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Reverse Control for Humanoid Robot Task Recognition

Sovannara Hak, Nicolas Mansard, Olivier Stasse, Jean Pauldradim

Abstract—Efficient methods to perform motion recognition However, in the second scenario (Fig. 1(b)), HRP-2 has to
have been developed using statistical tools. Those methods relygrasp the ball that is located between its feet [3]. To reach
on primitives learning in a suitable space, for example, the latent the objective, the robot has to step away from the ball and

space of the joint-angle and/or adequate task spaces. Learned . . - . .
primitives are often sequential : a motion is segmented according Fhen grasp it. In this experiment there is no dedicated module

to the time axis. When working with a humanoid robot, a motion i charge ofstepping Steppingis a direct consequence of
can be decomposed into parallel sub-tasks. For example, in agrasping The grasping action is totally embedded in the body,

waiter scenario, the robot has to keep some plates horizontal gllowing the legs to naturally contribute to the action. §piag
with one of its arms, while placing a plate on the table with 5,564r5 a5 an embodied action generating a complex motion.

its free hand. Recognition can thus not be limited to one task Finallv Fig. 1(c) introd th f thi e th
per consecutive segment of time. The method presented in this Finally Fig. 1(c) introduces the purpose of this paper. le

paper takes advantage of the knowledge of what tasks the robot Case on the left side, the robot performs a single grasping
is able to do and how the motion is generated from this set task. In the case on the right side, the robot performs two

of known controllers, to perform a reverse engineering of an grasping tasks in parallel. The ambiguity to distinguistihbo
observed motion. This analysis is intended to recognize parallel cases comes from the role played by the left arm. In the first

tasks that have been used to generate a motion. The method relies the left tributes to the sindl . .
on the task-function formalism and the projection operation into  c2S€; the left arm contributes to the single grasping adtjon

the null space of a task to decouple the controllers. The approach Maintaining the balance of the robot. In the second one, the

is successfully applied on a real robot to disambiguate motion left arm performs another grasping task. Both motions arg ve

in different scenarios where two motions look similar but have similar.

different purposes. The works presented here tackles the problem of motion
Index Terms—Task recognition, task-function formalism, hu- recognition and shows that it is possible to disambiguath bo

manoid robot, inverse kinematic. cases by focusing the analysis of the motion in the task space

and on the behaviors of the controllers of the robot. The main

assumption needed to disambiguate those cases is that the

kinematic model of the observed robot has to be known. The

URRENT promising developments of service roboticgxperiments presented in this paper focus on the HRP-2,robot
Cstimulate the research in human-robot interaction. Mt the method is generic and as long as the assumptions are
that context, understanding robot actions from obsematiéespected, the method is theoretically valid for other tsbo
is a challenge per se. While an intentional action originates
at a planning level, its realization takes place in the real [l. RELATED WORK

world via motions. How to recognize an action from observed - ) o
motions? Defining methods to automatically recognize the R€cognition spans a wide range of areas. In the vision com-

goal pursued by a robot performing a given motion is a ciiticUnity, this problem is generally looked from the unstruet
issue. If we consider mobile manipulators (e.g., PR2 rgbotd0tion point of view: no hypothesis are done even on the
there is a clear separation between navigation functiods aif'@Pe or rigidity of the moving body. The recognition can be
manipulation functions. The question of action recognitio®PPlied to spot irregular events [4], or specific events sagh
may be rather simple. Similarly, a humanoid robot can pasual indicators of drowning [5]. The recognition can also

divided in two distinctive parts, legs and upper body, whicRe focused on one person. The motion of the human can
correspond to the navigation and manipulation functiors. FP€ @nalyzed in order to perform a human body tracking [6].

example, consider th&ive me the purple balkcenario [2] However, inform_a_tion _from t_he environment is generallydise
performed by the humanoid robot HRP-2 at LAAS-CNRS #&"d the recognition is mainly done from the context. For
shown in Fig. 1(a). To reach the assigned objective, HRpxampIe, salient points in t.|me and posmon.(lookmg at the
2 decomposes its mission into elementary sub-tasks, eact?Bfvideo flow as a 3D function) [7]. These points are learned
them being addressed by a dedicated software module. F8M @ database, then matched during the demonstration. The
instance, to reach the ball, the robot has to walk to the bffvironment is also used to perform a background extraction

Walking appears as an elementary action that is a resourcdt@"der to extract a silhouette and perform, for exampleig ga

solve the problem that is processed by a dedicated locomot/§c0gnition [8]. _ o _
module. The structure of a moving multi rigid body is a strong
assumption, that can boost the performances when this knowl
Authors are with CNRS, Universtit de Toulouse, LAAS, edge is available. It is often the case in the robotic context.

7, ~avenue du Colonel Roche, — F-31400 Toulouse, Franggample the estimation of a humanoid pose trajectory ing9] i
(firstnane. | astnane@ aas. fr). This work was supported

by a grant from the R-Blink Project, Contract ANR-08JCJaB@1. A Performed using optical motion-capture data to guide a know
preliminary version of this work has been published in [1]. physical model. Recent vision developments prove that the

I. INTRODUCTION
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Scenario (a): The global tagkive me the balis decomposed in_to a ;equence of stjb-tasks [locate the padlk to the ball], [grasp the ball], [locate the

operator], [walk to the operator], and [give the ball]. The ioo$ [walk to], [grasp], [give] appear as a sequence strimguthe action (from [2]).

Scenario (b): To grasp the ball between its feet, the robsttbastep away from the ball. In this experimestépping aways not a software module. It is an
integral part of the embodied actigrasping(from [3]).

Scenario (¢): To grasp the ball in front of it (left), the rolseches a posture where the left arm is used to maintain imdal In the figure on the right, the
robot performs two actions in parallel: grasping a ball imfrof it while grasping a ball behind (of course the ball behiras been intentionally placed at the
end position of the left hand depicted on the left side). Ihd$ possible to spot the difference between both postureseker, the question we address is: Is
it possible to spot the difference between botbtion®

Fig. 1. Introductory examples of embodied intelligence.

same knowledge could also be reliably be extracted usirgy claction and gait recognition [22] or to generate a human-like
sical or RGB-D cameras [10]. In the remainder of this papamotions [23]. In these works, human capture data are used to
we will consider that the motion of the rigid bodies is knownbuild a basis elements in the joint space for each movement
A typical use of a dedicated vision system to reconstruct tletass using a dimension reduction technique. At the sane tim
whole-body pose is presented in the experimental section. HMMs are trained to capture the features of a movement class

The question is now how to extract information of highel? the task space. The generation is obtained by finding the
levels from supposedly-known human whole-body mov&ptimal linear combination of basis elements that maximize
ments. A direct example is signed languages which provi§fee Probability of a trained HMM. Although the task space
a way to convey meaning through the combination of hands,considered to be the space where movement features have
arms and face movement and configuration. In the same Wgybe extracted, the method is limited to one specific task
human gait has been studied from an information providéPace per movement generated. In [24] variable-length owark
point of view. For example, the gait can be used like firfmodels are used to learn atomic human actions. A sequence
gerprints to perform identification of human [11], [12], @ t of atomic actions represent a complete behavior. Generally

recognize emotions such as anger, sadness or happiness [2§2aking, the efficiency of statistics-based recognitonuied
the quality of the dataset built in the learning phasee&sdv

Statistics have been successfully applied to action recog- . . .
-, . : S monstrations for each particular cases are needed im orde
nition and motion analysis [14]. Statistical tools are used . . o
.to_extract the invariants that will discriminate the taskbe

create symbols, and by extension, detect those symbols Irs‘g"fl:lrsity of the demonstrations can also limit the efficieoty

motion. For example, a method for behavior-based control . . .
proposed in [15], [16]. Behaviors are defined as a motighe recognition. Finally, the sets of demonstrations havieet

symbol (e.g. jab, hook, elbow, shield and uppercut). Tf%sfﬁgl?ézgn\i’::th;r%:’t?hr::?d symbols, which are generaligryi
behaviors are modeled by learning from series of examples. g algorithm.
A dimensional reduction is then applied to have a significant Alternatively, recognition can be based on specific criteria
clusterization. The recognition part is handled by a Bayesithat are a priori given to the system. In [25], only the robot
classifier which recognizes a trajectory in joint or Cartesiarajectories are used to distinguish between various ghafse
space. The extension to the recognition is to perform amotion. A task is a complete whole body motion within a
imitation. This is performed by interpolating known exaempl temporal segment. The global motion is a sequence of tasks.
to obtain feasible trajectories. The introduction of @iy Each task has its own parameters calikills parametersThe
observable markov decision process or Bayesian infereifde [task recognition method is decomposed in two steps: first, fo
has renewed the topic of action modeling [18] in the lagtach tasks, find all the temporal segments in the observed
decade. Such techniques and related ones are now appiretion corresponding to that task. The second step is the
to motor skill learning in general [19], and to motion segestimation of the skill parameters for each segment. Each
mentation [20], [21] in particular. Hidden Markov Modelstask is detected by the analysis of a trajectory projected in
(HMMs) have been extensively used, for example, to perforenspecific space. For example, a stepping task is detected by



analyzing the trajectory of a foot; a squatting task is dettc advantage is that expressing the control law in the most
by analyzing the vertical trajectory of the waist. The gide suitable subspace, with respect to a given objective, #iepl
used for detection and the associated dedicated projectitnconstruction as well as its execution since the subsjzace
spaces are built manually for a particular motion that has ¢enerally closely linked to the sensors of the robot. Based o
be imitated by the robot. Similarly, [26] uses a set of specifthe redundancy of the system, this approach can be extended to
spaces in which the observed motion is projected. Each tasinsider a hierarchical set of tasks [28]. Complex motiam ca
is associated with a specific criterion. These criteria @@du then be composed from simple tasks seen as atomic bricks
to automatically choose the set of task spaces that will begt motion. This composition mode, along with the obvious
represent and generalize a given movement, in order to foamnposition by temporal sequencing offers a real versatili

a learning technique into that new space. The criteria used subparts of the motion can be used in very different sitnatio
the task-space selection are expressed by some scoreofigictivithout redesigning them for each case.

inspired from neuroscience: the saliency of the object ihat In the following, we consider that the robot input is the
manipulated, a variance of the dimension of a space durimglocity g, whereq is the robot configuration vector. A task
several demonstrations, and some heuristics that exprass thdefined by a vector spaeeand by the reference behavigr
uncomfortable or exhausting motions reveal the presenee do be executed in the task space. The differential link betwe
task. Those decision tests address the problem of how to sgiw error and the robot configuration is the Jacobian of thle ta
tasks that involve no motion. The method adds some highaard is noted] = g—g. Various typical behaviour can be chosen
level information to a purely statistical analysis andeglbn for é*. Typically, we will use in the following an exponential
task spaces as an appropriate space to represent movemepstgease, set by

However the efficiency of the task space selection depends on &' = —)e Q)

the strength of the chosen decision tests.

The common approach of these last works are to projddf€r€€ = s —s" is the error between a current observed
alue of a signaé and its arbitrary reference’, and\ > 0 is

the observed motion in some specific reduced spaces, Wh#3 1 that t th d of th latiow & 0. F
the recognition is easier. These spaces can be chosen _gain hat tunes the speed of the regulatiore @ 0. or
example, the observed feature can be a 3D positiai one

bitrary [25], automatically selected [26] or learned [19]. .
Similarly, in control, smaller-size spaces are used to defi f the robot end-gﬁectorg, to be brought to a chosen pasitio
* and the Jacobiad = 32.

the control objectives and modulate the robot behavior. FBr o . )
example the task-function approach [27] expresses generiJ he control law is given by the least-square solution [30]:
control objectives in given n-dimensional task spaces. The q=J"é" + Pz (2)
approach has been extended to handle a hierarchical set of

_ 4 ) . o T
tasks [28], [29] using the redundancy of a system. whereJ™ is the least-square inverse 8f P = 1 —J7J is
the projection operator onto the null spaceJoandz is any

The originality qf the method presepted in this paper @econdary criterionP ensures a decoupling of the task with
to use the properties of the task-function to perform a tagkspect toz. Using z as a secondary input, the control can
recognition. The main idea is to perform a reverse eNngiNgerihe extended recursively to a setmtasks. Those tasks are
of an observed motion, knowing the set of all possible tasksjareq by priority : task number 1 being the highest prorit

that can appear and using the control law in the task Spac&ag, and task number the lowest priority,task; should not
characteristic trajectories. Under the hypothesis trembtion disturbtask; if ¢ > j. The recursive formulation of the control

has been generated by stacking a set of controllers, the motig is proposed by [28] :

is processed in order to seek the known behaviors in each task

spaces. We named this reverse engineering algorithm agproa @; = &;i—1 + (J,P2 )T (&) — Jiqi—1), i=1...n (3
reverse contralWhile all the approaches presented above CAlh & = 0 and PA | is the projector onto the null space
only recognize non-parallel task, we rely on the controlred of the augmented le;éobidrﬁ — (Jy,...d,). Joint velocities
dancy principles to recognize sets of parallel tasks. Etiojes realizing all the tasks ig* — ¢ Eéch t;sk can be used to
of the motion in the already-detected orthogonal task spa i

ficient d i f the task ‘ d by t enerate a common pattern of motion in various situation. In
ensure an efficient decoupling ot the 1asks performed by t sense, a task is at the same time the controller that can

strong assumptions, listed explicitly below, but that areatly is currently executed. This descriptor is quasi symbolig, b

related_ to the rot_)ot cont_rol framework._ comes also with additional parameters that characterige th
We introduce in Section Il the basics of what the work - . .
way it is executed: for example, an exponential-decreasle ta

pgzse%n;?do?;:?nrg'ezr?grzr;htiéa;l;';gﬂcgr?gl asﬁszgaﬁf;'sgmgcomes with the parameters that characterize its decrease
P 9 P y P speed. A complete implementation of this approach is pro-

Section IV. Finally, experimentations that validate thetmoel .
are presented in simulation in Section V and with the regPSEd In [31] under the nantack of Task¢SoT).

HRP-2 robot in Section VI.
IV. MOTION ANALYSIS FOR TASK RECOGNITION

Ill. TASKS AND STACK OF TASKS In the previous section the classical widely-used task-
The task-function framework [27] is an elegant approadinction formalism was recalled. In this section, we propmse
to describe intuitively sensor-based control objectivEe use tasks as a set of descriptors to recognize a demonstrated



motion, by identifying the set of tasks that have been usédgorithm 1 Task selection algorithm
to generate the observed motion. The identified task set can Input: a(t)

then be used to characterize the observed motion, for examplg Output: activePool

to distinguish between similar-looking movements. In thes. Pq(t) <—€1(t)

following we list and justify the hypothesis considerederth 4. while [P4(t)|]?dt > ¢ do

we present an overview of the task recognition method and-  for taski = 1..n do

finally detail the main step of the method. 6: r; < taskFitting (i, active Pool)
7. end for
A. Hypothesis 8 iselect < argmin(r;)

active Pool.push(iseiect)
Pq(t) + projection(iseiect, Pq(t))
end while

The observed motion is given through joint trajectotids )
is supposed to have been generated using an unknown stﬂ::k
of tasks. However the tasks that may appear in a motion afre
known.

All the tasks involved in the demonstration are suppos?ﬁ tical traiectori hich h teristic of taceti
compatible in the sense of the projectiBndefined in (2) (no eoretical trajectories which are characteristic o ation

algorithmic singularities [32]). of a tasl;.tzhe olbs?r\(/je;j r‘r|1<ot|on is ﬁhentﬁrojef(f:te? ofnttrc]) t_r;‘c_e1 rll(ull
We call the set of possible tasks thask pooland we space ot the selected task, cancelling the efiect ot theitas

assume that the behavior model of each tasks is known. thnetﬁbser\éfrdlr?oélo:a T:'S prnocjieictlon Idmto tge null |Sp310$$erlr nt
However, the parameters of the behaviors (like the veloci € control redundancy and IS used to decoupie the curre

of movement, or the desired position) are not known. Tﬁ ?ES from th? (()jtherst.hAnothertlt%ratlotr_] of s_,lferllectllongﬁ? P nt
knowledge of this set allows to turn the recognition problerﬁh entr(]execg € ,lon t'e prOJt(a(; e” mo 'Onl'l d eba ?r?“ _t.mSSt °
into a selection in a finite set problem. Limiting the possiblw en the onginal motion IS totally cancelled, by the itefe

. . . rojections.
tasks to a finite pool does not dramatically impact on tE . . . . .
expressiveness of motion because tasks can be executed i he algorithm is showed in Alg. 1. The joint velocity

. . 2 2 .
parallel. The expressiveness is then reflected by the dmergajec,;torythof the obsgrved mott|_on IS ]93? thﬂ]f) - Pa(t) i
possible task combinations. enotes the successive projections of the reference motion

Before the first iterationPq(t) is set to the reference motion.

The set of active tasks has to be constant during the motignen’ each iteration projects it in the s_elected task nuibe_p_
denotes the score of the cost function of the curve fitting

and the tasks start and complete at the same time. Adig Ot 3
consequence the hierarchical and concurrent tasks wiﬂyfu?pt'.m'zat'on' aCt.weP ool denotes the set of tasks selected
or weighted levels of importance are not considered. Arrothg:urlng the algorithm. L

consequence is that sequential movements and all inegsaliti If the obsgrved m(?tlon IS exa_ctly_ generated by a SO.T’ the
and conditional constraints are not considered becauge s{fSUling trajectoryPq after projection onto all the active-

constraints involves a change in the stack of tasks usedt"[’t?k spaces Its nutlrli Hov:}ever,l N presence oflgmea./\ment
generate the movement. acquiring motion through real sensors) a residue is system-

atically obtained, which implies to use a threshold as stop
%riteria: the loop ends when the residue is below the noise of

Finally, the kinematic model of the robot is suppose
known: it is required to compute the Jacobian and the nu bel hich the algorith
space projector that are used in the recognition part. Aghgrm below which the algorithm stops.

consequence, uncertainties in the kinematic model willcaffe, '€ NExt subsections describe the two main functions of
the performance of the method. the alggrlthm. The pro_(:edurprOJectlorl(z,q(t)) computes
the projection of velocity onto the null space of the task

) i and apply the projection to the motion. The procedure

B. Overview taskFitting (i, activePool) handles the curve fitting of the

The input of the algorithm is the joint trajectories and thebserved motion and the theoretical motion. The process is
task pool. The algorithm is iterative: at each iteration tué t detailed in section IV-D.
algorithm, the task that seems the most relevant is selected
The selection of a task relies on a curve-fitting score, obthin _— :

L s . . C. Projection of the motion

by projecting the joint-angle trajectory in each task space
Assuming that the kinematic model of the robot is known, The reconstruction of the trajectories in each task space
the projection of the motion in each task space reconstrutem the joint trajectories is directly done by multiplyirige
the trajectory in that space. For example, the trajectory i§int trajectories by the task jacobian.
the center of massCpM task) is recovered from the joint In order to cancel the effect of a detected tagk..;, the
trajectories by the projection of the joint trajectoriesoithe joint trajectories are projected onto the null space of thak
CoM task space. The projected trajectories are compared to Byemultiplying it with the projector onto the null space of al

1e acquisition chaine denotes the threshold of the motion

1The joint-angle trajectories are observed using a motionucagystem 2In the remainder of this article, observations and measuresiemoted
as shown in Section VI-A. while references and desired values are deneted



tasks to cancel. For every tinteof the motion time interval: ~ The score will thus be the residue after trying to obtain the
) ) best correspondence with the given model in the task space.
P(t)  Piraee (DPA(1) ) In some F<):ases, the trajecto%ycan be observed direc?ly.
wherePA(t) is jointly updated: For example, if the task space is the 3D position of the hand,
A DA A A a direct observation is possible. However, in general, ectlir
P2(t) = P2 (t) = (Jisetect ()P (1)) ™ (Jisetect (1) P (1)) observation is not possible. For example, the center of mass
The projectorPA (¢) is initialized toP2 (¢) = I. The remain- ©f the robot is difficult to observe directly. In addition, ig
ing motion after projectiorP¢(t) is then analyzed to detectnOt possible to observe directly the effect of the successiv
the potentially-remaining tasks. projection. é is then obtained by the kinematic model and
The projection operation will nullify the effect of the moti joint trajectories of the robotJ;q. However, proceeding so
in the selected-task space. It has in fact two differentctsfe would lead to (7), where the coupling with previously sedect
in the configuration space: on the first hand, it cancels tf@sks appears. The projected motion is then augmented with
component of the motion that is independent with regardeo teoupling compensation.
other tasks; on the other hand, it modifies by the way the part T T.pAs JA+R
of the motion that is coupled with the effect of the remaining &(t) = JP74(t) + JT T ea(t) ©
tasks. The first effect is beneficial because it avoids fufmise where A is the set of tasks that have already been detected
detection that could be caused by non-linear reflection ef tand 7 is the task candidate. All the terms corresponding to
currently-selected task in the remaining task space. HewevA are known since identified in the previous iteration of the
care has to be taken with the modification of the coupled paatgorithm.
as explained by the following example.
Consider a motion composed of two arbitrary tasksand
ey,. The control law to execute both tasks is given by:

In practice, the observation is sampled and the integral is a
sum. The optimization problem (8) is in general a non linear
problem. To solve it numerically, the CFSQP solver has been
q=Jre + (J,P,) (& — JpJFen) (5) used [33]. The result of the optimization produces at theesam
time the residue used as a criteria to select the most plausib
task, and the numerical parameters of the task (for examele th
gain and the desired position, when considering a propwtio

P, =P, e, +P,(J,P,)T () — T, Ijé;)  (6) task (1))
N—_——

0

If e, is detected first, (4) is applied with.;cc;: = a.
Multiplying (5) by P, cancels the motion in the Tagkspace:

The first term is null by definition oP,. The motion due to E. Order of the nuliification

P.q in the Taskb space is obtained by multiplying by The previous composition of detection-projection enahies
. . remove the side effects of the previously detected taskwith
JiP.a=¢&, —JpJ &, () introducing any coupling in the non-detected tasks. We @rov

sinceJ,P,(J,P,)* = I by hypothesis. The first term is theNOW that the order of the detected tasks and the subsequent

independent component of the second task, and the secBfRjection does not affect the detection of the remainiisgda
term is the component coupled with Task Therefore, the Consider the observed motion to have been generated by a
projection onto the null space of the discovered task at the fitwo-stages SoT (5). The reference motion in Taspace is
iteration will induce a coupling effect that has to be haddledenoted:;. The motion induced in Taskspace by the original

~

when trying to discover another task. This coupling will b&otion g is denotedé;, while the motion induced in Task
handled in the next section. after removing the motion from TaskP;q is denoteds; ;.

We prove that both tasks can be detected (and removed) in

D. Task fitting by optimization arbitrary orders.

We denotea(t) the trajectory due to the curre¢ in the Proposition IV.1. Consider a motion generated by a two-
observed-task space. The quantification of the relevanceSétge SoT. Thew; = ¢é;; = &}, for i = a and j = b, and
the given taske, with respect to the current motidR¢ , is reciprocally, fori = b and j = a.
achieved by applying_ a Ieast_-squarg optimization between {8,, -
actual observed_motlon projected in the task space and thq) Detecting Tasks:, then Taskb: The direct implication
reference behavior of a task over the unknown parametersis siraight forward. At iteration 1, the observation in Task

[ IE(t) — éx(t)]|2dt space is directlye, = J,& = . After the removal of Task
)Icmn I |\€(t)|\2dt (8) a, the observation in Task space is obtained from (9):

X = arg

" . . . . /é\b|a = Jbgl + JbJZLL/é\a
whereé(t) is the observed trajectory aig (¢) is the trajectory s . .
generated by the model using the parameter§he model is =d(JvPa)7 (& — Iy I e;) + JuI €,
generic and an example of a behavior model is an exponential I

decrease with the parametets= [z1, 22, 23] implicating _directly gziu ~ &, since Jy(J,Po)t =

pe(t) = 172" + 23 JyP,(J,P,)T =T ande, = é;.



The observation obtained in Tagkspace is independent
from the projection in the null space of Task

2) Detecting Task, then Taska: At the first iteration, the
observation in Task space is directly

& = JpJ el + Jy(TPo) (e — 3 I e

=N Fig. 2. Left: The final position ofnotion 2.a Right: The final position of
which impliesé, = é; sinceJ,(J,P,)" =1 motion 2.b

Projecting the original motion (5) in the null space of Task
b at the end of the first iteration results in the following Task
a observation:
8y =T Py E: + I Py (TP (6 — 3,31 60) + 3,078,
=(J. Py — J Py (3, P,) T I I e
+ (J(LPb(JbPa)Jr + J(LJZT)éZ

We show that this complex sum is in fact simpdy (see

Appendix A). This proves that the same fitting is obtainegly. 3. Left: The final position ofotion 3.a Right: The final position of

independently of what task is detected fimst. motion 3.b The difference lying in the orientation of the right handlifficult
to spot. Inmotion 3.h the right hand is parallel to the ground.

The proof can be extended using exactly the same arguments

for a set ofn tasks. Similarly, it is straightforward to prove
that whatever the order of detection, the resulting motiter a
all the projections is null.

V. RESULTS IN SIMULATION

This section details a series of experimentation in simorati
to validate the recognition algorithm. Simulation allows u
to emphasize the nominal behavior of the algorithm without
any sensor noise. The first experiment simply validates the
projection of the motion (section V-B). The second part
compiles a set of experiments that validate the task retiogni
algorithm (section V-C). For each experiment of that set, th
task recognition algorithm is applied to two similar-loogi
motions: the two motions have been artificially built to be
ambiguous when compared to each other, in order to illustrate
the efficiency of the algorithm regarding the precision o th
recognition. Fig. 2, Fig. 3 and Fig. 4 show the final posture of
the ambiguous motions used in those experiments. All mstion
involved in the experiments are summed up in Table I. The
description of the tasks used to build these motions aréleiéta
below.

A. Set-up

The reference motions have been generated by using the
model of the humanoid robot HRP-2 having 30 actuated de-
grees of freedom plus six degrees of freedom on the freeflyer.
Every motions start from the half-sitting pose. As cladsjca
done in inverse kinematics, the under-actuation of thelfree
is resolved by constraining the left foot to be on the ground.

The set of tasks considered in those experiments are :

o CoM : the center of mass of the robot is constraint to e
maintain the static balance (3 DOF)

o Gaze: the robot looks at one point in the Cartesian space ¢
(2 DOF)

« Twofeet both feet stay flat with regard to each other (6 *
DOF)

(@) (b)
Right grab
Left grab
Motion 1 Gaze
CoM
Twofeet
Right grab F\I’_ieEtgr?abb
Motion 2 CoM ont g
Twofeet CoM
Twofeet
Gaze Gaze
. Right grab Right Screw
Motion 3 CoM CoM
Twofeet Twofeet
Gaze Left Screw
Motion 4 CoM CoM
Twofeet Twofeet
Right grab Right grab
. Gaze Chest
Motion 5 CoM CoM
Twofeet Twofeet
TABLE |

THE TABLE OF CONSIDERED MOTIONS AND TASKS

Left/Right grab: either the left or right hand of the robot
reaches a point defined in the Cartesian space (3 DOF)
Screw: similar to thegrab task, but the desired position
has to be reached with a defined orientation (6 DOF)
Head : the head of the robot is constrained in position
and orientation (6 DOF)

Chest: the chest of the robot is constrained in orientation
(3 DOF)



Reference Detected JTa®N%at T [1Pq)[dt
CoM CoM
Right Hand Right Hand 0.364398 0.00159355
Twofeet Twofeet
CoM CoM
Left Hand Left Hand
Right Hand Right Hand 0.538329 0.0035343
Twofeet Twofeet
TABLE I
Fig. 4. Left: The final position ofnotion 4.a Right: The final position of ~RESULTS OF THE TASK SELECTION ALGORITHM FROM THE ANALYSIS OF
motion 4.b motion 2.aAND motion 2.b

0.006

algorithm would use the context to perform the disambigua-

r.
llall

0005 1 S R— tion. The work presented in this paper shows that the fitting
R 1ESF ] — criterion is sufficient to disambiguate similar-looking tiom.

' :
0.004f 1y [Psgl] -emeev ]

Three ambiguous pairs of movements are presented to illus-
trate this capability.

1) Reaching motions:In this section, two motions are
0002} . | consideredmotion 2.aandmotion 2.b The first one is a far-
N reaching motion with the right hand. The reaching motion of
] the right hand has an influence on the left arm through the
CoM task: to regulate its balance, the robot puts its left arm
behind. The second motion is the same reaching task for the
right hand, added with a second reaching task on the left.hand
The desired position of the left hand is artificially set t@ th
final position of the left hand obtained at the first motion.

The final states of the robot for the two motions are shown
in the Fig. 1(c). A video showing those two motions on the
B. Experiment 1 : Preliminary validation HRP-2 is f_;lvailablé The two motions look very similar, and it

In this experiment, a basic motion is generated Thé%very d|ﬁ|gult to the humar! eye to tell which motion mvoima

o . S . .aleft and right hand task without the context. In the first case
the recognition by fitting, the projection and the termioati

condition of the algorithm are validated. The referenceiomot the motion of the left hand is due @M andRight Handtask,

. . SRR . it i i ff mpen h lan rturbation
is motion 1.a(see Table I). The motion is given to the detectloﬁIS tis a side effect to compensate the balance perturbatio

. h nduced by the right hand. In the second case, the motion of
program which selects the tasks that fit the most closely . . )
the optimization e left hand is decoupled, since the left hand has beenrdrive

Fig. 5 shows snapshots of the original motion and of th%y '.ts own goal. Howevgr, in the proper task spaces, those
otions appear clearly different. Fig. 7 shows an example of

motions after successive projections in the null spaces ef q:? - .
. he result of the task fitting dRight Handand Left Handtask
detected tasksRight grab CoM, Gaze TwofeeandLeft grah plied tomotion 2.a The residue of the optimization faueft

Each projection cancels a part of the motion, and the rob 2nd is higher than the residue fatight Hand At this step,

motion becomes null when all projections are applied, Whic[ne movements analyzed is better explainedRight Hand
means that all relevant tasks have been detected. As we ean cﬁe

: . . . - than byLeft Hand The results of the detection algorithm are
in the second line, the movement of the right hand is nullifie . ' .
: AP Showed in Table Il. The first column shows the tasks being
The cancellation of theCoM from the third line is more . :
- . . . used in the reference motion, the second column shows the
difficult to perceive. On the forth line, the cancellationtbé

head movement due to the gaze is very clear. On the fifth Iint"élSkS selected by the algorithm, the third column shows the

the cancellation of the taskwofeetremoves the compensationmjrm of the reference motion (quantity of motion initially
observed), and the last column shows the norm of the referenc

done with the right leg. Finally, as shown on the last line, . .
) ) . otion projected onto the null space of all selected taskse. T
the cancellation of all tasks leads to a null motion. Fig. : o
) . . inal quantity of movement after projection is very low for
shows the evolution of the norm of the motion, defined . o
- o oth motions compared to the threshold for the stop criterio
the sum square of the joint-angle velocities of the robothEa

2 : - : B .
projection strictly decreases the norm of the velocig/ the JIPq()]dt > « that is empirically fixed toe = 0.07 in

uantity of movement). After five projections, the moveme cirder to handle numerical noise due to successive projectio
q y e Proj ' . rzhe threshold depends on the number of tasks involved in the
is completely nullified, which confirms that all the activeka

. } movement).
have been discovered. The algorithm can then stop. Finally Fig. 8 shows how the norm of joint-angle velocities

] o o ] _corresponding to the taskight graband Left grab evolves
C. Experiment 2 : Distinction among similar-looking moon after the projections. Projectingotion 2.aonto the null spaces
An interesting challenge in motion detection is to makef Right grabtask will decrease its associated theoretical joint-
distinction between two motions involving different tadhst
that produce very similar joint trajectories. Anthropoimioic

0.003 -

[Pal (radls)

0.001 -

: e I ]
0 . . 25

Fig. 6. Experiment 1: Evolution of the norm of the motion afteccessively
projecting the motion in the tasks null spaces.

Shttp://homepages.laas.frishak/videos/



(@)

(b)

(©)

(d)

(e)

(f)

Iteration 0 99 199 299 399 499

Fig. 5. Experiment 1: The motion generated by a stack of taskavimg : Right and Left grabCoM, Gaze Twofeetis represented in the row (a). The
remaining rows represent the successive projections of theomot the null spaces of the tasks, (b) Right grab, (c) CoN,Gdze, (e) Twofeet, (f) Left
grab.

angle velocities while leaving theeft grab one unchanged. and other tasks have not been selectedywebfeettask is then
Fig. 8(a) shows that the theoretical joint-angle velositiedetected but the projection is not displayed on the figure for
associated td_eft grabtask is decreased after the projectiothe sake of clarity. On the other hand Fig. 9 shows the task
of the motion in the null space afoM task. That explicits fitting for motion 2.b

that the left arm of the robot was moved BpM task. By the

way, the projection prevent the left task to be detected pt an 2) Grabbing VS Screwingtn this section, the two motions
further iteration of the algorithm. But, when projectingtion considered arenotion 3.aandmotion 3.b Both motions share
2.binto the nullspace oRight graband CoM task the joint- the same position target for the right hand. The only difiege
angle velocities associated teft grabtask is still significant between the two demonstrated motions is the presence of an
(Fig. 8(b)). That means th&oM task has a little influence on orientation constraint for the right hand motion 3.b The

the motion of the left arm, and that motion on the left arm {#nal positions of those motions are shown in the Fig. 3.
due to another task. Therefore, the task selection algonHl Table Il shows the results of the task-selection algorithm
keep looking for the task that has controlled the left armenft Which performed successfully. As in the previous experitsien
the detection of the two (famotion 2.3 and three (fomotion the taskScrewcan not be properly fitted on the trajectory
2.b) main tasks, the norm of the last joint-angle velocities agenerated omotion 3.a In motion 3.h both tasksGrab and

not null, because the task selection algorithm has not fidishScreware detected, whereas the taSkrewis not selected
in motion 3.a The selection of both tasks imotion 3.bis
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Experiment 2: Evolution of the trajectoty projected in the spaces &ight grab(in solid lines) andLeft grab (in dashed lines) after successive
projection of the motion in the nullspace of the taRight graband in the nullspace of the taskoM. In motion 2.a a great part of the motion of the left
arm is due toCoM task: removingCoM task will cancel almost all motion in the left arm. imotion 2.h the motion of the left arm is not only involved by
CoM task but mainly byLeft grabtask. RemovingCoM task will only cancel a small part of the motion of the left arm.

Experiment 2: Task fitting omotion 2.bon the right and the left hand tasks.
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Both motion of the right kfidhand are fitted by the model, with
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Reference [ Detected [ [[[¢(®)[[%dt | [[Pq(t)[?dt
CoM CoM
Gaze Gaze
Grab Grab 0.619266 0.00245631
Twofeet Twofeet
CoM CoM
Gaze Gaze
S Grab 0.717041 0.00344557
crew
Twofeet Screw
Twofeet
TABLE Il

RESULTS OF THE TASK SELECTION ALGORITHM FROM THE ANALYSIS OF

- ) Fig. 10. Markers set and virtual skeleton of HRP-2.
THE motion 3.aAND motion 3.b

Reference | Detected [ [[lg(0)[*dt [ [Pq(t)[*dt A. Experimental setup
CoM CoM
Gaze Gaze 0.534478 0.0545944 A motion is executed with th8oTframework on the HRP-2
TV(‘:'Oflaet TVCVOf&et robot equipped with markers on each body part. The motion-
(o] (o] . -
Screw Screw 0.558084 0.0023297 capture system used is comppsed of 10 digital cameras and
Twofeet Twofeet record data at 200Hz. The motion-capture system provides th

TABLE IV trajectory of each body of the robot. The data collected from
RESULTS OF THE TASK SELECTION ALGORITHM FROM THE ANALYsIs oF  those markers are used to build a virtual skeleton that match
motion 4.aAND motion 4.b the kinematic hierarchy of the robot (Fig. 10). The result of

this process is the 6D trajectories of all the bodies in space

. . without any joint constraints. The analysis of the motiopéas-
explained by the fact th&rabis actually a sub-task d&crew yl y H

The residual motion after successive projections is finaly formed on the joint-angle trajectories. Therefore, a jaingle
close to 0, which proved that all tasks were properly detectdrajectories have to be computed from the motion-captuta. da
3) Screw VS GazeThe two motions considered amgotion The joint-angle trajectories are computed as classicailyed
4.a and motion 4.b motion 4.acan be described by theby optimizing the distance between the transformation imatr
following scenario : an object is in front of the robot, anJVqu (q) from the robot origin to each joint of the robot and
creates an occlusion in the vision of the robot. To get richef t the measured transformation matmf{% (t) using the robot

occlusion, the robot can lean on its right. While the robot$a joint limits as constraints.

the left hand is dragged by the chest as an involuntary side "

effect. The position and orientation of fthat_ hand is recdrde g(t) = argmin Z ”WR% (t) o WR% @l (10)

as a desired state of the hand for the firgition 4.btask. In q ;

motion 4.h the gaze is uncontrolled. The motion of the head s.t. Gimin < @i < Qimax, i = 1.0 (11)

is, that time, a side effect of the left hand movement. Thd fina

states of the robot are shown in Fig. 4 and the analysis resiygere q is the robot joint configuration vectors is the

are summarized in Table IV. distance operator in SO(3)'R,, (q) is computed using the
As previously, correct tasks are detected for each movemeétinematic model of the robot, an‘éff{ql is obtained by:

The residue after projections on all detected tasks are very WA - S "

small, proving that everything was properly detected and R, (1) = "Ry, x "Ry, (1) x "Ry, (12)

subtracted. w ereWRWc and M%qu are the constants displacement due

: . L . wh
In co_nclusmn_, we have ShO\_Nn exper_lmentally|nth|s secthg the differences between an arbitrary skeleton model of
that, without noise, the detection algorithm performs getty, the motion-capture and our kinematic model of the robot

|de tde:iecr;[s Ega}ctly all ;helacttl\f)? trasl?j, W';horUt. atr&nr:lsgomputed in a calibration step’“R,, is the measured
etection, and 1Ssues a negiectable residue ot projec "O4ransformation matrix from the origin of the motion-capur
due to numerical noise. The following section will conside

realistic cases of noisy signals acquired by real sensors rreference frame to the virtual body
y sl q y ' The obtained joint-angle trajectories are then used for the

reverse-engineering task recognition.
VI. EXPERIMENTATION ON THE ROBOT

In this section, we experimentally demonstrate the valid- On the robot, the mechanical design includes a flexibility
ity of the task recognition algorithm in realistic situatio after the ankle joint that interferes with the motion at the
in presence of noise. This time, the reference motion V&ry beginning as the acceleration of the joint-angle iases
demonstrated by the real HRP-2 and observed using a motiquaickly. The flexibility is not modeled neither in the coritro
capture system. (Fig. 10). As previously, the task recagmit algorithm nor the detection method. In order to bypass the
algorithm is applied to two pairs of similar looking motionsinfluence of the flexibility, the motion analysis is done afte
First, we briefly explain how the motion-capture system igluse¢he first 100ms where the influence of the flexibility is pre-
to record the joint-angle trajectory. Then two pairs of mos dominant. In the following two sections, we consider that th
are observed and provided to the recognition algorithm.  measures are directly thi trajectories given by (12).



11

r = 281934 r = 4.86695
05 J 13" taskreadlldt = 0.0355857rad 05 J 13" €tasktreaalldt = 0.0144546rad
’ “|J+étuskHs.jztd‘|/fHJ+‘étaskHead”dt i “|J+étuskHsjadH/fHJ#étuskHeudet
Model ——— Model ———

0.4} i

03} 4

0.2 4

01 N ] A'A n A A | -

ANV VLA

0 L +—4
0 2 4 6 8 10 12
t (s)
(a) Motion 2.a (b) Motion 2.b

Fig. 11. Experiment 3: Fitting at the first iteration of theka®lection algorithm foheadtask formotion 2.aandmotion 2.bFor both motion; is not the
lowest residue amongst all the tasks fittiitead task, not active, is not selected.
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Fig. 12. Experiment 3: Fitting at the first iteration of thekiaelection algorithm foiLeft grab task for motion 2.aand motion 2.b Left grakiask is not
pertinent formotion 2.a but is selected fomotion 2.b
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Fig. 13. Experiment 3: Norm of motions associated_&ft grabtask {e motion of the left arm). The motion is cancelled after removing thotion due
to CoM task inmotion 2.a In that case, it means that the left arm motion was du€di task. Whereas imotion 2.h the motion of the left arm is not
cancelled after removin@oM task, but is cancelled after removih@ft grabtask : the motion of the left arm was due lteft grabtask.
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consistent with the fact that, in order to maintain its baégrtbe right arm has to move.
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The norm decreases iteratively during the recognition rittyo.

] A AL
Py e
4,0 ‘\. e
2 4 6 8 10 12
t(s)

(b) Motion 2.b

T

.

4l
[Praf —---
(P24 -
[Psa] --

[Pag|l ———-

0.0012 . . . 0.0012
0.001 | ] 0.001 |
Pd) ———-
_ oo008} IPaq i 00008
d d
3 3
o o
< 0.0006| ] < 00006
£ z
- 0.0004 - g - 0.0004
0.0002 | N A :.:,;,usn;:v:\a;;p.~:. A ] 0.0002
SN \\I \__‘/.\-'\,\‘A JI \ )7 \/\“’\s/‘\/ \'\‘ ',‘\A Vi
0 L L L L L L 0
o 05 1 15 2 25 3 35 4 0
t(s)

(a) Motion 5.a

Fig. 17.
The norm decreases iteratively during the recognition rittyo.
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Experiment 3: Quantity of motion in the right hand spafter successive projection. The quantity of motion in tlydtrhand space is almost
null after the nullification of the taskRight grab and CoMIt means that the motion of the right arm is a consequendeigiiit graband CoM tasks. It is

Experiment 3: Evolution of the norm of the motion afeccessively projecting the motion in the tasks null spacerfotion 2.aand motion 2.b

Experiment 4: Evolution of the norm of the motion afeccessively projecting the motion in the tasks null spacerfotion 5.aand motion 5.b



Reference Detected Jla[Pdt T J1Pq@)|*dt

CoM CoM
Right grab Right grab 0.104835 0.0482885
Twofeet Twofeet

CoM CoM
Left grab Left grab
Right grab Right grab 0.142293 0.0541836
Twofeet Twofeet

TABLE V

RESULTS OF THE TASK SELECTION ALGORITHM FROM THE ANALYSIS OF
motion 2.aAND motion 2.bON THE REAL ROBOT

B. Experiment 3: Grabbing VS Maintaining balance

Fig. 16.

Final position fomotion 5.aand motion 5.b

This experiment corresponds to the one realized in simula-[ Reference Detected [ [lq®)[%dt [ [Pq(t)[*dt
tion in section V-C1: the first motion is a motion of the leftrar CoM CoM
induced by the coupling between a far reaching of the right Ri;}?z;ab Ri;ﬁz‘iab 0.320001 | 0.0785168
hand, and the balancinGoM task (notion 2.3. The second Twofeet Twofeet
motion is a reaching of both hands, built to be ambiguous Chest Chest
with regard to the first motiomgotion 2.bin Table 1). Table V Ri;ﬁ'\grab Rigchct"\grab 0.216742 | 0.0516134
shows the result of the identification algorithm footion 2.a Twofeet Twofeet
and motion 2.bwith a termination threshold set to= 0.09. TABLE VI

This threshold was chosen to handle the noise introduced HEsuLts oF THE TASK SELECTION ALGORITHM FROM THE ANALYSIS OF
the motion capture data. motion 5.aAND motion 5.bON THE REAL ROBOT.

For motion 2.a the order of the task extraction isRight
grab, Twofeetand CoM task. Whereas fomotion 2.h the
extracted tasks areRight gralh CoM, Twofeetand Left grah

Fig. 11-12 show the fitting at the first iteration of thdWo motions are properly disambiguated. Finally, all taakes
algorithm for Head and Left grab tasks. As expected, theProperly discovered, as proved by the very small residue.
fitting performs well only forLeft grab task in motion 2.b  Fig. 17 shows the evolution of the norm of the motions
while it is rejected formotion 2.a Although noHeadtask is after the projection into the null space of the taskRight
involved in the two motions, the head is not fixed in spac#ab, Gaze Twofeetand CoM for motion 5.a And Right
due to the motion of the neck for balancing. imotion 2. grab, Twofeef CoM and Chest for the motion 5.b As in
the candidatdHead task involves less motion than motion the previous experiments, the projection decreaseslpttiz
2.a The reason is that when the opposite end effectors of tgantity of movement at each algorithm iteration. The qityant
robot are constrained, the chest is less used. Howelead ©Of movement finally remaining at the end of the algorithm loop
task is not kept as a candidate for any of the two motion (tfi@ clearly mainly due to noise.
associated residueis never the lowest).

The evolution of the motion projected intceft grab and
Right grab spaces after the successive projections onto the
automatically-selected nullspaces are shown in Fig. 18. Fo This article describes a complete method to identify which
motion 2.3 the motion of the left arm is cancelled aftetasks are involved in an observed movement based uniquely
removing CoM task. Formotion 2.bthe motion of the left on the observed trajectory. The analysis is driven by the
arm is not cancelled byCoM projection, but is cancelled knowledge of what a task is and how it behaves. The analyzed
after removingLeft grabtask. Fig. 14 shows how the motionmovement is supposed to be generated by a set of controllers
of the right arm evolves when removing motions due to Gelonging to a known pool of tasks. The task recognition
task. It can be seen that the right arm moves because of ftgblem is then tackled by reverse engineering the motion.
Right graband CoM tasks. Fig. 15 shows the evolution ofrhe observed trajectory is analyzed in each known task space
the quantity of motion after each task selection on the twg decide which are the active tasks. The method does not
motions. The quantity decreases after successive profecti rely on the nature of the behavior of a task. Therefore any
until the remaining motion is mainly sensor noise. control laws used to generate a motion can be similarly used

to characterize an observed movement.

C. Experiment 4: Gaze VS Chest The method has been successfully applied in different
The considered motions ammotion 5.aand motion 5.b scenarios to discriminate similar-looking motions on al rea
In the first case, the robot is looking at its right hand whileobot. Those motions were built to be especially ambiguous

grabbing something. In the second case, the robot is grgbbin order to illustrate the efficiency of the method.

something with its right hand while maintaining its chest in The experiments were limited to the analysis of robotic
its current orientation. Fig. 16 shows the final posture @& tmovement. In particular, the experiments only consideioexp
robot for those motions. nential decrease as behaviors. However, it is directlyipless

Table VI summarizes the results of the task-selection @b handle other task models, for example, minimum jerk, in
gorithm. Despite noise, the active tasks are detected. Tdweler to analyze human trajectories.

VIl. CONCLUSION



APPENDIXA [12]
PROOF OF THE REVERSE IMPLICATION
This appendix proves thzfata|b = é}. The proof is in two
part, proving that the first left-coefficient (denot€d) of the (23]
sum is the identity, and that the second left-coefficienb{ded
Cs) is null. (14]
A. Proof thatC; = J,PJ — J,Py(J,Po) T T, I =1 [15]

The projection operatoiP, can be expanded using the
definition of the projectolP =1 — J*J: 16

C, =33} —3,373,3}

— T (P I + 3. T3, (3P T I I S [17]
The first term is the identity by hypothesis on TaskSince [18]
(JyP,)T = Pu(J,P,)T, the third term is null. And by
hypothesis on Tasks andb, (J,P,)" is a generalized inverse [19]
of J,, and thusJ,(J,P,)*J, = J;,: the fourth term is equal [20]

to the second and simplifiem.

B. Proof thatCy = J,Py,(J,P,) " + J,J; =0 [21]
Similarly, the projector; is expanded:

Co=Jo(JpPo)" — I I T, (T Po) T + 3,3 2

As previously, the first term is null, thigJ,P,)t is a [23]

generalized inverse of,, the second term is equal to the third

and simplifiesm
[24]
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