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ABSTRACT

General purpose computing on graphics processing units (GPGPU) consists of using

GPUs to handle computations commonly handled by CPUs. GPGPU programming im-
plies developing specific programs to run on GPUs managed by a host program running

on the CPU. To achieve high performance implies to explicitly organize memory transfers

between devices. Besides, different incompatible frameworks exist making productivity
and portability difficult to achieve. In this paper, we describe SPOC, an OCaml library,

defining specific data sets in order to automatically manage transfers between GPU and

CPU. SPOC also offers a runtime library looking for multiple frameworks and mak-
ing them usable transparently. We also describe the link between SPOC and the OCaml

garbage collector to optimize transfers dynamically. SPOC benchmarks show that SPOC

can offer great performance while simplifying GPGPU programming
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1. Introduction

Since 1980, graphics hardware has become more and more complex and efficient,

providing many computation units and large dedicated memory. From fixed-function

pipelines, Graphics Processing Units (GPU) have become fully programmable

through shaders (for custom rendering techniques) and then through specific frame-

works for general purpose programming (GPGPU). NVIDIA has been developing

the Cuda framework while the Khronos Group offers the OpenCL standard, as a

general computing framework for GPGPU programming. OpenCL targets GPUs as

well as CPUs and specific accelerators (e.g., Cell-BE processor, FPGAs). Many ven-

dors are now providing an OpenCL implementation with their hardware: currently,

every personal computer sold is GPGPU compatible. OpenCL and Cuda are the

main frameworks. OpenCL, as a standard, offers some portability while Cuda, which
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is proprietary and older, offers a more mature framework with many optimized li-

braries and tools. However, Cuda is usable on NVIDIA hardware only. Currently,

GPGPU software can mainly be written in NVIDIA Cuda assembly, C/C++ for

Cuda or OpenCL.

Both frameworks use low-level libraries with explicit hardware and memory man-

agement implying complex and error-prone programming. GPGPU developement

could easily benefit from a high level language abstracting memory transfers and

computations while ensuring type and memory safety. As GPGPU programming

aims at high performance, part of the approch is to offer a high-level runtime

library abstracting transfers while binding with external GPGPU programs. We

followed this approach, choosing OCaml as a composing language, basing memory

management (including transfers) on its garbage collector and dynamically compil-

ing GPGPU programs (in Cuda or OpencL). This keeps high performance while

improving abstraction, allowing easier and safer programming.

We propose SPOC, an OCaml library which enables to use the power of GPGPU

programming with the OCaml language. SPOC uses OCaml as a glue language

for the OpenCL and Cuda frameworks with a runtime library allowing automatic

management of devices memory and data transfers between CPU and devices. In

section 2, we present SPOC and its implementation. Then, we show its efficiency

through benchmarks in section 3. In section 4, we present other approaches to offer

high-level GPGPU programming. Finally, we conclude on our approach and present

our future work.

2. Stream Processing with OCaml

2.1. Stream Programming

GPGPU programming is very hardware dependent. Even with OpenCL, getting

high performance implies writing specific programs for different devices. OpenCL

and Cuda frameworks use the Stream Processing paradigm based on SIMD (Single

Instruction Multiple Data) architectures. A GPGPU device (which we will now call

a device) is seen as multiple computational units, which, given a set of data and

a computation kernel (a sequence of basic operations), apply this kernel to each

element of the set in parallel.

A device offers multiple layers of parallelism:

• computation units which we will call threads,

• threads are grouped into blocks and

• blocks are grouped into a software grid.

The grid is mapped to the device’s multi-processors, each multi-processor running

one or several blocks. Furthermore, new layers appear when

• running multiple grids in parallel on one device,

• building multi-device computers,
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• associating several computers with device(s) into computer grids.

Besides, devices are considered to have a dedicated memorya, implying the copy of

data from the CPU memory to the device’s. Device memory is, moreover, divided

into several categories:

• global memory (accessible by all threads in the grid)

• shared memory (shared inside a block)

• local memory (local to a thread)

• specific memory banks depending on hardware

Global memory banks can be read/written by both GPU and CPU while shared,

local and specific memory banks are only accessible from the GPU. As many levels

of parallelism and memory make Stream Programming strongly hardware related,

which makes portability and high performance difficult to achieve conjointly. While

kernel optimization is mandatory to achieve great performance, memory manage-

ment and data transfers scheduling also have a high impact on the overall program

performance. Having a fast kernel waiting for data can ruin all one’s efforts. Low-

level APIs, manual memory management and incompatibility between frameworks

decrease development productivity, as well as safety and portability of GPGPU pro-

grams.

2.2. Why OCaml?

GPGPU programming is (notoriously) hard (with current language and tools); get-

ting high performance is even harder. Low-level, verbose APIs bring total control

over the hardware but also bring confusion and errors. OCaml[1] offers many advan-

tages to make GPGPU programming easier. It is very efficient (mainly through the

native compiler provided by Inria) for sequential computation, which is mandatory

for programs aiming at having high performance. It is a multi-paradigm language

(e.g., functional, imperative, object oriented). It is also highly extensible, among

other via the Camlp4 preprocessor (part of the official OCaml distribution) whose

main application is to define domain-specific extensions for the OCaml language.

Thus, OCaml is a good starting point to experiment various programming methods

to deduce the best practices for GPGPU programming. It is a good platform to

design new abstractions to describe GPGPU computation easily, while maintaining

efficiency. Furthermore, OCaml is fully interoperable with C and offers automatic

memory management associated with a configurable garbage collector (GC) which

can be used to manage OCaml values as well as external values coming from C

bindings. OCaml GC is highly efficient, consisting of a two generation garbage

collector combining a Stop&Copy algorithm on the first generation with an incre-

mental Mark&Sweep&Compact algorithm on the second generation. OCaml is also

ae.g : OpenCL is compatible with CPUs which share memory with themselves
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a strongly and statically typed language which as well as the memory manager im-

proves program reliability while increasing development productivity by detecting a

lot of common programming errors at compile time. And last, OCaml is compatible

with many architectures and operating systems, allowing us to provide a portable

solution.

2.3. Abstracting GPUs

One of the main difficulties in current GPGPU programming comes from hardware

heterogeneity: usually a standard CPU architecture linked with GPUs using their

own memory banks and programs. Our library abstracts devices by managing most

of this heterogeneity automatically. SPOC offers a way to use any current framework

transparently. Besides, we built a runtime library offering automatic transfers.

Abstracting Frameworks As described previously, GPGPU programming im-

plies choosing a framework/API. We focused our efforts on Cuda and OpenCL.

They offer different ways to express computing kernels but also to launch them or

to manage memory on devices. Our library unifies these two frameworks allowing

to run a program with any type of device, separately or conjointly. We based our

library on dynamic linking with the driver APIs of the different frameworks. This

allows, during initialization, to detect any device compatible with Cuda or OpenCL

on the hardware running the program to make them usable. We unified both APIs

into one library to allow portability. Programs written with SPOC can run with any

devices. This implies that our library only offers functions shared by both frame-

works, while it uses the specificities of each framework in its core to provide the

best performance.

Vectors Because of transfers, stream processing provides high performance for high

computation over data size ratio. However, to benefit from the many computation

units on current GPGPU devices, stream processing needs big data sets to compute

on. OCaml offers many ways of describing sets of values including arrays and lists.

SPOC provides the type vector to represent large data sets. Vectors must be able

to contain a large amount of data while being easily transferable to devices through

C bindings. As the Bigarray module of OCaml allows us to define large data sets

easily interoperable between OCaml and C, we based SPOC vectors on bigarrays.

Bigarrays are uniform arrays of predefined types (int, float, complex). To allow

OCaml users to define their own vector type we added a Custom vector type.

The type of custom vectors must be defined as an OCaml record type including

information about the memory size of a vector element as well as specific functions

to access vector elements.

Abstracting Transfers Efficient copy of data, between CPU and devices, by mini-

mizing useless (and expensive) transfers, is crucial. Kernels are procedures returning
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no value but having side effects over data on their global memory. Thus, it is diffi-

cult to know which value to transfer back to CPU memory. A solution to manage

automatic transfers is to use “cyclic” transfers [2]. When launching a kernel, every

vector needed to run the kernel is transferred to the device, and brought back after

completion. This ensures that every modified vector is now accessible from the CPU

but can trigger unnecessary transfers. Our alternative is to move data only when

needed. SPOC vectors store their location (CPU/Devices). When launching a ker-

nel, our runtime library checks if data are present on the GPU or instead on CPU

memory. If needed they are transferred (by the CPU) to the GPU.After completion,

we do not move any data. When a vector is read or written by the CPU, SPOC

checks its location bringing it back if needed. This offers a good optimization over

cyclic transfers (especially in programs running multiple kernels sequentially with

the same vectors) by limiting useless transfers while assuring that data are always

located where they are needed. However, if it does not bring data back to CPU

memory and keep them on device memory, SPOC may quickly fill our device mem-

ory. This is solved by linking transferred data to the OCaml GC. When vectors

become useless to the program or any kernel launched by the program, they are

discarded from memory on CPU as well as on device’s global memory depending

on their current location.

Managing Kernels SPOC offers a way to declare external kernels (meaning ex-

ternal sources written in Cuda assembly or OpenCL), which can then be launched

from OCaml. To declare an external kernel and make it accessible from the rest of

the program, SPOC provides an OCaml syntax extension (using the Camlp4 pre-

processor) using keyword “kernel”. The programmer provides the OCaml name of

the kernel, the types of its parameters and the location of its implementation.

1 __kernel void vec add ( __global const f loat ∗ a ,
2 __global const f loat ∗ b ,
3 __global f loat ∗ c , int N ) {
4 int nIndex = get_global_id (0 ) ;
5 i f ( nIndex < N )
6 c [ nIndex ] = a [ nIndex ] + b [ nIndex ] ;
7 }

Fig. 1. OpenCL vector add

For instance, given a kernel written in OpenCL or Cuda (fig. 1) computing the

sum of two 32-bit float vectors, he declares a kernel vector add taking three 32-bit

float vectors and an integer as parameters (see fig. 2, lines 1 to 3). Both last strings

define respectively the kernel fileb and the name of the kernel function in this file.

bSPOC will search and compile an OpenCL or Cuda file depending on the hardware
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Our extension will statically generate the code instantiating a spoc kernel OCaml

object (defined in the library) providing methods to compile and run it. Kernel

arguments are type-checked as well as the complete OCaml program at compile-

time.

Example The program presented in fig. 2 uses SPOC to sum two vectors.

1 kernel vector add :
2 Spoc . Vector . vfloat32 −> Spoc . Vector . vfloat32 −> Spoc . Vector . vfloat32 −>
3 int −> unit = " kernel_file " " vec_add "
4
5 l e t example ( ) =
6 l e t devs = Spoc . Devices . init ( ) in
7 l e t a = Spoc . Vector . create Spoc . Vector . float32 1024
8 and b = Spoc . Vector . create Spoc . Vector . float32 1024
9 and c = Spoc . Vector . create Spoc . Vector . float32 1024

10 in
11 fill_vectors [ a ; b ; c ] ;
12 l e t blk = { Spoc . Kernel . blockX = 256 ;
13 Spoc . Kernel . blockY = 1;
14 Spoc . Kernel . blockZ = 1;}
15 and grd = { Spoc . Kernel . gridX = 4 ;
16 Spoc . Kernel . gridY = 1 ;
17 Spoc . Kernel . gridZ = 1;}
18 in
19 Spoc . Kernel . run devs . ( 0 ) ( blk , grd ) vector add ( a , b , c , 1024) ;
20 for i = 0 to 1023 do
21 Printf . printf "%g\n" ( c . [<i>])
22 done ; ;

Fig. 2. OCaml vector add

SPOC is initialized with Devices.init (line 6) which returns the array of com-

patible devices. Then, it defines three 32bit vectors, filled with random values (lines

7 to 11) and describes the dimensions of computations on the device: the size of

the grid and blocks of threads that will run the kernel (lines 12 and 17). Bigger

dimensions than those physically present on the hardware will force some hard-

ware multi-processors to run several blocks. Here, it describes grid and blocks in

order to dedicate one thread for each element of the vectors. Then, it compiles the

kernel for a device (kernels are dynamically compiled, with the compiler accessible

through the framework implementation corresponding to the used device, ensuring

compatibility with every CPU-Device system) (lines 12 to 17). It finally compiles

and runs the kernel on the device providing blocks and grid dimensions (line 18),

and the parameters needed as a tuple, before printing the obtained result (line 20

to 22). Here, SPOC automatically checks which kind of device will run the kernel

and depending on the framework corresponding to this device compiles the correct

kernel before executing it (see fig.3). Compiled kernels are cached to prevent multi-

ple compilations in case of multiple use of the same kernel. During this operation,

vectors a, b and c are transferred from the CPU (where they were defined) to the
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Fig. 3. Kernel dynamic compilation

device (where the kernel is run). Only vector c is brought back to CPU memory to

be accessible in the printing loop. All those transfers are automatic. Vectors b and

c are discarded from device memory by the GC.

External Libraries We used SPOC to provide a binding to the Cublas V1 library

giving access to a set of optimized kernels running on Cuda compatible devices

corresponding to the Basic Linear Algebra Subprograms (BLAS) functions. This

Cublas module uses SPOC vectors and devices.

Multi-GPU During initialization, SPOC searches for any device compatible with

Cuda or OpenCL. Then, it becomes easy to use multi-device systems, by dividing

data sets and dynamically compile kernels for any device found. SPOC can use any

type of device separately or conjointly. Besides, SPOC offers a set of functions, to

define sub-vectors, which helps to describe muti-gpu programs (see fig. 4). SPOC’s

sub-vectors share CPU memory space with their parent. However, they do not

share memory space once transferred to devices. Sub-vectors can also be defined

to include non contiguous data from their parent vector. This enables to easily

divide a vector into many sub-vectors (without extending the CPU memory space
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Fig. 4. Subvectors

needs) before sending different sub-vectors to different devices. When transferred

back to the CPU memory, sub-vector data are merged with those of the parent

vector. Currently, sub-vectors must explicitly be transferred back to CPU memory

to enable multiple copies of a same region of a vector to be transferred to different

devices without overwriting them multiple times (and spending a lot of time in

transfers) when accessing their parents.

3. Benchmarks

To check SPOC performance we tested it through two benchmarks (using simple-

precision floating-point format). Our test system consists of a quad-core Intel(R)

Core(TM) i7 CPU 960 at 3.20GHz (102 GFLOPS simple precision) with two GPUs

and 12GB CPU RAM. The GPUs are an NVIDIA Tesla C2070 (1030 GFLOPS,

with NVIDIA driver 270.41.19) with 6GB RAM and an AMD Radeon HD 6950

(2.25 TFLOPS, with AMD-APP-SDK-v2.5 (684.213) with CAL 1.4.1353 driver)

with 2GB RAM.
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Mandelbrot This benchmark draws the image resulting from computation of the

Mandelbrot set. Measured times include transfers and drawing. This program uses

naive kernels to verify that SPOC can easily increase performance of data-parallel

programs already written in OCaml. This program is run using one or both GPUs,

dividing computations naively (and statically) into two equal sub-computations.

We compare our program using OCaml with SPOC to one using OCaml with a

C external program for the computations (using OpenMP to use the multicore

capabilities of our CPU).

OCaml and C OCaml and SPOC

Intel i7 AMD 6950 Tesla C2070 C2070+6950 C2070+6950

1 Core 4 Cores OpenCL Cuda Cuda+OpenCL OpenCL

892s 307s 12.84s 10.99s 6.56s 6.66s

Speedup - 1 23,91 27,93 46,80 46,10

Those speedups show that SPOC allows efficient Stream Processing with OCaml

(with both GPUs, SPOC provides a 190x speedup to the “same” program written

in OCaml only, which takes 1252s (1 thread) to compute). Furthermore, SPOC

efficiently distributes computation between multiple GPUs.

Matrix Multiply In this benchmark, we multiply two matrices using the Cublas

sgemm function of the Cublas library. Cublas being provided only for NVIDIA GPU

we can only use the Tesla C2070 card. SPOC Cublas binding is based on Cublas

V1 which cannot launch two Cublas functions on the same device concurrently. The

first two multiplications use square matrices of size 21000. This size implies the use

of at least 5.2GB ((32/8 ∗ 210002 ∗ 3)/109 = 5, 2) on the device. Matrix Multiply 1

computes directly over the complete matrices in one time. Matrix Multiply 2 divides

each matrix into 4 squared blocks and implements a block matrix multiplication

by using sgemm. This computation needs several steps implying many transfers

between CPU and device but with smaller amounts of data. Our third test computes

over bigger matrices (size 25000) needing 7.5GB on the device, forcing our system

to trigger at least one garbage collection on the device in order to measure the

cost implied by garbage collection. This collection will free memory used during

previous steps on the device. Here we use Matrix Mutliply 2 to provide this out-of-

core product with automatic data management.

Matrix Multiply 1 Matrix Multiply 2 Matrix Multiply 2

Matrix size 21000 21000 25000

Maximum memory needed 5.2GB 5.2GB 7.5GB

GFLOPSc 473 377 421

Results showed that using blocks already impacts performance as transferring blocks

implies transferring non contiguous data (and as we are not overlaping block trans-

fers with computations). With the third test, each block contains larger contigous

cincluding transfers and computation
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data than with the second test, which increases transfer performance. This result

showed that the cost of a collection remains moderate, in view of the fact that it

automatically provides an out-of-core product.

4. Related Works

Many high-level languages now offer bindings to the OpenCL or Cuda frameworks.

Some offer higher abstractions to ease GPGPU programming. They mostly propose

specific data sets (like SPOC) with specific operators to generate GPGPU code.

Some propose embedded DSL to express kernels. It was difficult to compare them

directly with SPOC as most of them only work with specific GPUs or are currently

in development. In this section, we present some of these approaches and their

specificities.

Hybrid Multicore Parallel Programming (HMPP) While focusing on C

and Fortran, HMPP workbench (CAPS-entreprise) offers directives (very similar

to OpenMP) to declare and call codelets which can run on accelerators[3]. This

method allows developers to keep their source compatible with CPU-only systems

while the HMPP compiler will generate specific code for GPGPU systems. A stan-

dard (OpenACC[4]) based on directives (highly compatible with HMPP directives)

is currently being developed by the OpenACC organization.

SkePU SkePU[5] is a C++ template library with a very similar approach to SPOC.

It provides a unified interface to Cuda and OpenCL and uses lazy memory copying

to avoid unnecessary transfers. The major difference with SPOC comes from the

use of OCaml and its Garbage Collector to implement memory transfers.

SkelCL SkelCL[6] is a C++ library providing parallel skeletons for GPGPU pro-

gramming. Those skeletons allow GPGPU computations over a vector data-type

automatically transferred as in our approach. SkeCL skeletons are implemented

using OpenCL.

Accelerator Accelerator[7] proposes GPGPU computing through the .Net frame-

work (including F#). It allows to declare specific arrays of data combined with

overloaded operators which enable to describe computations over those arrays. Com-

putations are optimized and translated to GPGPU kernels (in DirectX shaders).

JavaCL/ScalaCL While JavaCL is a binding to the OpenCL framework,

ScalaCL[8] (based on JavaCL) goes further, providing specific sets of data, as does

Accelerator, with automatic translations of specific operations over classic scala set

of data.

Aparapi Aparapi[9] is an open source Java library expressing data parallel work-

loads with a runtime library converting Java bytecode to OpenCL. It provides a
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Kernel class whose method run must be overridden to express the kernel to run. It

currently only works with one AMD device at a time.

Obsidian Obsidian[10] is an embedded language for Haskell to describe operations

on arrays. It offers a set of combinators which are translated to Cuda and run on

the device.

5. Conclusion and Future Work

SPOC[11] is a library which enables launching GPGPU kernels written in OpenCL

and Cuda. It relies on specific vector data types associated with a runtime library

abstracting memory transfers between CPU and GPGPU devices while dynam-

ically adapting its behavior depending on the compatible hardware (Cuda/Open-

CL/Both). It offers great performance and can now be used as a basis to experiment.

Real world use case In order to test our library, measure performance and pro-

pose new/better abstractions, we will use SPOC to translate a numerical software

(PROP[12]) from FORTRAN+Cuda to (OCaml+SPOC)+Cuda. This work will fo-

cus on kernel and memory transfers management as we should be able to reuse the

current Cuda kernel implementation as external kernels with SPOC.

Extensions As Cublas V1, we intend to provide bindings to GPGPU Libraries

through SPOC starting from Cublas V2. Furthermore, having mainly focused our

efforts on our runtime and memory manager, we should now be able to propose

extensions to express the computation to run on the device. This could be proposed

through a DSL embedded into an OCaml extension, as well as through specific

operators over Vectors directly translated to kernels (as many approaches presented

section 4).

Models OCaml extensions like BSML[13] and CamlP3L[14] propose models to

describe data and task parallel computations. The stream processing paradigm relies

heavily on data-parallelism and we could use those models with SPOC. Task-parallel

models could also be used especially to describe multi-GPU software.

Most other approaches (presented section 4) use specific data sets, associated

with functions/combinators which are then translated to GPGPU kernels. We fo-

cused on the runtime library to ensure performance and to offer efficient automatic

memory management. OCaml is easily extensible and we can now provide combina-

tors/skeletons which will also generate kernels benefiting from OCaml type-safety.
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