et al. (2007)
AOD MODIS AQUA, TERRA Total column no LAT<70◦ S LAT>70◦ N Remer et al. (2005)

(Hodzic et al., 2007; Pfister et al., 2011). For instance, for the
2010 Russian fires smoke particles have been reported over
Finland (Kaiser et al., 2012).

The summer 2010 wildfires over western Russia provide
an opportunity for a comprehensive assessment of the MACC
assimilation/forecast system for this type of extreme pollu-
tion event. In this paper, we focus on the following questions:
What is the relative importance of (1) the chemical data as-
similation and (2) the NRT fire emission estimates on the
accuracy of forecasts of tropospheric composition? What are
direct effects, and which effects can be attributed to chemical
interaction within the system, e.g. by persistent changes in
the oxidative capacity? These questions may help to identify
causes of variations in forecast accuracy from the perspective
of both the modeling and the observing framework and can
provide guidelines to improve them. For this purpose several
hindcast (i.e. retrospective forecast) experiments with differ-
ent model settings have been evaluated against independent
satellite and ground-based observations. We focus on an as-
sessment of the model in the free troposphere, for which the
MACC global system is mainly designed for.

The paper is structured as follows: We describe the as-
similation and forecast framework, together with the GFAS
system in Sect. 2. In Sect. 3 various hindcast experiments
are evaluated against independent observations for the heat
wave period in western Russia. The interactions of the dif-
ferent modeling components with each other are explicitly
discussed in Sect. 4. We end this paper with a summary and
conclusions from the analysis performed.

2 The MACC system and experiment setup

2.1 The global assimilation and forecast system

The MACC system (Hollingsworth et al., 2008) is used to
perform assimilation and hindcast experiments of the chem-
ical composition of the troposphere and stratosphere on a
global scale. Daily analyses and forecasts of greenhouse
gases, reactive gases and aerosols, as well as a comprehen-
sive reanalysis of atmospheric composition data over the pe-
riod 2003-2010 are available via the MACC project web-

portal (http://www.gmes-atmosphere.eu/data/). Aerosols are
modeled within the IFS (Morcrette et al. 2009). The chem-
istry of reactive gases is calculated by a separate chem-
istry transport model. For this study we use the TM5 model
(Huijnen et al., 2010a), which is coupled to the IFS via the
OASIS4 coupler (Redler et al., 2010), as described in Flem-
ming et al. (2009). At the moment no interaction between
aerosols and trace gas concentrations is considered.

The ECMWF 4D-Var meteorological assimilation system
has been extended to assimilate chemically reactive trace gas
concentrations and AOD from satellite retrievals (Inness et
al., 2009; Benedetti et al., 2009). In the daily analyses for
2010, 7 retrieval products from 7 satellite instruments were
routinely assimilated, see Table 1. The observational data
are thinned to 1◦×1◦ resolution. Background error statistics
for reactive gases have been derived using the NMC method
(Parish and Derber, 1992), which currently does not account
for high variability in emissions or the correlation between
different trace gases. Variational quality control (Andersson
and J̈arvinen, 1999) and first guess checks are switched off
for CO and NO2, to avoid that observations with high values
that are very different from the background values would be
given only little weight in the analysis or even be rejected. As
an example, the mean averaging kernel for the IASI CO prod-
uct over western Russia, between 20 July and 15 August, is
given in Fig. 1. It shows that the instrument is sensitive down
to the surface (for daytime observations), but the largest sen-
sitivity to CO is at an altitude of approx. 400 hPa. By con-
straining both the ozone total column, using SCIAMACHY,
OMI and SBUV, and the partial ozone column in the strato-
sphere, using MLS data, tropospheric O3 is directly affected
by the assimilation procedure (Flemming et al., 2011). The
4D-Var system runs on T159L60 resolution, and minimizes
the difference between the observation and the background
fields during a 12 hour assimilation window.

The hindcast experiments use meteorology initialized
by the ECMWF operational analyses. For the analysis of
chemical composition the assimilation window is 12 h, start-
ing at 21:00 and 09:00 UTC. Every day at 00:00 UTC a 4-day
(96 h) hindcast is started with the same system. The hindcasts
use either the optimized initial concentration fields based on
the data assimilation system, or the first day hindcasts for

www.atmos-chem-phys.net/12/4341/2012/ Atmos. Chem. Phys., 12, 4341–4364, 2012

http://www.gmes-atmosphere.eu/data/


4344 V. Huijnen et al.: Tropospheric composition during 2010 Russian fires

0.0 0.5 1.0 1.5 2.0
AK

1000

800

600

400

200

P
re

s[
hP

a]

Fig. 1.Mean averaging kernel for IASI CO total columns over west-
ern Russia for 20 July–15 August 2010.

aerosol, O3, CO and NOx (=NO+NO2) of the previous day
for the reference hindcast runs. The four hindcast days are
referred to as D+0 to D+3.

The TM5 model uses the tropospheric gas-phase chem-
istry version TM5-chem-v3.0 (Huijnen et al., 2010a), which
is based on CBM-IV chemistry. It applies the same 60 level
vertical discretization as the IFS, but the horizontal resolu-
tion is 3◦ lon×2◦ lat, globally. The standard biomass burn-
ing emissions in the TM5 reference hindcast experiments are
based on GFEDv2 (van der Werf et al., 2006) monthly mean
‘climatological’ emissions calculated from the years 2001–
2006. The injection height of the reactive gases is assumed
to extend up to 2 km (distributed as 20 % in layers 0–100 m,
100–500 m and 500–1000 m, respectively, and 40 % in 1000–
2000 m), in line with the study from Val Martin et al. (2010).

2.2 The GFAS emissions

Numerous systems for the derivation of fire emission esti-
mates have been developed. They are traditionally based on
burned area, e.g. Andreae and Merlet (2001), van der Werf
et al. (2006, 2010), Wiedinmyer et al. (2011). Several recent
developments have instead used Fire Radiative Power (FRP)
observations, e.g., Kaiser et al. (2009), Sofiev et al. (2009),
Konovalov et al., (2011), because FRP has been shown to
be directly proportional to the combustion and aerosol emis-
sion rates (Wooster et al., 2005; Ichoku and Kaufman, 2005;
Heil et al., 2010). Common sources of uncertainty for all
approaches are the land cover (and corresponding fire) type
as well as the corresponding emission factors (Andreae and
Merlet, 2001; Wiedinmyer et al., 2011; van der Werf et al.,
2010; Mebust et al., 2011; Akagi et al., 2011). In the MACC
project a NRT Global Fire Assimilation System (GFAS) was
developed to estimate daily fire emission rates. The latest ver-
sion (GFASv1.0), described in Kaiser et al. (2012), is based
on FRP observations derived from the MODIS satellite in-
struments, and provides emission estimates on a daily basis
with global coverage on a 0.5◦

×0.5◦ spatial grid.

Table 2.Definition of model configurations.

Configuration Initial conditions Biomass burning
from assimilation emissions

CNT No GFEDv2-clim
GFAS No GFASv1.0
Assim Yes GFEDv2-clim
Assim-GFAS Yes GFASv1.0

The amount of trace gases released from the fires strongly
depends on the predominant land cover type classification.
The emission ratefs for species s is calculated as:

fs = ραβs. (1)

whereα denotes a biome-dependent factor for the conversion
of FRP observationsρ to the rate of dry matter burned and
βs are the biome-dependent emission factors from Andreae
and Merlet (2001) with updates, which are of similar mag-
nitude as those specified for GFEDv3.1 (van der Werf et al.,
2010). In GFASv1.0 the conversion factorα was derived with
a linear regression between the observed fire radiative energy
and the dry matter burned in the GFEDv3.1 inventory. Spe-
cific conversion factors have been derived for eight dominant
fire type classes (Heil et al., 2010; Kaiser et al., 2012). We
note that an earlier attempt to generate emissions during the
2010 Russian fires episode yielded far lower CO emissions,
partly because the biome distribution originally did not con-
tain peat soils in the area around Moscow. The dominant fire
type map was derived from the historic distribution of fire
types in GFEDv3.1. For Russia, peat (histosols) and peaty
soil areas were added in GFASv1.0, using information from
Stolbovoi and Savin (2002) and (FAO 2003). GFASv1.0 is
consistent with GFED3.1 within its accuracy limits and cap-
tures many small fires that are missing in the GFEDv3.1 in-
ventory. Specifically, on a global, multi-annual average, the
CO emissions of GFASv1.0 are 6 % larger than GFEDv3.1,
on a continental scale differences are typically 20 %. For
aerosol emissions a global enhancement factor of 3.4 is in-
troduced to compensate the under-estimation of bottom-up
compared to top-down fire emissions at a regional to global
scale (Kaiser et al., 2012). With this correction factor, the
GFASv1.0 aerosol emissions of the western Russian fires of
2010 are consistent with eastern European AERONET ob-
servations (Kaiser et al., 2012).

The GFASv1.0 emissions for aerosols and all relevant re-
active trace gases, including the non-methane volatile or-
ganic carbons (NMVOC’s), are applied to the MACC sys-
tem globally. A constant emission rate during the day is ap-
plied, which is a reasonable assumption for this case study
where nighttime fire activity almost equaled daytime burning
(Kaiser et al., 2012). The D+0 fire emissions are assumed to
be constant during the full hindcast period.

Atmos. Chem. Phys., 12, 4341–4364, 2012 www.atmos-chem-phys.net/12/4341/2012/
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Table 3.Emission totals over western Russia for daily GFASv1.0, GFEDv3.1 monthly emissions, the GFEDv2 climatological emissions, as
well as anthropogenic and biogenic emissions as used in the hindcast runs. Anthropogenic emissions are from RETRO (Schultz et al., 2007)
and biogenic emissions from GEIA (Guenter et al., 2005) for CO and from ORCHIDEE (Latière et al., 2006) for NOx and HCHO.

period 1–15/7 16–31/7 1–15/8 16-31/8

BC (Gg C) GFASv1.0 2.4 5.4 7.9 1.6
GFEDv3.1 3.8 4.0 6.4 6.8
GFEDv2 clim 3.2 3.5 4.1 4.4
Anthropogenic 2.4 2.6 2.7 2.9

CO (Tg CO) GFASv1.0 0.45 5.2 7.0 0.67
GFEDv3.1 0.65 0.69 1.1 1.2
GFEDv2 clim 0.50 0.53 0.60 0.64
Anthropogenic 0.29 0.31 0.33 0.36
Biogenic 0.43 0.46 0.38 0.40

NOx (Gg NO) GFASv1.0 8 29 42 6
GFEDv3.1 19 20 35 38
GFEDv2 clim 17 18 21 22
Anthropogenic 47 50 52 55
Soil 22 24 22 23

HCHO (Gg HCHO) GFASv1.0 5.3 43.7 60.6 7.3
GFEDv3.1 9.9 10.6 18.8 20.1
GFEDv2 clim – – – –
Anthropogenic 11 12 11 12

2.3 Set-up of the model experiments

To investigate the impact of both the assimilation system and
the fire emissions, we performed four different 4-day hind-
cast runs, namely with and without initializing aerosol, CO,
O3 and NOx from assimilated fields, and using either the
GFASv1.0 fire product or the GFEDv2 climatological emis-
sions, see Table 2. All runs lasted up to 31 August, while
the free runs started on 1 July, and the runs including assim-
ilation on 15 July. In this study we will primarily focus on
the evaluation of trace gas concentrations in the free tropo-
sphere, on a sub-continental scale (∼1000×1000 km), hav-
ing in mind the relatively coarse resolution of our chemistry
model.

3 Results

3.1 Meteorology and fire emissions

Figure 2 illustrates the meteorological situation for the July–
August time period over western Russia, here defined as
the region 35◦ E–70◦ E, 45◦ N–65◦ N (see also Fig. 3). The
heat wave started around 27 June and lasted until 14 Au-
gust. Temperatures reached maximum values of 39◦C, at the
end of July, at individual locations (Matsueda, 2011), and
were on average 5–10◦C higher than normal (Dole et al.,
2011). No significant precipitation was recorded during this
period, which resulted in relative humidity levels 20–40 %
lower than normal (Witte et al., 2011). According to the me-

teorological analyses, from mid-July onwards the soil wet-
ness was below the critical level of 23 %, i.e. half the volu-
metric soil moisture at saturation, where water stress in veg-
etation is assumed to take place. From this period onwards
the FRP of GFASv1.0 starts to increase, with extreme mag-
nitudes on 29–30 July. On the evening of 10 August thun-
derstorms cleared the air over Moscow. After this date the
recorded number of fires, and hence the fire emissions, were
reduced. On 13 August the heat wave ended with heavy rain
in Moscow and nearby areas.

Time series of the modeled CO emissions for the four
dominating soil types over western Russia are also given
in Fig. 2. They illustrate that the largest contribution to to-
tal CO emissions can be attributed to fires over agricultural
land, which indeed covers the largest area within this region.
However, on 29 and 30 July, approximately half of the to-
tal emissions were originating from peat fires. A snapshot of
the CO emission map for 29 July (Fig. 3) shows that the re-
gion with large emissions is very localized at about 150 km
east of Moscow and partly includes a region where fires were
burning in dense peat deposits (Kaiser et al., 2012). Note that
emission totals for 30 July were very similar to 29 July, be-
cause the quality control has removed the FRP observations
for that day (Kaiser et al., 2012).

The total black carbon (BC), CO, NOx and HCHO emis-
sions from GFASv1.0 over western Russia, during 4 peri-
ods in July–August 2010, are given in Table 3. As a refer-
ence for GFASv1.0, the GFEDv3.1 emissions for the corre-
sponding time period in 2010 are given. Also the GFEDv2

www.atmos-chem-phys.net/12/4341/2012/ Atmos. Chem. Phys., 12, 4341–4364, 2012
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Fig. 2. Time series of(a) 2 meter daily maximum (solid) and min-
imum (dashed) temperature, and(b) soil wetness at a location east
of Moscow (42◦ E, 55◦ N) from ERA-Interim meteorology. The
dashed line indicates the critical soil wetness level below which wa-
ter stress is assumed to take place. Also shown are thec) GFASv1.0
FRP product averaged over western Russia, and(d) GFASv1.0 CO
emissions over western Russia aggregated per fuel type. Only emis-
sions from the four dominant fuel types are shown: AG: Agriculture,
PEAT: Peat soils (histosols), SA: Savanna, EFOS: Extratropical for-
est (with partial burning of organic soil matter).

climatological (2001–2006) emissions, which are used in
the reference hindcast experiments, are listed. The total
GFASv1.0 emissions of CO between 16 July and 15 August
are estimated as 12.2 Tg, of which∼20 % is attributed to peat
burning. The CO emission totals are about 11 times larger
than the GFEDv2 climatological emissions. Furthermore, the
CO and HCHO emissions are much higher than the monthly-
mean GFEDv3.1 emissions. This is because GFEDv3.1 rep-
resents organic soil content in parts of Russia but only for
the calculation of the dry matter combustion rate; the emis-
sion factors for peat are not applied outside tropical peat re-
gions (van der Werf et al., 2010). GFASv1.0 applies emis-
sion factors for peat across all tropical and Russian peat
land cover types. The finding of larger CO and HCHO emis-
sions and lower NOx and BC emissions in GFAS than in
GFEDv3.1 is consistent with the differences in respective
emission factors for peat and agricultural fires. Finally, we
note that the GFEDv3.1 average emissions over 2001–2006
for this region are considerably lower than those based on
GFEDv2, as explained by van der Werf et al. (2010). For in-
stance, CO emissions in GFEDv3.1 are lower by∼40 % than
GFEDv2.

The corresponding anthropogenic and biogenic emissions
used in the hindcast runs are also given. They illustrate that,

Fig. 3.Snapshot of CO emissions from GFASv1.0 on 29 July 2010.
The white boxes indicate areas with peat soil as the dominant land
cover type. Also indicated is the western Russia region (35◦ E–
70◦ E×45◦ N–65◦ N).

specifically for CO and HCHO, the GFASv1.0 biomass burn-
ing emissions contribute 90 % and 82 % of the total emis-
sions, respectively, during the fire period. The CO emissions
are∼25 % higher than Konovalov et al. (2011), who based
their estimate on an optimization of FRP emission estima-
tions using assimilated surface CO concentrations. Their es-
timated contribution from peat fires was∼30 %.

During 29 and 30 July, the release of CO in GFASv1.0
is estimated as∼3.6 Tg, contributing more than 30 % of the
total wildfire emissions over western Russia during July and
August 2010. Fire emissions for NOx have almost doubled
compared to the climatology and contribute 32 % to the total
emissions during this period.

3.2 Evaluation of tropospheric composition

The hindcast experiments (see Table 2) have been compared
against various observations that were not used in the as-
similation, as will be described in the corresponding subsec-
tions. For modeled AOD, ground-based observations done
at the Moscow AERONET station (37.5◦ E, 55.7◦ N) are
used. In the case of CO, O3, NO2 and HCHO, retrievals
from MOPITT, IASI and SCIAMACHY are used. CO total
columns are further compared to ground-based observations
at Moscow and Zvenigorod.

Forecast accuracy is quantified in terms of mean bias and
Root Mean Square Error (RMSE), which have been cal-
culated on a daily basis for each hindcast day and model
grid-box. These were then averaged over the western Russia
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Fig. 4. Left) modeled total aerosol optical depth at D+0, compared to daily average AERONET observations at the Moscow station (black).
The error bars reflect the daily variance in the available observations. Middle) total of seasalt, dust and sulphate aerosol, Right) total of
organic matter and black carbon aerosol.

Table 4.Mean bias and RMSE of modeled AOD compared to the measurements from AERONET station at Moscow, between 20 July and
15 August, as function of the hindcast day.

Model Mean bias RMSE

D+0 D+1 D+2 D+3 D+0 D+1 D+2 D+3
CNT −0.83 −0.79 −0.78 −0.73 0.85 0.81 0.79 0.75
GFAS −0.10 −0.28 −0.14 0.12 0.56 0.45 0.64 0.74
Assim −0.41 −0.51 −0.51 −0.48 0.45 0.54 0.55 0.52
Assim-GFAS 0.08 −0.05 0.02 0.27 0.43 0.41 0.54 0.77

region and for the time frame of 20 July–15 August. For the
AOD hindcasts, error measures are computed based on bias
and RMSE with respect to the Moscow station only. Model
AOD is interpolated to the time of the individual observa-
tions, and equal weight is given to all separate days in the
time series. A similar procedure was followed for the evalu-
ation of ground-based CO total columns.

3.2.1 Aerosol optical depth and aerosol composition

In Fig. 4, the modeled total AOD at 550nm from the four
configurations is compared to AERONET observations at the
Moscow station. Prior to the fire event (15–25 July) all model
configurations tend to underestimate the AOD, although the
configurations including initialization from assimilated AOD
provide the best results. During the fire period, the run As-
sim captures a substantial part of the individual events, but
frequently underestimates the magnitudes of the AODs. The
run GFAS performs better, capturing most of the individ-
ual events. For instance, on 7 August, the very high levels
of modeled AOD are in agreement with the observed daily
mean AOD, with a value of 3.3 in GFAS compared to 3.6 in
the observations.

Despite the similarity in AOD in the assimilation runs
with/without GFASv1.0, the aerosol composition in these
runs is very different, see Fig. 4. In the assimilation runs
excluding GFASv1.0 emissions the increase in AOD is
largely attributed to sulphate, dust and sea salt aerosols. In
the other runs the organic matter and black carbon aerosols,
which are the dominant aerosol types in smoke, are most
enhanced. Therefore, realistic fire smoke emissions are es-
sential for the ability to identify elevated aerosol levels as
smoke. This behavior is expected as the aerosol assimilation
scheme does not contain information of the aerosol composi-
tion but it relies on a realistic first guess estimation of emis-
sion (Benedetti et al., 2009).

The mean bias for run GFAS on D+0 is improved by 88 %
compared to run CNT and by 75 % compared to run Assim,
see Table 4. It remains better than for runs CNT and Assim
throughout the hindcast period. This shows that the GFAS
aerosol emissions also yield information on the total aerosol
load that is more accurate than a climatology and even the
MODIS AOD observations in this particular case. However,
the information of GFAS and MODIS AOD is complemen-
tary and the mean bias of run Assim-GFAS is consequently
the lowest of all runs up to D+2. The two runs with GFAS
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Fig. 5.Maps of mean CO columns from MOPITT-V4 for the time period 20 July–15 August 2010 compared to the kernel-weighted D+0 CO
columns from the runs CNT, GFAS and Assim-GFAS.

Table 5. Temporal correlation of modeled AOD compared to the
measurements from AERONET station at Moscow, between 20 July
and 15 August (n = 27), as function of the hindcast day.

Model r2

D+0 D+1 D+2 D+3
CNT 0.09 0.09 0.15 0.04
GFAS 0.32 0.57 0.28 0.26
Assim 0.72 0.77 0.74 0.78
Assim-GFAS 0.50 0.68 0.48 0.26

emissions show an increase in mean bias for D+3. We inter-
pret this as a symptom of a false alarm due to the assumption
of persistence of the emissions from D+0, in particular per-
sistence of the extreme emission rates on 29–30 July. This
false alarm is visible around 3 August in the AOD time se-
ries for D+3 in the top right panel of Fig. 12 in Kaiser et
al. (2012).

The RMSE for run GFAS shows the positive impact of
the GFAS emissions up to D+3 compared to run CNT. Run
Assim-GFAS is better than the runs GFAS and Assim up to
D+2, once again showing the complementary positive im-
pacts of the assimilation and the emissions. The RMSE for
D+3 in run Assim-GFAS is worse than the one in run Assim.
This is a consequence of the strong sensitivity of this error
metric to the actual variability in the emissions, which was
very large between 28 July and 14 August. The RMSE is
negatively affected by the emission persistency assumption
made within each hindcast. A detailed interpretation is, how-
ever, beyond the scope of the present study because RMSE
also becomes sensitive to the activity of the forecast at longer
lead times.

The correlation of the modeled AOD with respect to the
AERONET observations is given in Table 5. Best perfor-
mance is obtained with run Assim (r2=0.72, n=27) for hind-
cast D+0 and remains fairly constant at this level up to
D+3. For runs GFAS (r2

= 0.32 at D+0) and Assim-GFAS
(r2

= 0.50 at D+0) the correlation degrades tor2
= 0.26 at
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Fig. 6. Evolution of average kernel-weighted total columns over
western Russia compared to MOPITT, for D+0 hindcasts.

D+3, as a consequence of the high variability in the daily
emissions.

In summary, the composition of the smoke aerosol plume
is only realistic when GFAS emissions are used, the mean
bias of AOD are improved by using the GFAS emissions
throughout the AOD forecasts and the RMSE up to D+2.
The RMSE andr2 illustrate that the day-to-day variability
in the emissions, and also AOD at the individual sites, are
very high.

3.2.2 Carbon monoxide

For the evaluation of CO, daytime total column observations
from the MOPITT-V4 product (Deeter et al., 2010) have been
used. Biases in the retrievals are on average below 5 %. We
apply the MOPITT averaging kernels to the logarithm of the
modeled profile. The average total CO columns over west-
ern Russia for run GFAS during the time of the fires show
a strong improvement compared to the control run (Fig. 5).
A similar pattern as that from MOPITT can be observed, al-
though with an overall negative bias. A better agreement is
found with run Assim-GFAS, which, on average, captured
the observed magnitude well. The impacted region spans an
area from the western border of Russia, 35◦ E, up to 80◦ E
and from 40◦ N to 65◦ N, as a consequence of the relatively
long CO lifetime.

The evolution of the area-average total columns over west-
ern Russia is presented in Fig. 6. Run GFAS accurately
follows the observed area-average increase and decrease, but
with a fairly constant negative offset during the whole sim-
ulation period. This suggests that the bias is not directly re-
lated to the GFAS CO emissions but rather to a general bias
in CO over the northern hemisphere, see also Huijnen et
al. (2010a).

When using assimilated IASI CO observations for the
hindcast initialization, the average model total columns are
low by ∼ 1017 molec cm−2 (∼6 %) compared to MOPITT-
V4 during the initial phase, i.e., before 3 August. This bias
is of the same magnitude as for the average over the extra-
tropical Northern Hemisphere (30◦ N–90◦ N). However, dur-
ing the period of the highest CO columns (4–14 August),
a positive bias of up to 0.5×1018 molec cm−2 was found.
These differences could be related to differences between
IASI and MOPITT CO retrieval algorithms during this par-
ticular case, as discussed in Turquety et al. (2009) and
George et al. (2009).

The assimilation runs with and without GFAS emissions
do not show a significant difference for D+0 hindcasts, illus-
trating the dominating impact of the initialization by assimi-
lation of IASI observations.

A quantitative analysis of the forecast error as function of
the hindcast day is given in Table 6. For the D+0 hindcasts
the mean bias in run GFAS is−0.29×1018 molec cm−2. This
remains fairly constant for the next three hindcast days and
is less than half the bias obtained for run CNT.

It is interesting to consider the differences in the evolu-
tion of bias and RMSE at increasing forecast lengths between
runs Assim and Assim-GFAS. Initially, for D+0, these num-
bers are similar, but while in run Assim a negative bias de-
velops quickly, this happens to a lesser extent in run Assim-
GFAS, with an improvement of the mean bias relative to
run Assim of 84 % at D+3. This demonstrates that the total
amount of CO emissions, which is for this event much lower
in run Assim (climatological) than in Assim-GFAS (persis-
tency of D+0 emissions), is important to obtain a good fore-
cast accuracy.

On the other hand, the values for RMSE increase consid-
erably when including the GFAS emissions. This reflects the
poor forecast accuracy of the precise emission pattern based
on the persistency assumption in the fire emissions, as found
before in the AOD analysis.

Additional to the space-based observations, we evaluate
the model runs against ground-based CO total column obser-
vations based on spectrometers at the Moscow and Zvenig-
orod stations, as reported in Yurganov et al. (2011), Fig. 7.
The Zvenigorod observation station is located 53 km west
of the Moscow station. For this evaluation the modeled day-
time CO profile has been spatially interpolated to the sta-
tion location and convoluted with the averaging kernel corre-
sponding to the observations. The magnitude of the total col-
umn observations from the two stations at the same day are
always less than 1018 molec cm−2, except for 6 and 9 August,
when the observations at Moscow are about two times larger
than the ones at Zvenigorod. The model columns interpolated
at the two stations are always very similar. This illustrates
that very local events, causing differences in observations
cannot be resolved at the current model resolution.

Different to the evaluation against space-based columns,
a distinct difference between the runs with/without
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Table 6.Mean bias and RMSE of modeled total CO columns (units 1018molec cm−2) compared to MOPITT V4 observations over western
Russia between 20 July and 15 August, as function of the hindcast day.

Model Bias RMSE

D+0 D+1 D+2 D+3 D+0 D+1 D+2 D+3
CNT −0.79 −0.78 −0.78 −0.77 0.91 0.91 0.90 0.90
GFAS −0.29 −0.27 −0.26 −0.22 0.52 0.53 0.57 0.64
Assim 0.13 −0.04 −0.20 −0.31 0.38 0.39 0.43 0.51
Assim-GFAS 0.10 0.04 −0.02 −0.05 0.40 0.46 0.54 0.62

Table 7.Mean bias and RMSE of modeled total CO columns (units 1018molec cm−2) compared to ground-based CO total column observa-
tions at the Moscow and Zvenigorod stations between 20 July and 15 August, as function of the hindcast day.

Model Bias RMSE

D+0 D+1 D+2 D+3 D+0 D+1 D+2 D+3
CNT −2.0 −2.0 −2.0 −2.0 2.9 2.9 2.9 2.9
GFAS −0.2 −0.7 −0.8 −0.7 2.0 1.9 1.7 1.9
Assim −1.2 −1.4 −1.5 −1.5 2.1 2.3 2.3 2.4
Assim-GFAS 0.0 −0.2 −0.5 −0.3 1.9 1.6 1.5 1.8
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Fig. 7. Modeled daytime mean total CO column at D+0, compared
to daily average ground-based column observations at the Moscow
and Zvenigorod stations. The error bars reflect the daily variance in
the available observations. Solid lines are model results interpolated
to the Moscow station (55.7◦ N. 37.6◦ E). dashed lines correspond
to Zvenigorod (55.7◦ N, 36.8◦ E).

assimilation is clear, while both runs that apply GFAS emis-
sions are now relatively similar. The rather modest increase
in run Assim compared to CNT can be explained by the low
sensitivity of IASI near the surface, as illustrated by the av-
eraging kernel in Fig. 1, and because the a-priori profiles do
not contain the high surface concentrations for this particular
event.

The model versions with GFAS emissions capture the in-
crease in CO columns during the first 10 days of August, but
over-estimate concentrations on 29 July, related to the esti-
mated high peat fire emissions close to Moscow on that day
(Fig. 3). This is in contrast to AOD model results in Moscow
for this day (see Fig. 4) and suggests that this model bias is
caused by the lower resolution of the chemistry model com-
pared to the aerosol model in IFS.

Model mean bias and RMSE during the period of the fires
is presented in Table 7. For this evaluation the observations
(and model results) from Moscow and Zvenigorod have been
combined for the day that both stations delivered data.

The mean bias of D+0 hindcasts improve with application
of data assimilation (a reduction by 40 %) but more effec-
tively when using GFAS emissions (90 % reduction). Best
performance is obtained in runs Assim-GFAS, with a negli-
gible mean bias. For hindcast days D+1 to D+3 the degrada-
tion in performance compared to D+0 is relatively moderate
for all runs. Run Assim-GFAS remains best up to D+3, which
is again different from the evaluation of ground-based AOD.
Especially the fact that the RMSE does not degrade for the
runs with GFAS could indicate that the available observa-
tions do not fully constrain the model performance. Unfor-
tunately, for specific days with large discrepancies between
D+0 and D+3 forecasts (e.g. on 7–8 August, not shown) there
are no observations.

Table 8 provides the temporal correlation of the hind-
casts with respect to these observations. This is best for
run Assim (r2

= 0.68, n = 21 for hindcast D+0), while the
correlation for the runs with GFAS emissions is worse (D+0)
or marginally better (D+1 to D+3) compared to CNT. Note
that the limited number of observations and the observational

Atmos. Chem. Phys., 12, 4341–4364, 2012 www.atmos-chem-phys.net/12/4341/2012/



V. Huijnen et al.: Tropospheric composition during 2010 Russian fires 4351

western Russia

100 150 200 250 300
CO daily max [ppbv]

1000

800

600

400

200
P

re
s 

[h
P

a]
CNT
GFAS
Assim
Assim-GFAS

Fig. 8. Averaged daily maximum CO profiles for the four hindcast
runs, at D+0 over western Russia, for the time period 20 July–15
August.

Table 8. Temporal correlation (r2) of modeled total CO columns
(units 1018 molec cm−2) with respect to ground-based CO total col-
umn observations at the Moscow and Zvenigorod stations between
20 July and 15 August (n = 21), as function of the hindcast day.

Model r2

D+0 D+1 D+2 D+3
CNT 0.32 0.26 0.28 0.33
GFAS 0.25 0.37 0.53 0.43
Assim 0.68 0.51 0.62 0.57
Assim-GFAS 0.31 0.48 0.59 0.48

data gaps during this event degrade the representativeness of
this score. This may also explain the atypical results of the
higher r2 for hindcasts D+1 to D+3 compared to D+0 for
runs with GFAS.

The difference in performance against ground-based and
space based observations is illustrated by the area-average
vertical model profiles (Fig. 8). The impact of the CO as-
similation in run Assim is visible throughout the full tro-
posphere, up to 200hPa, with the largest increase in CO
concentrations at around 700 hPa. In contrast, the runs
with GFAS show high CO concentrations up to∼800 hPa,
corresponding to the injection height distribution of the CO
emissions. Switching on the assimilation in run Assim-GFAS
results in a marginal increase of the high concentrations in
the boundary layer, and hence a little difference in CO to-
tal column with respect to ground-based observations, where
the sensitivity of these instruments is maximal. But a more
effective increase compared to run GFAS is found between
800 and 400 hPa, which explains the removal of the negative
bias with respect to MOPITT.

3.2.3 Tropospheric ozone

We use IASI O3 partial tropospheric columns (0–6 km) from
LISA (Dufour et al., 2012) to evaluate hindcasts of tropo-
spheric O3 concentrations. The O3 data consist of a profile re-
trieval using the radiative transfer model KOPRA (Karlsruhe
Optimised and Precise Radiative transfer Algorithm, (Stiller
et al., 2000)) and its inversion module KOPRAFIT (Ere-
menko et al., 2008). Note that the IASI observations are fil-
tered for cloud contamination before the retrieval. This filter
should allow also screening for the worst aerosol contami-
nated pixels. However, the retrieval algorithm does not ac-
count for aerosol concentrations, and moderate aerosol load-
ing can potentially introduce significant biases in the ozone
retrieval depending on the type, size, altitude and amount of
aerosols. For this study we have added an additional filter that
corresponds to a noise level of about 70 nW/(cm2 cm−1 sr) on
the radiance measured by IASI in order to discard the data
with too poor fit quality. Compared to the standard measure-
ment noise level of about 20 nW/(cm2 cm−1 sr) this signifi-
cantly reduced spurious high tropospheric O3 columns over
Kazakhstan, while it did not change columns elsewhere. The
product used here was available for Europe and western Rus-
sia up to 58◦ E. The retrieval error is estimated in the range
of 10–20 % (Dufour et al., 2012). In the validation procedure
we map spatially and temporally interpolated model profiles
to the instantaneous IASI observations at approx. 10:30 local
time and then apply the averaging kernels.

In Fig. 9 we present maps of mean tropospheric O3 par-
tial columns. On average the model runs are all well in line
with IASI over western Europe, and show a slightly high
bias over the Mediterranean region. All runs show lower
ozone columns south-east of Moscow and particularly over
western Kazakhstan than observed by IASI. The reasons for
this are not fully understood. Although no strong wildfires
took place here, the heat wave extended into this region,
with daytime maximum temperatures reaching 40◦C in the
first two weeks of August. This resulted in a reduction in
ozone dry deposition flux due to low soil wetness levels. The
model might additionally suffer from the same shortcomings
as suggested in the evaluation of the 2003 heat wave over
western Europe (Ord́oñez et al., 2010), i.e., the impact of
high temperatures and increased solar radiation on the bio-
genic emissions (e.g. Lee et al., 2006; Solberg et al., 2008),
which, together with moderately high NOx concentrations,
can increase O3 production. On the other hand, an assess-
ment of the local climatological biogenic VOC and soil NOx
emissions as applied in current runs (Lathière et al., 2006)
show that these are significantly larger in comparison to cli-
matological emissions derived from MEGANv2 (Guenther
et al., 2006), which constrains the possibility of an under-
estimation of ozone precursor emissions. Furthermore, a pos-
sible positive bias in the IASI retrieval could also contribute
to the discrepancy between the model and observations. This
bias could be caused by spectral interferences between ozone
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Fig. 9. Maps of mean O3 tropospheric partial columns (0-6 km) as observed from IASI between 20 July and 15 August 2010 compared to
the kernel-weighted D+0 columns from the runs CNT, Assim and Assim-GFAS.

Table 9. Mean bias and RMSE of modeled O3 partial columns (0-6km) in DU, compared to IASI O3 observations over western Russia
between 20 July and 15 August, as function of the hindcast day.

Model Bias RMSE

D+0 D+1 D+2 D+3 D+0 D+1 D+2 D+3
CNT −1.5 −1.5 −1.5 −1.6 1.8 1.8 1.8 1.8
GFAS −0.6 −0.6 −0.7 −0.7 1.7 1.7 1.7 1.7
Assim −1.0 −1.1 −1.2 −1.3 1.7 1.7 1.7 1.8
Assim-GFAS −0.5 −0.6 −0.7 −0.8 1.7 1.7 1.7 1.7

and aerosols and/or water vapor. We note that the positive
bias in IASI was reduced by applying a more strict error cri-
terion as discussed above.

Nevertheless, the large-scale spatial patterns are captured
by the model, including the north-south gradient in O3

columns over western Russia. Local differences between the
runs are less than approx. 2 DU.

Figure 10 shows the time evolution of the corresponding
area-mean tropospheric O3 columns for hindcasts D+0. It
illustrates that all model runs are able to capture the increase
in O3 columns at the beginning of August, as well as the
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Fig. 10. Time series of modeled tropospheric O3 columns (hind-
cast D+0) with averaging kernel against IASI O3 columns (0–6 km).
Data are smoothed over a 3-day time window to filter out variations
in spatial coverage.
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Fig. 11. (left) Maximum area-average surface O3 concentrations
over western Russia for the four model settings, hindcast D+0.
(right) corresponding time averaged profile of ozone daily maxi-
mum concentrations between 20 July and 15 August.

strong decrease between 10 and 21 August, the end of the
heat wave. However, all model runs show a negative bias of
approx. 1–3 DU with respect to IASI during the heat wave. It
is largest for run CNT, and lowest for the runs that apply the
GFAS emissions, indicating its positive impact on the ozone
chemistry in the model.

The spatial variability in the instantaneous ozone columns
is significantly larger for the IASI retrieval than in the model.
While the daily average standard deviation of the IASI O3
observations over western Russia between 20 July and 15
August is 3.1 DU, it is only between 1.2 and 1.3 DU for
the different hindcast runs. Part of this larger standard de-
viation in IASI columns can be explained by retrieval er-
rors, estimated to be∼2.5 DU for the given time period and
region. A lack of variability in the modeled O3 concentra-

tions in the free troposphere additionally explains this dis-
crepancy. These two factors contribute to the RMSE of the
model against the IASI observations, which is about 1.7 DU,
see Table 9. Although the use of assimilation helps to reduce
the model bias, the largest improvement is a result of the use
of the GFAS emissions, with a reduction of the mean bias
by approx. 60 % compared to the control run for D+0. The
relative difference between the mean biases of the different
hindcast runs is similar for all hindcast days, indicating the
lasting effect of both initialization by assimilated fields as
well as the use of GFAS emissions.

Despite the rather similar results for tropospheric O3
columns from the various runs, there are significant dif-
ferences in the planetary boundary layer (PBL). Figure 11
shows that surface O3 concentrations are only slightly af-
fected by the initialization from assimilation, while they are
enhanced by∼15 % when using the GFAS emissions dur-
ing the time of the fires. Moreover the figure illustrates that
hindcasts using the GFAS emissions lead to elevated O3 lev-
els throughout the troposphere while the assimilation has the
largest impact at altitude levels between 600 and 300 hPa,
and the smallest in the PBL, similar to what was found for
CO. Irrespective of the missing effects of the aerosols, which
would presumably lead to a reduction in surface ozone con-
centrations (Konovalov et al. 2011), this shows the relevance
of the NRT emission estimates on the modeling of ozone con-
centrations in the PBL, compared to the impact of ozone as-
similation.

3.2.4 Tropospheric nitrogen dioxide

We compare hindcasts of tropospheric NO2 columns against
the IUP Bremen SCIAMACHY NO2 product. Airmass fac-
tors determined from radiative transfer calculations are used
to convert slant to vertical columns (Richter et al., 2005).
NO2 tropospheric columns are only determined for clear sky
pixels, a selection performed according to FRESCO data
(Koelemeijer et al., 2001, 2002) for cloud fractions smaller
than 20 %. Model data coinciding in time and space with
SCIAMACHY measurements are used. The hindcasts are
further compared to the DOMINO product v2.0 (Boersma
et al., 2011), applying the same selection criteria as for
SCIAMACHY, see also Huijnen et al. (2010b). The un-
certainty in individual retrievals due to spectral fitting is
0.7×1015 molecules cm−2 (Boersma et al., 2007). Note that
the same OMI NO2 column data over Eurasia were also used
in the assimilation system, to provide initial conditions for
the runs Assim and Assim-GFAS. Leitao et al. (2010) show
that the sensitivity of NO2 satellite measurements can be in-
creased or decreased, depending on the amount and optical
properties of the aerosols, and its vertical distribution rela-
tive to that of NO2. Thus, it is difficult to estimate precisely
the uncertainties associated with the retrieved tropospheric
NO2 columns from SCIAMACHY measurements for this
event. Note that there are significant differences between the
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Fig. 12.Maps of mean tropospheric NO2 columns as observed from SCIAMACHY between 20 July and 15 August compared to the D+0
columns from the runs CNT, GFAS and Assim-GFAS.
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Fig. 13.Time series of modeled tropospheric NO2 columns (hind-
cast D+0) against SCIAMACHY (left) and with averaging kernel
against OMI NO2 from DOMINO v2.0 (right).
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Fig. 14.Scatter plots of mean tropospheric NO2 for model runs at
D+0 with respect to observations from SCIAMACHY and OMI, for
the period 20 July to 15 August 2010.
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DOMINO v2.0 and Bremen SCIAMACHY NO2 retrieval
products. This includes, for example, the different overpass
time (SCIAMACHY in the morning, OMI in the afternoon),
and the fact that for the comparison to OMI NO2 we apply
averaging kernels to the model, while these are not used for
the comparison to SCIAMACHY. Also, differences in the
coverage (better for OMI) and resolution (better for OMI)
result in more observations per model gridbox for OMI.

In general, the various model runs compare well with
the SCIAMACHY measurements over western Russia, see
Fig. 12. A hot-spot of high NO2 columns is observed within
the gridbox containing Moscow, which can mainly be at-
tributed to anthropogenic emissions. Both the SCIAMACHY
and OMI instruments detect a large region of intensified NO2
spreading east of Moscow that is not simulated by any of the
hindcast runs. Considering the size of this region this defi-
ciency in the model simulations could point at uncertainties
in the soil NOx emissions. In the current inventory these con-
tribute to∼20 % of the total emissions in run GFAS (see Ta-
ble 3).

In the surroundings of Moscow both SCIAMACHY and
OMI show enhanced NO2 columns that may be attributed to
fire emissions. The hindcast run GFAS has on average higher
columns compared to CNT within this region. However, run
GFAS shows the spots of high NO2 columns at different lo-
cations than observed from the satellite instruments. When
switching on the initialization from assimilation, the NO2
columns over western Russia increase on average, thereby
reducing the negative model bias. This is most visible in the
region extending south and east of Moscow.

Figure 13 shows the time evolution of the model versions
compared to the SCIAMACHY and OMI NO2 prod-
ucts. As we evaluate tropospheric NO2 columns over the
relatively large western Russia region the daily average
increase in columns during the time of the fires is lim-
ited. SCIAMACHY shows enhanced columns during the
beginning of August, while for OMI high NO2 columns
during the first days of August over the fires region are
compensated by relatively low columns elsewhere. In
both figures the increase in daily average NO2 columns
with GFAS emissions and assimilation is well visible,
with both aspects resulting in better average agreement
to the observations. Nevertheless, the correlation between
the area-mean observations and corresponding model
columns is limited. The variability in magnitude, both
in the model columns and the retrieval, is larger with
respect to SCIAMACHY data than to OMI data (see, e.g.,
the high model concentrations in the evaluation against
SCIAMACHY on 10 August). This is a direct consequence
of the lower data volume in SCIAMACHY compared to
OMI.

The scatter plots presented in Fig. 14 reveal in more de-
tail the spatial correlation between the different runs and the
observations over western Russia. The corresponding cor-
relations and slopes as derived from a linear regression are

Table 10.Slope and spatial correlation (r2) of modeled tropospheric
NO2 columns for hindcast D+0 with respect to SCIAMACHY and
OMI observations over western Russia between 20 July and 15 Au-
gust.

model Slope r2

SCIA OMI SCIA OMI
CNT 0.58 0.42 0.68 0.89
GFAS 0.80 0.47 0.37 0.78
Assim 0.65 0.53 0.72 0.93
Assim-GFAS 0.85 0.56 0.43 0.87

given in Table 10. The best correlations are obtained for the
simulations with climatological emissions, indicating that the
spatial distribution of the GFAS emissions indeed does not
accurately reflect the actually observed variability in NO2
columns.

The largest outlier in the scatter plot against SCIA-
MACHY was obtained for the runs that use GFAS emissions
and can be traced back to the model hindcast for 30 July. For
this particular day emissions due to peat fires were extreme in
a small region east of Moscow (see Fig. 2). Actual emissions
for that day are highly uncertain as these were kept identical
to the ones from the previous day (see Sect. 3.1).

The mean bias and RMSE for all hindcast days with re-
spect to the SCIAMACHY and OMI NO2 products are given
in Tables 11 and 12. As expected, the mean bias decreases by
75 % (29 %) against SCIAMACHY (OMI) when using the
GFAS emissions, but the RMSE significantly increases for
the comparison with SCIAMACHY, while it hardly changed
for OMI. Note that differences in the coverage and resolu-
tion result in more daily observations per model gridbox for
OMI data. Therefore the model RMSE with respect to SCIA-
MACHY, as calculated from daily mean observed fields at
the model grid resolution, is more influenced by retrieval er-
rors than with respect to OMI (Boersma et al., 2007). The
remaining contribution to the RMSE can be attributed to a
mismatch of the local emissions.

A reduction in the bias of 28 % (47 %) compared to SCIA-
MACHY (OMI) is achieved when including the assimilation
of O3, CO and NO2 observations for initialization. The as-
similation also leads to a slight decrease of the RMSE, which
can be explained by the improved mean bias. Considering
the short lifetime of NO2, we cannot exclude that most of the
impact of the assimilation on NO2 is indirect, via assimila-
tion of CO and O3. This is also consistent with the persisting
lower bias with increasing forecast length in the assimilation
runs. The enhanced CO causes a reduced abundance of OH
radicals in the troposphere (e.g., Duncan et al., 2003). This
in turn inhibits the formation of nitric acid (HNO3) by oxida-
tion of NO2. More tropospheric O3 would furthermore lead
to higher NO titration in favour of NO2 production. Indeed
the OH concentrations over the Moscow gridbox during the
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Table 11.Mean bias and RMSE of modeled tropospheric NO2 columns (units 1015 molec cm−2), compared to SCIAMACHY observations
over western Russia between 20 July and 15 August, as function of the hindcast day.

Model Bias RMSE

D+0 D+1 D+2 D+3 D+0 D+1 D+2 D+3
CNT −0.40 −0.40 −0.40 −0.39 0.58 0.59 0.59 0.60
GFAS −0.10 −0.15 −0.15 −0.12 0.94 0.89 0.91 0.99
Assim −0.29 −0.33 −0.35 −0.36 0.56 0.57 0.58 0.59
Assim-GFAS −0.04 −0.09 −0.11 −0.08 0.90 0.89 0.93 1.02

Table 12. Mean bias and RMSE of modeled tropospheric NO2 columns (units 1015 molec cm−2), compared to OMI observations over
western Russia between 20 July and 15 August, as function of the hindcast day.

Run Bias RMSE

D+0 D+1 D+2 D+3 D+0 D+1 D+2 D+3
CNT −0.34 −0.34 −0.34 −0.32 0.44 0.43 0.43 0.44
GFAS −0.24 −0.25 −0.23 −0.22 0.43 0.43 0.43 0.43
Assim −0.18 −0.23 −0.26 −0.27 0.40 0.41 0.42 0.42
Assim-GFAS −0.16 −0.20 −0.21 −0.21 0.40 0.41 0.42 0.43

first 10 days in August decrease by approx. 5 % in the free
troposphere in run Assim-GFAS versus run GFAS. Yet, the
actual numbers vary considerably depending on the hindcast
day, altitude level and location. Further work is needed to
quantify and validate the indirect effects of the assimilation
on the chemical composition.

3.2.5 Formaldehyde

The retrieval of HCHO columns from the SCIAMACHY in-
strument follows a similar approach as described in the pre-
vious subsection for NO2, and is further detailed in Witt-
rock (2006) and Wittrock et al. (2006). Offsets introduced by
the solar reference measurements are compensated by nor-
malizing the retrieved slant columns with a mean value of
3.5×1015 molec cm−2 in the region between 180◦–200◦ E.
Airmass factors are used to convert the slant to vertical
columns. These are taken from pre-calculated values that
assumed a variable tropospheric aerosol loading. However,
these scenarios do not necessarily represent the conditions
of the fire event analyzed in this study. This means that a
more precise correction of aerosol effect could lead to higher
HCHO columns retrieved from SCIAMACHY observations
(Wittrock, 2006). One other aspect to consider is that the
low coverage of satellite pixels for SCIAMACHY data (com-
bined with the short period of the analysis) implies a small
number of measurements available per model grid box. This
leads to a relatively large uncertainty in the averaged data due
to the noise in the individual measurements, which in com-
bination with the offset correction for some cases results in
negative HCHO columns. Considering the low coverage also
no cloud screening is performed for HCHO retrievals. The

uncertainty in the mean of the observations is estimated of
the order 1016 molec cm−2 (Wittrock, 2006).

Figure 15 presents the modeled tropospheric HCHO
columns and observations from SCIAMACHY. The SCIA-
MACHY data show significant scatter, as a direct conse-
quence of the large uncertainty in the HCHO retrieval. All
model versions show somewhat higher HCHO background
concentrations than observed from SCIAMACHY, which
may partly be related to the offset correction in SCIA-
MACHY. On the other hand, the SCIAMACHY HCHO
columns show a distinct region of high HCHO columns
east of Moscow. A similar hot-spot, although higher, is
only identified in the model simulations where the updated
GFAS emissions were considered. The indirect impact of
the assimilation is marginal: HCHO columns are on aver-
age∼0.3×1015 molec cm−2 lower compared to runs without
initialization from assimilation. This could be explained by
the change in oxidative capacity in the model, related to the
higher tropospheric NOx, CO and O3. Still, a large differ-
ence between the model runs that use the GFAS emissions
and satellite data can be perceived, with the model having
both higher background values as well as a different mag-
nitude and shape of the region with elevated HCHO levels.
This difference can be explained by uncertainties in both the
model and the observations.

Time series of daily mean HCHO columns as well as an
evaluation of mean bias and RMSE between model and ob-
servations are in this case strongly influenced by the scat-
ter in the observations and the outliers, due to the sparse
amount of data and high uncertainty of individual observa-
tions. Therefore such an analysis does not lead to significant
results. Here, we focus on the spatial correlation between
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Fig. 15.Maps of mean tropospheric HCHO columns as observed from SCIAMACHY between 20 July and 15 August compared to the D+0
columns from the runs CNT and GFAS.

the model results and the SCIAMACHY observations. The
HCHO scatter plot (Fig. 16) illustrates that, for the back-
ground concentrations, i.e., SCIAMACHY observations be-
low 1016 molec cm−2, the model shows approximately con-
stant HCHO columns of 1016 molec cm−2. Very similar re-
sults for the runs with/without assimilation are obtained. The
presence of the region with high HCHO in the model runs
with GFAS leads to a significant improvement in the slope of
the regression and the correlation between the model and the
SCIAMACHY observations, Table 13. This demonstrates the
positive impact of the GFAS emissions on modeled HCHO
columns. The large outlier in these runs with an average
model column of 6.7×1016 molec cm−2 is related to the peat
fire emissions east of Moscow on 30 July, and corresponds to
the outlier in the SCIAMACHY NO2 scatter plot.

Table 13.Slope and correlation (r2) of modeled HCHO columns for
hindcast D+0 with respect to SCIAMACHY and OMI observations
over western Russia between 20 July and 15 August.

model Slope r2

CNT 0.08 0.10
GFAS 0.68 0.47
Assim 0.07 0.08
Assim-GFAS 0.65 0.44

4 Integral assessment of GFAS emissions and
assimilation on hindcasts

In this section we assess the integral impact of both the
GFASv1.0 emissions and initialization by assimilated trace
gases on the atmospheric composition at D+0, focusing on
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Fig. 16. Scatter plots of mean HCHO columns for model runs at
D+0 with respect to observations from SCIAMACHY, for the pe-
riod 20 July to 15 August 2010.

the chemical interactions between the various trace gases.
Also the implications of different start-conditions and emis-
sion estimates for the D+1 to D+3 hindcasts are analyzed.

4.1 Impact of fire emissions on chemical production and
loss budgets

The impact on local production/loss budgets and the respec-
tive total masses (burdens) resulting from the application of
the GFASv1.0 fire emissions as compared to the climatolog-
ical emissions is given in Table 14. Note that the emission
budgets include all contributing emission types in this region.

The modeled HCHO burden in run GFAS increases by
56 %, mainly due to the enhanced local HCHO emissions
from GFASv1.0, but also because of enhanced oxidation of
other hydrocarbons. Although the chemical production of
CO, which is mainly driven by HCHO oxidation, increases
by 22 % in run GFAS, the absolute contribution to the CO
production remains small. About 4 % of the extra CO produc-
tion in run GFAS can be attributed to GFASv1.0 emissions
of HCHO and other higher hydrocarbons. Thus, 96 % of the
increase in CO burden is attributed to the direct CO fire emis-
sions. An indirect effect of the large GFASv1.0 emissions is
an increase of 19 % in the local CO lifetime, calculated as
the local burden over the chemical loss. This corresponds to
a lifetime of 1.5 month in run GFAS, and is hence a signifi-
cant contributor to enhanced CO concentrations in the tropo-
sphere. The increase in CO lifetime is due to a reduction of
the hydroxyl radical (OH) concentration, which also explains
the reduced CH4 oxidation budget. This is related to an in-
creased scavenging of OH by the larger CO concentrations,
as was discussed earlier by Duncan et al. (2003).

Additionally, the ozone chemical production and loss
terms increase, related to larger NOx and NMVOC emissions

due to the fires. Overall a net increase in tropospheric O3 bur-
den of 4 % is found. O3 concentrations are mostly enhanced
in the PBL, see also Sect. 3.2. The dry deposition velocities
in the two runs are identical, as they depend on meteorology
only. Therefore the increase in O3 concentrations in the PBL
explains the comparatively larger increase in O3 dry depo-
sition flux by 10 %. As discussed earlier, the increase in the
O3 burden is insufficient compared to the IASI observations,
suggesting an under-estimation of ozone precursor gas emis-
sions.

The mean biases in NO2 columns with respect to both
SCIAMACHY and OMI, for the runs using the GFASv1.0
fire emissions, have improved significantly compared to
the hindcast results with climatological emissions. This im-
provement suggests a general positive impact of higher NOx
emissions on the model results. Nevertheless, the evaluation
still indicates an under-estimation of NOx emissions, which
could contribute to the low bias in O3.

Several authors suggested that an excess of aerosol con-
centrations will have an impact on chemical and photolysis
rates, depending on aerosol microphysical and optical prop-
erties (e.g., Hodzic et al. 2007, Real et al., 2007, Verma et
al., 2009). Konovalov et al. (2011) estimated that the neglect
of shielding by an aerosol plume leads to a positive bias of
∼20–50 % in O3 at the surface layer over Moscow, during
most days in the intense fire period. This was explained by
an overestimation of the ozone production by NO2 photoly-
sis.

Overall we find that the increase in O3 burden and the
larger NOx-recycling are insufficient to counterbalance the
larger OH scavenging by CO. As we do not account for
aerosol effects, the O3 production is likely over-estimated,
as well as primary OH production due to the ozone photol-
ysis. Correspondingly, this implies an over-estimation of the
local CH4 and CO loss by oxidation. However, the magni-
tude of this effect is highly uncertain, depending on the ac-
tual aerosol optical parameters and the spatial and vertical
distribution (Real et al., 2007). Also, while the effects can
be very important on a local scale, as shown by Konovalov
et al. (2011), their impact on the chemical budgets on a sub-
continental scale is unclear, but likely small.

4.2 Impact of assimilation on chemical composition

The application of assimilation helps in most cases to re-
duce model biases. A small negative bias in CO with respect
to MOPITT-V4 before and after the fire episode was found,
whereas for days with the largest CO columns the hindcasts
initialized with assimilated IASI CO show a high bias of ap-
prox. 0.5×1018 molec cm−2. These biases are in line with an
earlier evaluation for summer 2007 Greek fires (Turquety et
al., 2009).

When switching on the assimilation of O3 total and partial
stratospheric columns the negative O3 bias decreases by 33 %
compared to the control run, i.e., the impact is less than the
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Table 14. CO, HCHO and O3 tropospheric chemical budgets in
Tg, for runs CNT and GFAS, and the relative change expressed as
(GFAS-CNT)/(CNT), calculated for the period 15 July–5 August
over western Russia. The imbalance in the HCHO, CO and O3 bud-
gets corresponds to the net mass change.

Model CNT GFAS Difference [%]

HCHO emission 0.14 0.24 71
HCHO chem. prod 1.85 2.25 16
HCHO chem. loss −1.80 −2.23 22
HCHO dry/wet deposition −0.13 −0.17 31
HCHO net transport −0.06 −0.09 −

HCHO burden 0.016 0.025 56
CO emission 2.4 13.5 463
CO chem. production 1.8 2.2 22
CO chem. loss −2.2 −2.9 32
CO net transport −2.2 −14.0 −

CO burden 2.8 4.4 57
CH4 loss 0.47 0.43 −9
NOxx emission (Tg N) 0.087 0.120 38
O3 chem production 6.8 8.4 24
O3 chem loss −4.9 −5.5 12
O3 dry deposition −2.15 −2.36 10
O3 net transport −0.1 −1.0 −

O3 burden 3.64 3.80 4

application of GFASv1.0. This is understandable because the
highest sensitivity of the instruments that provide data used
in the assimilation is to the stratosphere. For NO2 the assim-
ilation is more effective, showing reductions in mean bias of
28 % (47 %) compared to SCIAMACHY (OMI). Also, the
spatial correlation and the regression slope improve. Model
HCHO columns are slightly lower with assimilation, as a
consequence of a different oxidizing capacity of the atmo-
sphere.

As in the current model runs CO, O3 and NO2 are assim-
ilated simultaneously, it is difficult to assess from the D+0
hindcasts the indirect impact of assimilation of one trace gas
on the other, especially the interaction between NO2 assimi-
lation and the other trace gases. Studying this effect requires
separate sensitivity studies.

4.3 impact of GFAS emissions and assimilation on D+1
to D+3 hindcasts

Generally the D+1 to D+3 forecast accuracy decreases with
increasing lead time, but its rate differs depending on the
model version, trace gas and error metric. Run Assim shows
generally lower RMSE at D+3 compared to run Assim-
GFAS, except for ground-based CO total columns and O3
total columns. Also RMSE in this run is always better than
run CNT. The RMSE with respect to SCIAMACHY NO2 is
∼65 % larger in the run with GFASv1.0 emissions at hind-
cast D+3 compared to the control run. This implies that initial
conditions, and hence the application of data assimilation, is

critical to the forecast accuracy in terms of RMSE, and ad-
ditionally shows that the RMSE is sensitive to the temporal
and spatial variability of the emissions, which is lower for
the model with climatological emissions.

On the other hand, when forecast error is defined as an
area-average mean bias on a regional scale, hindcasts that
include the GFASv1.0 emissions show generally better ac-
curacy than those that are only initialized with concentration
fields from the assimilation. For instance, the mean bias in
CO total columns is reduced by 84 % at hindcast D+3. This
illustrates that the applied emission estimates become more
relevant compared to the initialization, with increasing fore-
cast time.

For O3, the RMSE and mean bias remain strongly linked
to the values at hindcast D+0, showing the lasting impact of
the initial conditions. Also for NO2 the negative mean bias at
hindcast D+3 stays smaller in the runs with assimilation com-
pared to those without. Considering the rather short lifetime
for NO2 this suggests an indirect effect of the ozone and CO
assimilation on NO2, possibly due to a persistently reduced
abundance of OH radicals in the troposphere. Overall, best
model performance is achieved with both assimilation and
GFASv1.0 emissions switched on.

5 Summary and conclusions

Western Russia experienced a strong heat wave in the sum-
mer of 2010. Together with a drought, this resulted in severe
wildfires which led to large-scale enhancements of trace gas
and aerosol concentrations over several days. The fire emis-
sions showed large variation in space and time, which aggra-
vates the challenge to provide realistic forecasts of air pollu-
tion a few days in advance. In the framework of the MACC
project a system has been developed for routine monitor-
ing and forecasting of atmospheric composition on a global
scale, whereby the meteorological data assimilation system
at ECMWF has been extended with the assimilation of vari-
ous reactive trace gases and aerosol optical depths. Fire emis-
sions are available in near realtime from the GFASv1.0 sys-
tem based on FRP data from the MODIS satellite instrument.
We conducted a set of four model experiments with this sys-
tem to quantify the effects of accurate and variable fire emis-
sions and chemical data assimilation on the prediction of the
chemical composition of the troposphere during July–August
2010 over western Russia. In the current setup the aerosols
are calculated within the IFS, and the reactive gases based on
the coupled IFS-TM5 system.

The total emission of CO for the period 16 July to 15 Au-
gust 2010 based on GFASv1.0 were 12.2 Tg of CO, which
is about 11 times larger than the default emissions from a
multi-annual climatology. An important factor for the accu-
racy of the fire emissions was the development of a detailed
soil map for GFAS which contained the peatland areas east
of Moscow, where some of the largest emissions originated
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from. Of the total CO emissions approx. 20 % are attributed
to peat fires. The GFASv1.0 CO emissions are∼25 % larger
than estimated by Konovalov et al. (2011). Taking into ac-
count the large uncertainties in wildfire emissions, we con-
sider the agreement between the two approaches encourag-
ing.

The assessment of the 0–24 h hindcasts revealed that the
impact of the GFASv1.0 emissions is dominant on the com-
position in the boundary layer, whereas the assimilation sys-
tem changes concentrations more evenly distributed over
the troposphere, reflecting the coarse vertical resolution of
the averaging kernels and the error covariance matrices of
the satellite data. For instance, data assimilation improved
the negative mean bias to observed ground-based CO total
columns, which are mostly sensitive to low-altitude CO, by
40 % compared to the control run, while with the additional
application of GFASv1.0 the mean bias became negligible.

Even though similar tropospheric O3 and CO columns
were obtained with the assimilation system solely, the ver-
tical attribution was highly dependent on the modeled first
guess concentrations, and hence the fire emissions. Further-
more, besides the lack of vertical information, the assimila-
tion of AOD encounters the difficulty of attributing the dif-
ferences in observed and model AOD to the correct aerosol
types. Therefore also the concentrations of the assimilated
aerosol species were highly dependent on the modelled val-
ues. Actual fire emissions, which can change the ratio be-
tween, e.g., black carbon, sulphate and dust, are therefore
crucial for the assimilation results. Hence the GFASv1.0
emissions complement the assimilation system in regions, al-
titudes and for trace gases or aerosol components that are not
affected by the assimilation.

With application of GFASv1 emissions, the 0-24h hind-
casts captured most of the individual events of high AOD,
including the extreme event with values larger than 3. Hind-
casts of AOD, tropospheric CO, O3 and NO2 columns
showed improvement in mean biases with respect to obser-
vations of 87, 63, 60 and 75 %, respectively, compared to the
control run. By furthermore applying assimilation, the com-
bined improvement for these compounds was 90, 87, 67 and
90 %. Better satellite observations, by increased accuracy and
better spatial and temporal resolution, would be beneficial to
further improve the accuracy of the 0–24 h hindcasts. Also a
higher resolution for the chemical model will likely improve
the performance on a local scale.

The application of GFASv1.0 emissions resulted
in a constant bias in CO tropospheric columns of
−0.3×1018 molec cm−2 against the MOPITT-V4 obser-
vations, before, during and after the main event. This
suggests accurate GFASv1.0 emission totals for CO.
Remaining biases, which are mostly resolved with the
initialization from assimilation, may be explained by other
missing emission sources or model deficiencies (Huijnen et
al., 2010a). Despite the significant improvement in mean bias
in NO2 columns with respect to SCIAMACHY compared to

the control run, the RMSE and spatial correlation generally
degraded with the application of GFASv1.0 emissions. This
points at persisting local mismatches of the NOx emission
estimates, relevant due to the relatively short lifetime of
NOx. Correlations between SCIAMACHY HCHO and
model hindcasts improved fromr2

= 0.10 to r2
= 0.47

when using GFASv1.0 emissions. The rather poor spatial
correlation is caused by the large scatter and low coverage
in the observed HCHO column data, as well as HCHO
model uncertainties, such as biogenic HCHO and other VOC
emissions.

With the forecast accuracy defined as an area-average
mean bias, the GFASv1.0 emissions are positively contribut-
ing to the hindcasts up to 96 hour lead time, showing their rel-
evance at the larger spatial scales. Furthermore, it is remark-
able that the negative mean bias for NO2 remains smaller for
all hindcast days in the runs with assimilation compared to
those without. These results suggest a positive indirect effect
of the assimilation of long lived tracers (CO and O3) on short
lived ones, like NO2.

On the other hand, the quality of local hindcasts depended
strongly on the spatial distribution of fire emission and on the
assumptions made for forecasted emissions. This was well
visible from the relatively poor forecast accuracy quantified
by the RMSE, as well as the temporal correlation with re-
spect to ground-based CO total column data and AOD. The
GFASv1.0 system simply propagates the observation-based
emission estimates forward in time. This can lead to large
overestimations of forecasted trace gas and aerosol concen-
trations when fire activity begins to subside after events of
high emissions. In order to avoid false pollution alarms, a
more sophisticated approach to forecast fire emissions based
on the expected weather conditions and empirical analysis
should be developed.

The combined analysis of fire radiative power observa-
tions, multiple trace gas and aerosol observations, as pro-
vided by the MACC system, result in a detailed quantitative
description of the impact of major fires on atmospheric com-
position. Nevertheless, errors in the analysis remain signifi-
cant for some trace gases, such as tropospheric ozone. Over-
all, this case study has demonstrated the capabilities of the
MACC system to analyze air pollution during large-scale fire
events and to forecast large-scale pollution plumes emanat-
ing from such fires. It highlights the necessity to maintain and
improve the current capabilities for space-borne retrievals of
trace gases, aerosols and fire radiative power.
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