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Reverse Control for Humanoid Robot Task Recognition
Sovannara Hak, Nicolas Mansard, Olivier Stasse, Jean Paul Laumond

Abstract—Efficient methods to perform motion recognition
have been developed using statistical tools. Those methods rely
on primitives learning in a suitable space, for example, the latent
space of the joint-angle and/or adequate task spaces. Learned
primitives are often sequential : a motion is segmented according
to the time axis. When working with a humanoid robot, a motion
can be decomposed into parallel sub-tasks. For example, in a
waiter scenario, the robot has to keep some plates horizontal
with one of its arms, while placing a plate on the table with
its free hand. Recognition can thus not be limited to one task
per consecutive segment of time. The method presented in this
paper takes advantage of the knowledge of what tasks the robot
is able to do and how the motion is generated from this set
of known controllers, to perform a reverse engineering of an
observed motion. This analysis is intended to recognize parallel
tasks that have been used to generate a motion. The method relies
on the task-function formalism and the projection operation into
the null space of a task to decouple the controllers. The approach
is successfully applied on a real robot to disambiguate motion
in different scenarios where two motions look similar but have
different purposes.

Index Terms—Task recognition, task-function formalism, hu-
manoid robot, inverse kinematic.

I. I NTRODUCTION

CURRENT promising developments of service robotics
stimulate the research in human-robot interaction. In

that context, understanding robot actions from observation
is a challenge per se. While an intentional action originates
at a planning level, its realization takes place in the real
world via motions. How to recognize an action from observed
motions? Defining methods to automatically recognize the
goal pursued by a robot performing a given motion is a critical
issue. If we consider mobile manipulators (e.g., PR2 robots),
there is a clear separation between navigation functions and
manipulation functions. The question of action recognition
may be rather simple. Similarly, a humanoid robot can be
divided in two distinctive parts, legs and upper body, which
correspond to the navigation and manipulation functions. For
example, consider theGive me the purple ballscenario [2]
performed by the humanoid robot HRP-2 at LAAS-CNRS as
shown in Fig. 1(a). To reach the assigned objective, HRP-
2 decomposes its mission into elementary sub-tasks, each of
them being addressed by a dedicated software module. For
instance, to reach the ball, the robot has to walk to the ball.
Walkingappears as an elementary action that is a resource to
solve the problem that is processed by a dedicated locomotion
module.
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preliminary version of this work has been published in [1].

However, in the second scenario (Fig. 1(b)), HRP-2 has to
grasp the ball that is located between its feet [3]. To reach
the objective, the robot has to step away from the ball and
then grasp it. In this experiment there is no dedicated module
in charge ofstepping. Steppingis a direct consequence of
grasping. The grasping action is totally embedded in the body,
allowing the legs to naturally contribute to the action. Grasping
appears as an embodied action generating a complex motion.
Finally Fig. 1(c) introduces the purpose of this paper. In the
case on the left side, the robot performs a single grasping
task. In the case on the right side, the robot performs two
grasping tasks in parallel. The ambiguity to distinguish both
cases comes from the role played by the left arm. In the first
case, the left arm contributes to the single grasping actionby
maintaining the balance of the robot. In the second one, the
left arm performs another grasping task. Both motions are very
similar.

The works presented here tackles the problem of motion
recognition and shows that it is possible to disambiguate both
cases by focusing the analysis of the motion in the task spaces
and on the behaviors of the controllers of the robot. The main
assumption needed to disambiguate those cases is that the
kinematic model of the observed robot has to be known. The
experiments presented in this paper focus on the HRP-2 robot,
but the method is generic and as long as the assumptions are
respected, the method is theoretically valid for other robots.

II. RELATED WORK

Recognition spans a wide range of areas. In the vision com-
munity, this problem is generally looked from the unstructured
motion point of view: no hypothesis are done even on the
shape or rigidity of the moving body. The recognition can be
applied to spot irregular events [4], or specific events suchas
visual indicators of drowning [5]. The recognition can also
be focused on one person. The motion of the human can
be analyzed in order to perform a human body tracking [6].
However, information from the environment is generally used
and the recognition is mainly done from the context. For
example, salient points in time and position (looking at the
2D video flow as a 3D function) [7]. These points are learned
from a database, then matched during the demonstration. The
environment is also used to perform a background extraction
in order to extract a silhouette and perform, for example a gait
recognition [8].

The structure of a moving multi rigid body is a strong
assumption, that can boost the performances when this knowl-
edge is available. It is often the case in the robotic context.For
example the estimation of a humanoid pose trajectory in [9] is
performed using optical motion-capture data to guide a known
physical model. Recent vision developments prove that the
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Scenario (a): The global taskGive me the ballis decomposed into a sequence of sub-tasks [locate the ball],[walk to the ball], [grasp the ball], [locate the
operator], [walk to the operator], and [give the ball]. The motions [walk to], [grasp], [give] appear as a sequence structuring the action (from [2]).

Scenario (b): To grasp the ball between its feet, the robot has to step away from the ball. In this experimentstepping awayis not a software module. It is an
integral part of the embodied actiongrasping(from [3]).

Scenario (c): To grasp the ball in front of it (left), the robotreaches a posture where the left arm is used to maintain its balance. In the figure on the right, the
robot performs two actions in parallel: grasping a ball in front of it while grasping a ball behind (of course the ball behind has been intentionally placed at the
end position of the left hand depicted on the left side). It isnot possible to spot the difference between both postures. However, the question we address is: Is
it possible to spot the difference between bothmotions?

Fig. 1. Introductory examples of embodied intelligence.

same knowledge could also be reliably be extracted using clas-
sical or RGB-D cameras [10]. In the remainder of this paper,
we will consider that the motion of the rigid bodies is known.
A typical use of a dedicated vision system to reconstruct the
whole-body pose is presented in the experimental section.

The question is now how to extract information of higher
levels from supposedly-known human whole-body move-
ments. A direct example is signed languages which provide
a way to convey meaning through the combination of hands,
arms and face movement and configuration. In the same way,
human gait has been studied from an information provider
point of view. For example, the gait can be used like fin-
gerprints to perform identification of human [11], [12], or to
recognize emotions such as anger, sadness or happiness [13].

Statistics have been successfully applied to action recog-
nition and motion analysis [14]. Statistical tools are usedto
create symbols, and by extension, detect those symbols in a
motion. For example, a method for behavior-based control is
proposed in [15], [16]. Behaviors are defined as a motion
symbol (e.g. jab, hook, elbow, shield and uppercut). The
behaviors are modeled by learning from series of examples.
A dimensional reduction is then applied to have a significant
clusterization. The recognition part is handled by a Bayesian
classifier which recognizes a trajectory in joint or Cartesian
space. The extension to the recognition is to perform an
imitation. This is performed by interpolating known examples
to obtain feasible trajectories. The introduction of partially-
observable markov decision process or Bayesian inference [17]
has renewed the topic of action modeling [18] in the last
decade. Such techniques and related ones are now applied
to motor skill learning in general [19], and to motion seg-
mentation [20], [21] in particular. Hidden Markov Models
(HMMs) have been extensively used, for example, to perform

action and gait recognition [22] or to generate a human-like
motions [23]. In these works, human capture data are used to
build a basis elements in the joint space for each movement
class using a dimension reduction technique. At the same time,
HMMs are trained to capture the features of a movement class
in the task space. The generation is obtained by finding the
optimal linear combination of basis elements that maximize
the probability of a trained HMM. Although the task space
is considered to be the space where movement features have
to be extracted, the method is limited to one specific task
space per movement generated. In [24] variable-length markov
models are used to learn atomic human actions. A sequence
of atomic actions represent a complete behavior. Generally
speaking, the efficiency of statistics-based recognition is ruled
by the quality of the dataset built in the learning phase. Several
demonstrations for each particular cases are needed in order
to extract the invariants that will discriminate the tasks.The
sparsity of the demonstrations can also limit the efficiencyof
the recognition. Finally, the sets of demonstrations have to be
associated with the correct symbols, which are generally given
to the learning algorithm.

Alternatively, recognition can be based on specific criteria
that are a priori given to the system. In [25], only the robot
trajectories are used to distinguish between various phases of
motion. A task is a complete whole body motion within a
temporal segment. The global motion is a sequence of tasks.
Each task has its own parameters calledskills parameters. The
task recognition method is decomposed in two steps: first, for
each tasks, find all the temporal segments in the observed
motion corresponding to that task. The second step is the
estimation of the skill parameters for each segment. Each
task is detected by the analysis of a trajectory projected in
a specific space. For example, a stepping task is detected by
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analyzing the trajectory of a foot; a squatting task is detected
by analyzing the vertical trajectory of the waist. The criteria
used for detection and the associated dedicated projection
spaces are built manually for a particular motion that has to
be imitated by the robot. Similarly, [26] uses a set of specific
spaces in which the observed motion is projected. Each task
is associated with a specific criterion. These criteria are used
to automatically choose the set of task spaces that will best
represent and generalize a given movement, in order to focus
a learning technique into that new space. The criteria used for
the task-space selection are expressed by some score functions
inspired from neuroscience: the saliency of the object thatis
manipulated, a variance of the dimension of a space during
several demonstrations, and some heuristics that express that
uncomfortable or exhausting motions reveal the presence ofa
task. Those decision tests address the problem of how to spot
tasks that involve no motion. The method adds some higher
level information to a purely statistical analysis and relies on
task spaces as an appropriate space to represent movements.
However the efficiency of the task space selection depends on
the strength of the chosen decision tests.

The common approach of these last works are to project
the observed motion in some specific reduced spaces, where
the recognition is easier. These spaces can be chosen ar-
bitrary [25], automatically selected [26] or learned [19].
Similarly, in control, smaller-size spaces are used to define
the control objectives and modulate the robot behavior. For
example the task-function approach [27] expresses generic
control objectives in given n-dimensional task spaces. The
approach has been extended to handle a hierarchical set of
tasks [28], [29] using the redundancy of a system.

The originality of the method presented in this paper is
to use the properties of the task-function to perform a task
recognition. The main idea is to perform a reverse engineering
of an observed motion, knowing the set of all possible tasks
that can appear and using the control law in the task space as
characteristic trajectories. Under the hypothesis that the motion
has been generated by stacking a set of controllers, the motion
is processed in order to seek the known behaviors in each task
spaces. We named this reverse engineering algorithm approach
reverse control. While all the approaches presented above can
only recognize non-parallel task, we rely on the control redun-
dancy principles to recognize sets of parallel tasks. Projections
of the motion in the already-detected orthogonal task spaces
ensure an efficient decoupling of the tasks performed by the
robot. It has to be noted that our approach relies also on some
strong assumptions, listed explicitly below, but that are directly
related to the robot control framework.

We introduce in Section III the basics of what the work
presented here relies on: the task-function approach. The pro-
posed algorithm to perform the motion analysis is presentedin
Section IV. Finally, experimentations that validate the method
are presented in simulation in Section V and with the real
HRP-2 robot in Section VI.

III. TASKS AND STACK OF TASKS

The task-function framework [27] is an elegant approach
to describe intuitively sensor-based control objectives.The

advantage is that expressing the control law in the most
suitable subspace, with respect to a given objective, simplifies
its construction as well as its execution since the subspaceis
generally closely linked to the sensors of the robot. Based on
the redundancy of the system, this approach can be extended to
consider a hierarchical set of tasks [28]. Complex motion can
then be composed from simple tasks seen as atomic bricks
of motion. This composition mode, along with the obvious
composition by temporal sequencing offers a real versatility:
subparts of the motion can be used in very different situations
without redesigning them for each case.

In the following, we consider that the robot input is the
velocity q̇, whereq is the robot configuration vector. A task
is defined by a vector spacee and by the reference behaviorė∗

to be executed in the task space. The differential link between
the error and the robot configuration is the Jacobian of the task
and is notedJ = ∂e

∂q
. Various typical behaviour can be chosen

for ė∗. Typically, we will use in the following an exponential
decrease, set by

ė∗ = −λe (1)

where e = s − s∗ is the error between a current observed
value of a signals and its arbitrary references∗, andλ > 0 is
the gain that tunes the speed of the regulation ofe to 0. For
example, the observed feature can be a 3D positionp of one
of the robot end-effectors, to be brought to a chosen position
p∗ and the JacobianJ = ∂p

∂q
.

The control law is given by the least-square solution [30]:

q̇ = J+ė∗ +Pz (2)

whereJ+ is the least-square inverse ofJ, P = I − J+J is
the projection operator onto the null space ofJ andz is any
secondary criterion.P ensures a decoupling of the task with
respect toz. Using z as a secondary input, the control can
be extended recursively to a set ofn tasks. Thosen tasks are
ordered by priority : task number 1 being the highest priority
task, and task numbern the lowest priority,taski should not
disturbtaskj if i > j. The recursive formulation of the control
law is proposed by [28] :

q̇i = q̇i−1 + (JiP
A
i−1)

+(ė∗i − Jiq̇i−1), i = 1 . . . n (3)

with q̇0 = 0 and PA
i−1 is the projector onto the null space

of the augmented JacobianJA
i = (J1, . . .Ji). Joint velocities

realizing all the tasks iṡq∗ = q̇n. Each task can be used to
generate a common pattern of motion in various situation. In
that sense, a task is at the same time the controller that can
generate a motion, as well as a descriptor of the motion that
is currently executed. This descriptor is quasi symbolic, but
comes also with additional parameters that characterize the
way it is executed: for example, an exponential-decrease task
comes with the parametersλ that characterize its decrease
speed. A complete implementation of this approach is pro-
posed in [31] under the nameStack of Tasks(SoT).

IV. M OTION ANALYSIS FOR TASK RECOGNITION

In the previous section the classical widely-used task-
function formalism was recalled. In this section, we proposeto
use tasks as a set of descriptors to recognize a demonstrated



4

motion, by identifying the set of tasks that have been used
to generate the observed motion. The identified task set can
then be used to characterize the observed motion, for example,
to distinguish between similar-looking movements. In the
following we list and justify the hypothesis considered, then
we present an overview of the task recognition method and
finally detail the main step of the method.

A. Hypothesis

The observed motion is given through joint trajectories1. It
is supposed to have been generated using an unknown stack
of tasks. However the tasks that may appear in a motion are
known.

All the tasks involved in the demonstration are supposed
compatible in the sense of the projectionP defined in (2) (no
algorithmic singularities [32]).

We call the set of possible tasks thetask pool and we
assume that the behavior modelė∗ of each tasks is known.
However, the parameters of the behaviors (like the velocity
of movement, or the desired position) are not known. The
knowledge of this set allows to turn the recognition problem
into a selection in a finite set problem. Limiting the possible
tasks to a finite pool does not dramatically impact on the
expressiveness of motion because tasks can be executed in
parallel. The expressiveness is then reflected by the different
possible task combinations.

The set of active tasks has to be constant during the motion
and the tasks start and complete at the same time. As a
consequence the hierarchical and concurrent tasks with fuzzy
or weighted levels of importance are not considered. Another
consequence is that sequential movements and all inequalities
and conditional constraints are not considered because such
constraints involves a change in the stack of tasks used to
generate the movement.

Finally, the kinematic model of the robot is supposed
known: it is required to compute the Jacobian and the null-
space projector that are used in the recognition part. As a
consequence, uncertainties in the kinematic model will affect
the performance of the method.

B. Overview

The input of the algorithm is the joint trajectories and the
task pool. The algorithm is iterative: at each iteration of the
algorithm, the task that seems the most relevant is selected.
The selection of a task relies on a curve-fitting score, obtained
by projecting the joint-angle trajectory in each task space.
Assuming that the kinematic model of the robot is known,
the projection of the motion in each task space reconstructs
the trajectory in that space. For example, the trajectory of
the center of mass (CoM task) is recovered from the joint
trajectories by the projection of the joint trajectories into the
CoM task space. The projected trajectories are compared to the

1The joint-angle trajectories are observed using a motion capture system
as shown in Section VI-A.

Algorithm 1 Task selection algorithm

1: Input: ˆ̇q(t)
2: Output: activePool
3: Pq̇(t)← ˆ̇q(t)
4: while

∫
‖Pq̇(t)‖2dt > ǫ do

5: for task i = 1..n do
6: ri ← taskFitting(i, activePool)
7: end for
8: iselect ← argmin(ri)
9: activePool.push(iselect)

10: Pq̇(t)← projection(iselect,Pq̇(t))
11: end while

theoretical trajectories which are characteristic of the execution
of a task. The observed motion is then projected onto the null
space of the selected task, cancelling the effect of the taskin
the observed motion. This projection into the null space relies
on the control redundancy and is used to decouple the current
tasks from the others. Another iteration of selection-projection
is then executed, on the projected motion. The algorithm stops
when the original motion is totally cancelled, by the iterative
projections.

The algorithm is showed in Alg. 1. The joint velocity
trajectory of the observed motion is denotedˆ̇q(t)2. Pq̇(t)
denotes the successive projections of the reference motion.
Before the first iteration,Pq̇(t) is set to the reference motion.
Then, each iteration projects it in the selected task null space.
ri denotes the score of the cost function of the curve fitting
optimization. activePool denotes the set of tasks selected
during the algorithm.

If the observed motion is exactly generated by a SoT, the
resulting trajectoryPq̇ after projection onto all the active-
task spaces is null. However, in presence of noise (ie when
acquiring motion through real sensors) a residue is system-
atically obtained, which implies to use a threshold as stop
criteria: the loop ends when the residue is below the noise of
the acquisition chain.ǫ denotes the threshold of the motion
norm below which the algorithm stops.

The next subsections describe the two main functions of
the algorithm. The procedureprojection(i, q̇(t)) computes
the projection of velocity onto the null space of the task
i and apply the projection to the motion. The procedure
taskFitting(i, activePool) handles the curve fitting of the
observed motion and the theoretical motion. The process is
detailed in section IV-D.

C. Projection of the motion

The reconstruction of the trajectories in each task space
from the joint trajectories is directly done by multiplyingthe
joint trajectories by the task jacobian.

In order to cancel the effect of a detected taskiselect, the
joint trajectories are projected onto the null space of thattask
by multiplying it with the projector onto the null space of all

2In the remainder of this article, observations and measures are denoted̂·
while references and desired values are denoted·∗
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tasks to cancel. For every timet of the motion time interval:

Pq̇(t)← PA
iselect(t)Pq̇(t) (4)

wherePA(t) is jointly updated:

PA(t) = PA(t)− (Jiselect(t)P
A(t))+(Jiselect(t)P

A(t))

The projectorPA(t) is initialized toPA
0 (t) = I. The remain-

ing motion after projectionPq̇(t) is then analyzed to detect
the potentially-remaining tasks.

The projection operation will nullify the effect of the motion
in the selected-task space. It has in fact two different effects
in the configuration space: on the first hand, it cancels the
component of the motion that is independent with regard to the
other tasks; on the other hand, it modifies by the way the part
of the motion that is coupled with the effect of the remaining
tasks. The first effect is beneficial because it avoids futurefalse
detection that could be caused by non-linear reflection of the
currently-selected task in the remaining task space. However,
care has to be taken with the modification of the coupled part,
as explained by the following example.

Consider a motion composed of two arbitrary tasksea and
eb. The control law to execute both tasks is given by:

q̇ = J+
a ė

∗
a + (JbPa)

+(ė∗b − JbJ
+
a ė

∗
a) (5)

If ea is detected first, (4) is applied withiselect = a.
Multiplying (5) by Pa cancels the motion in the Taska space:

Paq̇ = PaJ
+
a ė

∗
a︸ ︷︷ ︸

0

+Pa(JbPa)
+(ė∗b − JbJ

+
a ė

∗
a) (6)

The first term is null by definition ofPa. The motion due to
Paq̇ in the Taskb space is obtained by multiplying byJb:

JbPaq̇ = ė∗b − JbJ
+
a ė

∗
a (7)

sinceJbPa(JbPa)
+ = I by hypothesis. The first term is the

independent component of the second task, and the second
term is the component coupled with Taska. Therefore, the
projection onto the null space of the discovered task at the first
iteration will induce a coupling effect that has to be handled
when trying to discover another task. This coupling will be
handled in the next section.

D. Task fitting by optimization

We denotêė(t) the trajectory due to the currentPq̇ in the
observed-task space. The quantification of the relevance of
the given taske, with respect to the current motionPq̇ , is
achieved by applying a least-square optimization between the
actual observed motion projected in the task space and the
reference behavior of a task over the unknown parameters:

x̂ = argmin
x

∫
‖̂̇e(t)− ėx(t)‖

2dt
∫
‖̂̇e(t)‖2dt

(8)

wherê̇e(t) is the observed trajectory andėx(t) is the trajectory
generated by the model using the parametersx. The model is
generic and an example of a behavior model is an exponential
decrease with the parametersx = [x1, x2, x3]:

px(t) = x1e
−x2t + x3

The score will thus be the residue after trying to obtain the
best correspondence with the given model in the task space.

In some cases, the trajectorŷė can be observed directly.
For example, if the task space is the 3D position of the hand,
a direct observation is possible. However, in general, a direct
observation is not possible. For example, the center of mass
of the robot is difficult to observe directly. In addition, itis
not possible to observe directly the effect of the successive
projection. ̂̇e is then obtained by the kinematic model and
joint trajectories of the robot:Ji

ˆ̇q. However, proceeding so
would lead to (7), where the coupling with previously selected
tasks appears. The projected motion is then augmented with
coupling compensation.

̂̇e(t) = JiP
Aq̇(t) + JiJ

A+̂̇eA(t) (9)

whereA is the set of tasks that have already been detected
and i is the task candidate. All the terms corresponding to
A are known since identified in the previous iteration of the
algorithm.

In practice, the observation is sampled and the integral is a
sum. The optimization problem (8) is in general a non linear
problem. To solve it numerically, the CFSQP solver has been
used [33]. The result of the optimization produces at the same
time the residue used as a criteria to select the most plausible
task, and the numerical parameters of the task (for example the
gain and the desired position, when considering a proportional
task (1)).

E. Order of the nullification

The previous composition of detection-projection enablesto
remove the side effects of the previously detected tasks without
introducing any coupling in the non-detected tasks. We prove
now that the order of the detected tasks and the subsequent
projection does not affect the detection of the remaining tasks.

Consider the observed motion to have been generated by a
two-stages SoT (5). The reference motion in Taski space is
denoteḋe∗i . The motion induced in Taski space by the original
motion q̇ is denoted̂ėi, while the motion induced in Taskj
after removing the motion from Taski Pj q̇ is denoted̂ėj|i.

We prove that both tasks can be detected (and removed) in
arbitrary orders.

Proposition IV.1. Consider a motion generated by a two-
stage SoT. Theṅ̂ei = ̂̇ei|j = ė∗i , for i = a and j = b, and
reciprocally, for i = b and j = a.

Proof:
1) Detecting Taska, then Taskb: The direct implication

is straight forward. At iteration 1, the observation in Taska
space is directlŷ̇ea = Ja

ˆ̇q = ė∗a. After the removal of Task
a, the observation in Taskb space is obtained from (9):

̂̇eb|a = Jb
ˆ̇q+ JbJ

+
a
̂̇ea

= Jb(JbPa)
+

︸ ︷︷ ︸
I

(ė∗b − JbJ
+
a ė

∗
a) + JbJ

+
a ė

∗
a

implicating directly ̂̇eb|a = ė∗b , since Jb(JbPa)
+ =

JbPa(JbPa)
+ = I and ̂̇ea = ė∗a.
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The observation obtained in Taskb space is independent
from the projection in the null space of Taska.

2) Detecting Taskb, then Taska: At the first iteration, the
observation in Taskb space is directly

̂̇eb = JbJ
+
a ė

∗
a + Jb(JbPa)

+(ė∗b − JbJ
+
a ė

∗
a)

which implieŝ̇eb = ė∗b sinceJb(JbPa)
+ = I.

Projecting the original motion (5) in the null space of Task
b at the end of the first iteration results in the following Task
a observation:

̂̇ea|b =JaPbJ
+
a ė

∗
a + JaPb(JbPa)

+(ė∗b − JbJ
+
a ė

∗
a) + JaJ

+

b
̂̇eb

=(JaPbJ
+
a − JaPb(JbPa)

+JbJ
+
a )ė

∗
a

+ (JaPb(JbPa)
+ + JaJ

+

b )ė
∗
b

We show that this complex sum is in fact simplyė∗a (see
Appendix A). This proves that the same fitting is obtained
independently of what task is detected first.

The proof can be extended using exactly the same arguments
for a set ofn tasks. Similarly, it is straightforward to prove
that whatever the order of detection, the resulting motion after
all the projections is null.

V. RESULTS IN SIMULATION

This section details a series of experimentation in simulation
to validate the recognition algorithm. Simulation allows us
to emphasize the nominal behavior of the algorithm without
any sensor noise. The first experiment simply validates the
projection of the motion (section V-B). The second part
compiles a set of experiments that validate the task recognition
algorithm (section V-C). For each experiment of that set, the
task recognition algorithm is applied to two similar-looking
motions: the two motions have been artificially built to be
ambiguous when compared to each other, in order to illustrate
the efficiency of the algorithm regarding the precision of the
recognition. Fig. 2, Fig. 3 and Fig. 4 show the final posture of
the ambiguous motions used in those experiments. All motions
involved in the experiments are summed up in Table I. The
description of the tasks used to build these motions are detailed
below.

A. Set-up

The reference motions have been generated by using the
model of the humanoid robot HRP-2 having 30 actuated de-
grees of freedom plus six degrees of freedom on the freeflyer.
Every motions start from the half-sitting pose. As classically
done in inverse kinematics, the under-actuation of the freeflyer
is resolved by constraining the left foot to be on the ground.

The set of tasks considered in those experiments are :

• CoM : the center of mass of the robot is constraint to
maintain the static balance (3 DOF)

• Gaze: the robot looks at one point in the Cartesian space
(2 DOF)

• Twofeet: both feet stay flat with regard to each other (6
DOF)

Fig. 2. Left: The final position ofmotion 2.a; Right: The final position of
motion 2.b.

Fig. 3. Left: The final position ofmotion 3.a; Right: The final position of
motion 3.b. The difference lying in the orientation of the right hand isdifficult
to spot. Inmotion 3.b, the right hand is parallel to the ground.

(a) (b)

Motion 1

Right grab
Left grab

Gaze
CoM

Twofeet

Motion 2
Right grab

CoM
Twofeet

Left grab
Right grab

CoM
Twofeet

Motion 3

Gaze
Right grab

CoM
Twofeet

Gaze
Right Screw

CoM
Twofeet

Motion 4
Gaze
CoM

Twofeet

Left Screw
CoM

Twofeet

Motion 5

Right grab
Gaze
CoM

Twofeet

Right grab
Chest
CoM

Twofeet

TABLE I
THE TABLE OF CONSIDERED MOTIONS AND TASKS.

• Left/Right grab: either the left or right hand of the robot
reaches a point defined in the Cartesian space (3 DOF)

• Screw: similar to thegrab task, but the desired position
has to be reached with a defined orientation (6 DOF)

• Head : the head of the robot is constrained in position
and orientation (6 DOF)

• Chest: the chest of the robot is constrained in orientation
(3 DOF)
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Fig. 4. Left: The final position ofmotion 4.a; Right: The final position of
motion 4.b.
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Fig. 6. Experiment 1: Evolution of the norm of the motion after successively
projecting the motion in the tasks null spaces.

B. Experiment 1 : Preliminary validation

In this experiment, a basic motion is generated. Then
the recognition by fitting, the projection and the termination
condition of the algorithm are validated. The reference motion
is motion 1.a(see Table I). The motion is given to the detection
program which selects the tasks that fit the most closely by
the optimization.

Fig. 5 shows snapshots of the original motion and of the
motions after successive projections in the null spaces of the
detected tasks :Right grab, CoM, Gaze, TwofeetandLeft grab.
Each projection cancels a part of the motion, and the robots
motion becomes null when all projections are applied, which
means that all relevant tasks have been detected. As we can see
in the second line, the movement of the right hand is nullified.
The cancellation of theCoM from the third line is more
difficult to perceive. On the forth line, the cancellation ofthe
head movement due to the gaze is very clear. On the fifth line,
the cancellation of the taskTwofeetremoves the compensation
done with the right leg. Finally, as shown on the last line,
the cancellation of all tasks leads to a null motion. Fig. 6
shows the evolution of the norm of the motion, defined by
the sum square of the joint-angle velocities of the robot. Each
projection strictly decreases the norm of the velocity (ie the
quantity of movement). After five projections, the movement
is completely nullified, which confirms that all the active tasks
have been discovered. The algorithm can then stop.

C. Experiment 2 : Distinction among similar-looking motions

An interesting challenge in motion detection is to make
distinction between two motions involving different tasksbut
that produce very similar joint trajectories. Anthropomorphic

Reference Detected
∫
‖q̇(t)‖2dt

∫
‖P q̇(t)‖2dt

CoM
Right Hand

Twofeet

CoM
Right Hand

Twofeet
0.364398 0.00159355

CoM
Left Hand
Right Hand

Twofeet

CoM
Left Hand

Right Hand
Twofeet

0.538329 0.0035343

TABLE II
RESULTS OF THE TASK SELECTION ALGORITHM FROM THE ANALYSIS OF

motion 2.aAND motion 2.b.

algorithm would use the context to perform the disambigua-
tion. The work presented in this paper shows that the fitting
criterion is sufficient to disambiguate similar-looking motion.
Three ambiguous pairs of movements are presented to illus-
trate this capability.

1) Reaching motions:In this section, two motions are
considered:motion 2.aandmotion 2.b. The first one is a far-
reaching motion with the right hand. The reaching motion of
the right hand has an influence on the left arm through the
CoM task: to regulate its balance, the robot puts its left arm
behind. The second motion is the same reaching task for the
right hand, added with a second reaching task on the left hand.
The desired position of the left hand is artificially set to the
final position of the left hand obtained at the first motion.

The final states of the robot for the two motions are shown
in the Fig. 1(c). A video showing those two motions on the
HRP-2 is available3. The two motions look very similar, and it
is very difficult to the human eye to tell which motion involves
a left and right hand task without the context. In the first case,
the motion of the left hand is due toCoM andRight Handtask,
as it is a side effect to compensate the balance perturbation
induced by the right hand. In the second case, the motion of
the left hand is decoupled, since the left hand has been driven
by its own goal. However, in the proper task spaces, those
motions appear clearly different. Fig. 7 shows an example of
the result of the task fitting ofRight HandandLeft Handtask
applied tomotion 2.a. The residue of the optimization forLeft
Hand is higher than the residue forRight Hand. At this step,
the movements analyzed is better explained byRight Hand
than byLeft Hand. The results of the detection algorithm are
showed in Table II. The first column shows the tasks being
used in the reference motion, the second column shows the
tasks selected by the algorithm, the third column shows the
norm of the reference motion (quantity of motion initially
observed), and the last column shows the norm of the reference
motion projected onto the null space of all selected tasks. The
final quantity of movement after projection is very low for
both motions compared to the threshold for the stop criterion∫
‖P q̇(t)‖2dt > ǫ that is empirically fixed toǫ = 0.07 in

order to handle numerical noise due to successive projections
(the threshold depends on the number of tasks involved in the
movement).

Finally Fig. 8 shows how the norm of joint-angle velocities
corresponding to the tasksRight graband Left grab evolves
after the projections. Projectingmotion 2.aonto the null spaces
of Right grabtask will decrease its associated theoretical joint-

3http://homepages.laas.fr/shak/videos/
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(a)

(b)

(c)

(d)

(e)

(f)

Iteration 0 99 199 299 399 499

Fig. 5. Experiment 1: The motion generated by a stack of tasks involving : Right and Left grab, CoM, Gaze, Twofeetis represented in the row (a). The
remaining rows represent the successive projections of the motion in the null spaces of the tasks, (b) Right grab, (c) CoM, (d) Gaze, (e) Twofeet, (f) Left
grab.

angle velocities while leaving theLeft grab one unchanged.
Fig. 8(a) shows that the theoretical joint-angle velocities
associated toLeft grab task is decreased after the projection
of the motion in the null space ofCoM task. That explicits
that the left arm of the robot was moved byCoM task. By the
way, the projection prevent the left task to be detected at any
further iteration of the algorithm. But, when projectingmotion
2.b into the nullspace ofRight graband CoM task the joint-
angle velocities associated toLeft grab task is still significant
(Fig. 8(b)). That means thatCoM task has a little influence on
the motion of the left arm, and that motion on the left arm is
due to another task. Therefore, the task selection algorithm will
keep looking for the task that has controlled the left arm. After
the detection of the two (formotion 2.a) and three (formotion
2.b) main tasks, the norm of the last joint-angle velocities are
not null, because the task selection algorithm has not finished

and other tasks have not been selected yet.Twofeettask is then
detected but the projection is not displayed on the figure for
the sake of clarity. On the other hand Fig. 9 shows the task
fitting for motion 2.b.

2) Grabbing VS Screwing:In this section, the two motions
considered aremotion 3.aandmotion 3.b. Both motions share
the same position target for the right hand. The only difference
between the two demonstrated motions is the presence of an
orientation constraint for the right hand inmotion 3.b. The
final positions of those motions are shown in the Fig. 3.
Table III shows the results of the task-selection algorithm
which performed successfully. As in the previous experiments,
the taskScrew can not be properly fitted on the trajectory
generated onmotion 3.a. In motion 3.b, both tasksGrab and
Screw are detected, whereas the taskScrew is not selected
in motion 3.a. The selection of both tasks inmotion 3.b is
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Fig. 7. Experiment 2: Task fitting onmotion 2.aon the right and the Left grab tasks. Variabler is the residue,ie the distance between the two curves.Right
Hand motion is properly fitted by the task model, showing that the task is active.Left Hand is not fitted properly, since the task is not active. The values of
the residues show that the taskRight grab is a better explanation for the movement than the taskLeft grab.
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Fig. 8. Experiment 2: Evolution of the trajectorẏq projected in the spaces ofRight grab (in solid lines) andLeft grab (in dashed lines) after successive
projection of the motion in the nullspace of the taskRight graband in the nullspace of the taskCoM. In motion 2.a, a great part of the motion of the left
arm is due toCoM task: removingCoM task will cancel almost all motion in the left arm. Inmotion 2.b, the motion of the left arm is not only involved by
CoM task but mainly byLeft grab task. RemovingCoM task will only cancel a small part of the motion of the left arm.
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Fig. 9. Experiment 2: Task fitting onmotion 2.bon the right and the left hand tasks. Both motion of the right andleft hand are fitted by the model, with
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Reference Detected
∫
‖q̇(t)‖2dt

∫
‖P q̇(t)‖2dt

CoM
Gaze
Grab

Twofeet

CoM
Gaze
Grab

Twofeet

0.619266 0.00245631

CoM
Gaze
Screw

Twofeet

CoM
Gaze
Grab
Screw

Twofeet

0.717041 0.00344557

TABLE III
RESULTS OF THE TASK SELECTION ALGORITHM FROM THE ANALYSIS OF

THE motion 3.aAND motion 3.b.

Reference Detected
∫
‖q̇(t)‖2dt

∫
‖P q̇(t)‖2dt

CoM
Gaze

Twofeet

CoM
Gaze

Twofeet
0.534478 0.0545944

CoM
Screw

Twofeet

CoM
Screw

Twofeet
0.558084 0.0023297

TABLE IV
RESULTS OF THE TASK SELECTION ALGORITHM FROM THE ANALYSIS OF

motion 4.aAND motion 4.b.

explained by the fact thatGrab is actually a sub-task ofScrew.
The residual motion after successive projections is finallyvery
close to 0, which proved that all tasks were properly detected.

3) Screw VS Gaze:The two motions considered aremotion
4.a and motion 4.b. motion 4.a can be described by the
following scenario : an object is in front of the robot, and
creates an occlusion in the vision of the robot. To get rid of this
occlusion, the robot can lean on its right. While the robot leans,
the left hand is dragged by the chest as an involuntary side
effect. The position and orientation of that hand is recorded
as a desired state of the hand for the firstmotion 4.btask. In
motion 4.b, the gaze is uncontrolled. The motion of the head
is, that time, a side effect of the left hand movement. The final
states of the robot are shown in Fig. 4 and the analysis results
are summarized in Table IV.

As previously, correct tasks are detected for each movement.
The residue after projections on all detected tasks are very
small, proving that everything was properly detected and
subtracted.

In conclusion, we have shown experimentally in this section
that, without noise, the detection algorithm performs perfectly,
ie detects exactly all the active tasks, without any false
detection, and issues a neglectable residue of projected motion
due to numerical noise. The following section will consider
realistic cases of noisy signals acquired by real sensors.

VI. EXPERIMENTATION ON THE ROBOT

In this section, we experimentally demonstrate the valid-
ity of the task recognition algorithm in realistic situation
in presence of noise. This time, the reference motion is
demonstrated by the real HRP-2 and observed using a motion-
capture system. (Fig. 10). As previously, the task recognition
algorithm is applied to two pairs of similar looking motions.
First, we briefly explain how the motion-capture system is used
to record the joint-angle trajectory. Then two pairs of motions
are observed and provided to the recognition algorithm.

Fig. 10. Markers set and virtual skeleton of HRP-2.

A. Experimental setup

A motion is executed with theSoTframework on the HRP-2
robot equipped with markers on each body part. The motion-
capture system used is composed of 10 digital cameras and
record data at 200Hz. The motion-capture system provides the
trajectory of each body of the robot. The data collected from
those markers are used to build a virtual skeleton that match
the kinematic hierarchy of the robot (Fig. 10). The result of
this process is the 6D trajectories of all the bodies in space,
without any joint constraints. The analysis of the motion isper-

formed on the joint-angle trajectories. Therefore, a joint-angle
trajectories have to be computed from the motion-capture data.
The joint-angle trajectories are computed as classically done
by optimizing the distance between the transformation matrix
RW

qi
(q) from the robot origin to each joint of the robot and

the measured transformation matrixR̂W
qi
(t) using the robot

joint limits as constraints.

q̂(t) = argmin
q

n∑

i

‖ R̂W
qi
(t)⊖ RW

qi
(q)‖2 (10)

s.t. qimin ≤ qi ≤ qimax, i = 1..n (11)

where q is the robot joint configuration vector,⊖ is the
distance operator in SO(3), RW

qi
(q) is computed using the

kinematic model of the robot, and R̂W
qi

is obtained by:

R̂W
qi
(t) = RW

WC
× R̂WC

Mi
(t)× RMi

qi
(12)

where RW
WC

and RMi

qi
are the constants displacement due

to the differences between an arbitrary skeleton model of
the motion-capture and our kinematic model of the robot,
computed in a calibration step. R̂WC

Mi
is the measured

transformation matrix from the origin of the motion-capture
reference frame to the virtual bodyi.

The obtained joint-angle trajectories are then used for the
reverse-engineering task recognition.

On the robot, the mechanical design includes a flexibility
after the ankle joint that interferes with the motion at the
very beginning as the acceleration of the joint-angle increases
quickly. The flexibility is not modeled neither in the control
algorithm nor the detection method. In order to bypass the
influence of the flexibility, the motion analysis is done after
the first 100ms where the influence of the flexibility is pre-
dominant. In the following two sections, we consider that the
measures are directly thêq trajectories given by (12).
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Fig. 11. Experiment 3: Fitting at the first iteration of the task selection algorithm forheadtask formotion 2.aandmotion 2.bFor both motion,r is not the
lowest residue amongst all the tasks fitting:Head task, not active, is not selected.
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‖J+ėtaskLhand‖dt = 0.177583rad
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Fig. 12. Experiment 3: Fitting at the first iteration of the task selection algorithm forLeft grab task for motion 2.aand motion 2.b Left grabtask is not
pertinent formotion 2.a, but is selected formotion 2.b.
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Fig. 13. Experiment 3: Norm of motions associated toLeft grab task (ie motion of the left arm). The motion is cancelled after removing the motion due
to CoM task in motion 2.a. In that case, it means that the left arm motion was due toCoM task. Whereas inmotion 2.b, the motion of the left arm is not
cancelled after removingCoM task, but is cancelled after removingLeft grab task : the motion of the left arm was due toLeft grab task.
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Fig. 14. Experiment 3: Quantity of motion in the right hand space after successive projection. The quantity of motion in the right hand space is almost
null after the nullification of the tasksRight grab and CoM. It means that the motion of the right arm is a consequence ofRight graband CoM tasks. It is
consistent with the fact that, in order to maintain its balance, the right arm has to move.
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Fig. 15. Experiment 3: Evolution of the norm of the motion aftersuccessively projecting the motion in the tasks null space for motion 2.aandmotion 2.b.
The norm decreases iteratively during the recognition algorithm.
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Fig. 17. Experiment 4: Evolution of the norm of the motion aftersuccessively projecting the motion in the tasks null space for motion 5.aandmotion 5.b.
The norm decreases iteratively during the recognition algorithm.
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Reference Detected
∫
‖q̇(t)‖2dt

∫
‖P q̇(t)‖2dt

CoM
Right grab
Twofeet

CoM
Right grab
Twofeet

0.104835 0.0482885

CoM
Left grab

Right grab
Twofeet

CoM
Left grab

Right grab
Twofeet

0.142293 0.0541836

TABLE V
RESULTS OF THE TASK SELECTION ALGORITHM FROM THE ANALYSIS OF

motion 2.aAND motion 2.bON THE REAL ROBOT.

B. Experiment 3: Grabbing VS Maintaining balance

This experiment corresponds to the one realized in simula-
tion in section V-C1: the first motion is a motion of the left arm
induced by the coupling between a far reaching of the right
hand, and the balancingCoM task (motion 2.a). The second
motion is a reaching of both hands, built to be ambiguous
with regard to the first motion (motion 2.bin Table I). Table V
shows the result of the identification algorithm formotion 2.a
and motion 2.bwith a termination threshold set toǫ = 0.09.
This threshold was chosen to handle the noise introduced in
the motion capture data.

For motion 2.a, the order of the task extraction is :Right
grab, Twofeetand CoM task. Whereas formotion 2.b, the
extracted tasks are :Right grab, CoM, TwofeetandLeft grab.

Fig. 11-12 show the fitting at the first iteration of the
algorithm for Head and Left grab tasks. As expected, the
fitting performs well only forLeft grab task in motion 2.b
while it is rejected formotion 2.a. Although noHead task is
involved in the two motions, the head is not fixed in space
due to the motion of the neck for balancing. Inmotion 2.b,
the candidateHead task involves less motion than inmotion
2.a. The reason is that when the opposite end effectors of the
robot are constrained, the chest is less used. However,Head
task is not kept as a candidate for any of the two motion (the
associated residuer is never the lowest).

The evolution of the motion projected intoLeft grab and
Right grab spaces after the successive projections onto the
automatically-selected nullspaces are shown in Fig. 13. For
motion 2.a, the motion of the left arm is cancelled after
removing CoM task. Formotion 2.b the motion of the left
arm is not cancelled byCoM projection, but is cancelled
after removingLeft grab task. Fig. 14 shows how the motion
of the right arm evolves when removing motions due to a
task. It can be seen that the right arm moves because of the
Right grab and CoM tasks. Fig. 15 shows the evolution of
the quantity of motion after each task selection on the two
motions. The quantity decreases after successive projections,
until the remaining motion is mainly sensor noise.

C. Experiment 4: Gaze VS Chest

The considered motions aremotion 5.a and motion 5.b.
In the first case, the robot is looking at its right hand while
grabbing something. In the second case, the robot is grabbing
something with its right hand while maintaining its chest in
its current orientation. Fig. 16 shows the final posture of the
robot for those motions.

Table VI summarizes the results of the task-selection al-
gorithm. Despite noise, the active tasks are detected. The

Fig. 16. Final position formotion 5.aandmotion 5.b.

Reference Detected
∫
‖q̇(t)‖2dt

∫
‖P q̇(t)‖2dt

CoM
Gaze

Right grab
Twofeet

CoM
Gaze

Right grab
Twofeet

0.320001 0.0785168

Chest
CoM

Right grab
Twofeet

Chest
CoM

Right grab
Twofeet

0.216742 0.0516134

TABLE VI
RESULTS OF THE TASK SELECTION ALGORITHM FROM THE ANALYSIS OF

motion 5.aAND motion 5.bON THE REAL ROBOT.

two motions are properly disambiguated. Finally, all tasksare
properly discovered, as proved by the very small residue.

Fig. 17 shows the evolution of the norm of the motions
after the projection into the null space of the tasks :Right
grab, Gaze, Twofeet and CoM for motion 5.a. And Right
grab, Twofeet, CoM and Chest for the motion 5.b. As in
the previous experiments, the projection decreases strictly the
quantity of movement at each algorithm iteration. The quantity
of movement finally remaining at the end of the algorithm loop
is clearly mainly due to noise.

VII. C ONCLUSION

This article describes a complete method to identify which
tasks are involved in an observed movement based uniquely
on the observed trajectory. The analysis is driven by the
knowledge of what a task is and how it behaves. The analyzed
movement is supposed to be generated by a set of controllers
belonging to a known pool of tasks. The task recognition
problem is then tackled by reverse engineering the motion.
The observed trajectory is analyzed in each known task space
to decide which are the active tasks. The method does not
rely on the nature of the behavior of a task. Therefore any
control laws used to generate a motion can be similarly used
to characterize an observed movement.

The method has been successfully applied in different
scenarios to discriminate similar-looking motions on a real
robot. Those motions were built to be especially ambiguous
in order to illustrate the efficiency of the method.

The experiments were limited to the analysis of robotic
movement. In particular, the experiments only consider expo-
nential decrease as behaviors. However, it is directly possible
to handle other task models, for example, minimum jerk, in
order to analyze human trajectories.



14

APPENDIX A
PROOF OF THE REVERSE IMPLICATION

This appendix proves thaṫ̂ea|b = ė∗a. The proof is in two
part, proving that the first left-coefficient (denotedC1) of the
sum is the identity, and that the second left-coefficient (denoted
C2) is null.

A. Proof thatC1 = JaPbJ
+
a − JaPb(JbPa)

+JbJ
+
a = I

The projection operatorPb can be expanded using the
definition of the projectorP = I− J+J:

C1 =JaJ
+
a − JaJ

+

b JbJ
+
a

− Ja(JbPa)
+JbJ

+
a + JaJ

+

b Jb(JbPa)
+JbJ

+
a

The first term is the identity by hypothesis on Taska. Since
(JbPa)

+ = Pb(JbPa)
+, the third term is null. And by

hypothesis on Tasksa andb, (JbPa)
+ is a generalized inverse

of Jb, and thusJb(JbPa)
+Jb = Jb: the fourth term is equal

to the second and simplifies.

B. Proof thatC2 = JaPb(JbPa)
+ + JaJ

+

b = 0

Similarly, the projectorPb is expanded:

C2 = Ja(JbPa)
+ − JaJ

+

b Jb(JbPa)
+ + JaJ

+

b

As previously, the first term is null, this(JbPa)
+ is a

generalized inverse ofJb, the second term is equal to the third
and simplifies.
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