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In this article, we focus on tomographic reconstruction. The problem is to determine the shape of the interior interface using a tomographic approach while very few X-ray radiographs are performed. We present a variational model and numerical analysis. We use a modified Nesterov algorithm to compute the solution. Numerical results are presented.

Introduction

In this article, we focus on a specific application of tomographic reconstruction for a physical experiment whose goal is to study the behavior of a material under a shock. The experiment consists in causing the implosion of the hull of some material (usually, a metal) using surrounding explosives. The problem is to determine the density and the interior interface at a specific moment of the implosion. For this purpose, very few X-ray radiographs are performed, and the density of the object must then be reconstructed using a tomographic approach (see Figure 1.1).

In [START_REF] Abraham | A penalization approach for tomographic reconstruction of binary axially symmetric objects[END_REF] we mentioned that several techniques exist for tomographic reconstruction, providing an analytic formula for the solution (see for instance [START_REF] Herman | Image reconstruction from projections: the fundamentals of computerized tomography[END_REF] or [START_REF] Dusaussoy | Image reconstruction from projections[END_REF]) as soon as a large number of projections of the object, taken from different angles, are available. There is a huge literature about theoretical and practical aspects of the problem of reconstruction from projections, the applications of which concern medicine, optics, material science, astronomy, geophysics, and magnetic resonance imaging (see [START_REF] Bates | Overview of computerized tomography with emphasis on future developments[END_REF]). When only few projections are known, these methods cannot be used directly, and some alternative methods have been proposed to reconstruct the densities (see for instance [START_REF] Dinten | Tomographie à partir d'un nombre limité de projections : régularisation par des champs markoviens[END_REF]).

As in any tomographic reconstruction process, this problem leads to an ill-posed inverse problem. As X-rays must cross a very dense object and only a few number of them arrive at the detector, it is therefore necessary to add some amplification devices and very sensitive detectors, which cause a high noise level [START_REF] Partouche-Sebban | Scintillateur pour dispositif d'imagerie, module scintillateur, dispositif d'imagerie avec un tel scintillateur et procédé de fabrication d'un scintillateur[END_REF][START_REF] Partouche-Sebban | Multi-mev flash radiography in shock physics experiments: Specific assemblages of monolithic scintillating crystals for use in ccd-based imagers[END_REF] . The tomographic reconstruction with few views problem has been widely studied.

If a large number of radiographs is available, we can use several efficient methods that lead to exact formulas to compute the solution (see [START_REF] Natterer | Mathematical methods in image reconstruction[END_REF] or [START_REF] Herman | Image reconstruction from projections: the fundamentals of computerized tomography[END_REF]).

Missing data problems can been studied with such methods as well ( [START_REF] Natterer | Mathematical methods in image reconstruction[END_REF], chapter 6 or [START_REF] Quinto | Singularities of the x-ray transform and limited data tomography in 2 and 3[END_REF]). It is the case, for example, when the object is measured on a subset of its support (so-called inner problem, see for example [START_REF] Courdurier | Solving the interior problem of computed tomography using a priori knowledge[END_REF]). These techniques, as, for instance, the back-filtered projection (in the full case) or the back-projection for the projection derivatives (in the missing data case [START_REF] Noo | A two-step hilbert transform method for 2d image reconstruction[END_REF]) require a fine sampling of measures (here radiographs) to be performing ( [START_REF] Natterer | Mathematical methods in image reconstruction[END_REF], chapter 4). Therefore, they are not useful in the case where few projection data are available.

The number of available projections (views) is closely related to the ill-posedness of the reconstruction problem. Indeed, the smaller the number of data is, the larger is the kernel of the related operator. Roughly speaking, there are an infinity of solutions and this infinity is linked to the kernel dimension. Some methods have been proposed that allow a partial reconstruction of the object [START_REF] Dinten | Tomographie à partir d'un nombre limité de projections : régularisation par des champs markoviens[END_REF]. In the case where we deal with specific objects there exists methods selecting a solution with respect to some prior : in [START_REF]Discrete tomography withj a very few views, using gibbs priors and a marginal posterior mode approach[END_REF], [START_REF] Hstao | A coordinate ascent approach to tomographic reconstruction of label images from a few projections[END_REF] the authors use a bayesian model while an optimization approach is used in [START_REF]A network flow algorithm for binary image reconstruction from few projections[END_REF], [START_REF] Batenburg | Reconstructing binary images from discrete x-rays[END_REF] where the problem is modelled as a minimal cost flow problem.

In [START_REF] Abraham | A penalization approach for tomographic reconstruction of binary axially symmetric objects[END_REF] we have assumed that the components of the initial physical setup (object, hull, explosives, etc) are axially symmetric and remain as such during the implosion process. High speed image capture provides a snapshot of the deformation of an object by X-ray radiography. Since this object is assumed to be axially symmetric, a single radiograph suffices in theory to reconstruct the 3D object. The inverse problem remains ill-posed : existence and uniqueness of a solution are ensured but there is a lack of stability. However, interesting results have been obtained with a variational method ( [START_REF] Abraham | A penalization approach for tomographic reconstruction of binary axially symmetric objects[END_REF][START_REF] Bergounioux | A variational method using fractional order hilbert spaces for tomographic reconstruction of blurred and noised binary images[END_REF]).

In the present paper, we do not assume that the object is axially symmetric any longer but we have more than one radiograph. However, due to the experimental setup, we only deal with very few radiographs, taken from three angles that we suppose to be 0, π 4 and π 2 for sake of simplicity. So the prior to choose is not straightforward. The previously quoted methods are efficient as soon as we have much more data sets (projections) than we have. In this paper we propose to use a variational method involving priors that are not necessarily consistent with the physical point of view. Looking for more appropriate models will be done in forthcoming works.

The paper is organized as follows. We first present the direct and inverse problems with some classical methods that are not fruitful in this context. Next section is devoted to the study of a variational model both from the theoretical and numerical points of view. We present a generic algorithm. The last section is devoted to the numerical experiments: discretization process, algorithmic tricks and results.

Mathematical modelling of the direct problem

In what follows, we assume that the X-sources are far enough from the object so that we may assume that the X-rays are parallel. Therefore we can separate the horizontal planes and reconstruct them independently (see Figure 2.1). We recall [START_REF] Abraham | A penalization approach for tomographic reconstruction of binary axially symmetric objects[END_REF] that radiography measures the attenuation of X-rays through the object. Let I 0 denote the intensity of the incident X-rays flux. Then, the measured flux I at a point M of the detector is given by

I = I 0 e - ∆ µ()d
, where the integral operates along the ray ∆ that reaches the point M of the detector, d is the infinitesimal element of length along the ray, and µ is the linear attenuation coefficient. Considering the Neperian logarithm of this attenuation permits to deal rather with linear operators, and the linear mapping So, the reconstruction of the object requires the inversion of the Radon transform restricted to any horizontal slice. Therefore, we focus now on the inversion in the 2D framework. We assume that the object is completely represented by its attenuation coefficient µ proportional to its density ρ : 2 → . We assume in addition that In what follows, we call C 0 c (Ω), the space of continuous functions with compact support in Ω. Let Γ θ be the rotation of center (0, 0) and angle θ:

H : (∆, µ) -→ H(∆, µ) := ∆ µ()
∀ρ ∈ C 0 c (Ω), Γ θ ρ(x, y) = ρ(x cos(θ) + y sin(θ), -x sin(θ) + y cos(θ)), so that the projection operator with angle θ ∈ [0, π] is

H θ = H 0 • Γ θ : C 0 c (Ω) → C 0 c (]-a, a[).
We may extend the operator H 0 to L 2 (Ω) by density with next proposition. In what follows, for any subset E of s , (•, •) L 2 (E) denotes the L 2 (E) inner product and • L 2 (E) the L 2 (E) hilbertian norm. We note (•, •) 2 and • 2 when there is no ambiguity.

Proposition 2.2:

The operator H θ is a bounded linear operator from

C 0 c (Ω), . L 2 (Ω) to C 0 c (] -a, a[), . L 2 (]-a,a[) . 
Proof : Let be ρ ∈ C 0 c (Ω). Then

H 0 ρ 2 L 2 = a -a a -a ρ(x, y)dx 2 dy = a -a ρ(., y) , 1 ]-a,a[ 2 L 2 (]-a,a[) dy ≤ 2aρ 2 L 2
by Cauchy-Schwarz inequality. As Γ θ is an isometry we have the same result for

H θ .
We extend H θ on L 2 (Ω) by density arguments and we denote similarly the extended operator. We can define the adjoint operator of H 0 :

H * 0 : L 2 (]-a, a[) -→ L 2 (Ω) such that ∀(v, ρ) ∈ L 2 (]-a, a[) × L 2 (Ω) (v , H 0 ρ) L 2 (]-a,a[) = (H * 0 v , ρ) L 2 (Ω) .
Proposition 2.3: The adjoint operator of H 0 is given by

H * 0 : L 2 (]-a, a[) -→ L 2 (Ω)
H * 0 v(x, y) := 1 Ω (x, y)v(y), for a.e. y where 1 Ω is the indicator function of Ω :

1 Ω (x, y) = 1 if (x, y) ∈ Ω 0 else Proof : Let v ∈ L 2 (]-a, a[), ρ ∈ L 2 (Ω) and (ρ n ) be a sequence of C 0 c (Ω) functions that converges to ρ in L 2 (Ω). We get for every n > 0 (H * 0 v , ρ n ) L 2 (Ω) = (v , H 0 ρ n ) L 2 (]-a,a[) = a -a v(y)H 0 ρ n (y) dy = Ω v(y)ρ n (x, y) dx dy .
Passing to the limit as n → +∞ gives the result.

We deduce H * θ easily :

H * θ = (H 0 • Γ θ ) * = Γ * θ • H * 0 = Γ -θ • H * 0 .

A variational model

In what follows, {θ 0 , θ 1 , . . . , θ p-1 } denotes the p acquisition angles (in [0, π[). The measured data are π i (:

= H i ρ) ∈ L 2 (]-a, a[) where H i := H θi , i = 0, • • • , p -1.
It is easy to see that, if a solution exists, it is not necessarily unique. I. Abraham, R. Abraham & M. Bergounioux As already mentioned, it is hopeless to get exact inversion formulas to solve

H i ρ = π i , i = 0, • • • , p -1.
So we rather use a least square approach to minimize

p-1 i=0 H i ρ -π i 2 L 2 (]-a,a[) . As
the kernel of H i may be quite large , the space

N = p-1 i=0
ker H i may be not reduced to {0} and the functional is not coercive, not strictly convex. More precisely, if any minimizing sequence lies in N it is not possible to prove its convergence. Moreover, even if we get a solution, we dot not have uniqueness. Therefore, we have to add some prior information on ρ . It is classical to consider the total variation of functions, which is an efficient tool to reduce noise, as a penalization term.

Functional framework

In what follows, E is an open bounded subset of n . We recall here the definition of the the space of bounded variation functions (see [START_REF] Ambrosio | Functions of bounded variation and free discontinuity problems[END_REF]):

BV (E) = {u ∈ L 1 (E) | Φ(u) < +∞},
where

Φ(u) = sup E u(x) div ξ(x) dx | ξ ∈ C 1 c (E), ξ ∞ ≤ 1 . (3.2)
The application Φ is a semi-norm and the space BV (E), endowed with the norm

u BV = u L 1 + Φ(u)
, is a Banach space. The derivative in the sense of the distributions of every u ∈ BV (E) is a bounded Radon measure, denoted Du, and Φ(u) = E |Du| is the total variation of Du. We next recall standard properties of bounded variation functions (see [START_REF] Acar | Analysis of bounded variation penalty methods for ill-posed problems[END_REF][START_REF] Ambrosio | Functions of bounded variation and free discontinuity problems[END_REF]). (2) The mapping u → Φ(u) is lower semi-continuous (denoted in short lsc) from BV (E) to + for the L 1 (E) topology. ( 3) BV (E) ⊂ L 1 * (E) with continuous embedding, where

1 * := n n -1 (4) BV (E) ⊂ L p (E) with compact embedding, for every p ∈ [1, 1 * ).
Remark 1 : As the set Ω satisfies the assumptions of Proposition 3.1 with n = 2, we may study the Radon operator restricted to BV (Ω) ⊂ L 2 (Ω). Moreover we may extend the total variation operator to L 2 (Ω) as follows:

Φ : L 2 (Ω) -→ [0, +∞] u → Φ(u) if u ∈ BV (Ω) +∞ else.
In the sequel we denote similarly Φ and Φ.

A variational model

We now consider the following minimization problem:

(P) : min

ρ∈BV (Ω) J ε (ρ)
where

• 2 stands for the L 2 (Ω) or L 2 (] -a, a[) norm and J ε (ρ) := 1 2 p-1 k=0 H k ρ -π k 2 2 + τ Φ(ρ) + ε 2 Lρ 2 2 , (3.3) 
with τ > 0 and ε > 0. Let us comment the different terms:

• The first one :

p-1 k=0 H k ρ -π k 2 2
is the fitting data term.

• The term τ Φ(ρ) is a total variation penalization term: it allows to reduce the noise. The parameter τ can be tuned with respect to the noise level. • The last one ε 2 Lρ 2 2 is a mathematical tool that forces the strict convexity and coercivity of the cost functional and gives existence and uniqueness of a solution. The parameter ε should be chosen as small as possible. L is a linear continuous bijective operator from L 2 (Ω) to L 2 (Ω). We may choose for example L = Id L 2 (Ω) the identity operator (what we have done for the numerical tests of last section). However, this choice makes poor physical meaning. We may rather think of convolution operator (high-pass or low-pass filter for example). As L is a L 2 (Ω)-isomorphism we get the existence of κ > 0 such that

Lu 2 2 ≥ κu 2 2 , as well. Note that if L = Id L 2 (Ω) then κ = 1.
With Remark 1, problem (P) writes (P) : inf

ρ∈L 2 (Ω) J ε (ρ) := F ε (ρ) + τ Φ(ρ)
where F ε is defined on L 2 (Ω) by :

F ε (ρ) := 1 2 p-1 k=0 H k ρ -π k 2 2 + ε 2 Lρ 2 2 . (3.4)
Remark 2 : It is known [START_REF] Kirsch | An introduction to the mathematical theory of inverse problems[END_REF] that any solution to problem min

ρ∈BV (Ω) F ε (ρ) is a solution to min{Lρ 2 | ρ ∈ BV (Ω) , p-1 k=0 H k ρ -π k 2 2 ≤ C ε }
, where C ε depends on ε. Moreover, with additional assumptions on ε (see [START_REF] Hofmann | A convergence rates result for tikhonov regularization in banach spaces with non-smooth operators[END_REF]) any sequence of solutions to min

ρ∈BV (Ω) F ε (ρ) converges to a solution to min{Lρ 2 | ρ ∈ BV (Ω) , p-1 k=0 H k ρ -π k 2 2 = 0} , as ε → 0.
Theorem 3.2 : The minimization problem (P) admits a unique solution.

Proof : The proof is standard. Let (ρ n ) be a minimizing sequence of BV (Ω).

Then Lρ n and ρ n are bounded in L 2 (Ω). As H i is linear continuous from L 2 (Ω) to L 2 (]a, a[) it is weakly continuous as well and

H i ρ n -π i weakly converges to H i ρ -π i in L 2 (] -a, a[).
The lower semi-continuity of the L 2 norm and the continuity of L give

F ε (ρ) ≤ lim inf n→∞ F ε (ρ n ).
Moreover, the sequence (Φ(ρ n )) is bounded as well. Since Ω is bounded, it follows that the sequence (ρ n ) is bounded in BV (Ω), and hence, up to a subsequence, it converges to some ρ ∈ BV (Ω) for the weak-star topology. The compact embedding property recalled in Proposition 3.1 implies that the sequence (ρ n ) converges strongly to ρ in L 1 (Ω) . Since Φ is lsc with respect to the L 1 (Ω) topology, it follows that

Φ(ρ) ≤ lim inf n→∞ Φ(ρ n ).
Finally

J ε (ρ) ≤ lim inf n→∞ J ε (ρ n ) = inf J ε ,
and therefore ρ is a solution of (P). Uniqueness is a consequence of the strict convexity of J ε .

We look now for optimality conditions and we need differentiability of the functional J ε . It is clear that F ε is differentiable and

∀ρ ∈ L 2 (Ω) ∇F ε (ρ) = εL * Lρ + p-1 k=0 H * k (H k ρ -π k ) ∈ L 2 (Ω) ,
where H * k is the adjoint operator of H k . Unfortunately, the total variation Φ : BV (Ω) → is not differentiable. Therefore, we are going to investigate the dual problem (in the sense of convex analysis). We follow the method of Weiss et al. [START_REF] Weiss | Efficient schemes for total variation minimization under constraints in image processing[END_REF] to use a Nesterov-like algorithm to get the solution.

Dual problem

We first recall basic definitions and properties for convex duality. Definition 3.3: Let (E, . E ) be a Banach space and T : E -→ ∪ {+∞} a convex function. The (Legendre-Fenchel) conjugate function of T is defined as

T * : E -→ ∪ {+∞} X -→ sup x∈E {X , x E -T (x)}
where E is the dual space of E and • , • E denotes the duality bracket between E and E .

We know ( [START_REF] Ekeland | Convex analysis and variational problems[END_REF] ) that if T : E -→ ∪ {+∞} is a convex function then T * is lower semi-continuous, and positively homogeneous. In addition, if T is lower semi-continuous then T * * = T . Before we define the dual problem of (P) we have to compute the conjugate functions of F ε and Φ respectively.

Proposition 3.4: The conjugate function of F ε satisfies ∀µ ∈ L 2 (Ω) F * ε (µ) = µ , A -1 ε (µ + d) 2 -F ε A -1 ε (µ + d) . ( 3 

.5)

where

A ε = p-1 k=0 H * k H k + εL * L, d = p-1 k=0 H * k π k , . (3.6) 
Proof : For every µ ∈ L 2 (Ω), we have

F * ε (µ) = sup ρ∈L 2 (Ω) {(µ, ρ) 2 -F ε (ρ)} . The function G ε (ρ) := ρ -→ (µ, ρ) 2 -F ε (ρ) is concave, differentiable and ∇G ε (ρ) = µ -∇F ε (ρ). The supremum of G ε is obtained by solving ∇G ε (ρ) = 0, that is µ -∇F ε (ρ) = 0. So µ = p-1 k=0 H * k (H k ρ -π k ) + εL * Lρ.
Setting A ε and d as in (3.6) we have to solve

A ε (ρ) = µ + d . (3.7) 
System (3.7) has a unique solution for every µ ∈ L 2 since the application A ε :

L 2 (Ω) → L 2
(Ω) is an isomorphism. Indeed, the continuity of the linear operator A ε comes from the continuity of H i , H * i , L and L * and we get

∀ρ ∈ L 2 (Ω) εκρ 2 2 ≤ (A ε ρ , ρ) 2 ≤ A ε ρ 2 2 . (3.8) 
This implies that A ε is coercive and injective. Moreover, A ε is self-adjoint so that εκ ≤ A * ε as well. This gives the surjectivity of A ε ( [START_REF] Brézis | Analyse fonctionnelle, théorie et aplications[END_REF] Theorem II. [START_REF] Dinten | Tomographie à partir d'un nombre limité de projections : régularisation par des champs markoviens[END_REF]) and we get 

A -1 ε ≤ κ ε . The solution to (3.7) is ρ ε,µ = A -1 ε (µ + d) so that F * ε (µ) is
K = h | ∃ψ ∈ C 1 c ( 2 , 2 ), ψ ∞ ≤ 1, h = div ψ . (3.9)
Now, we are ready to define the dual problem to (P). First, we recall a generic convex duality result :

Theorem 3.6 : [START_REF] Ekeland | Convex analysis and variational problems[END_REF] Let X be a normed space and f, g : X -→ ∪ {+∞} convex functions such that there exists u 0 ∈ dom(g) and f is continuous at u 0 . Then

inf u∈X (f (u) + g(u)) = max v∈X (-f * (v) -g * (-v))
The dual problem (P * ) is then

(P * ) max µ∈L 2 (Ω) -F * ε (µ) -τ Φ * - µ τ .
With proposition 3.5 (P * ) writes

(P * ) : max µ∈K -F * ε (µ) ,
where K is given by (3.9) and F * ε by (3.5).

Proposition 3.7: The function F * ε is differentiable and

∇F * ε (µ) = A -1 ε (µ + d) . (3.10) Moreover, F * ε is Lipschitz continuous with κ ε
as a Lipschitz constant.

Proof : The computation of ∇F * ε is easy with (3.5). In addition relation (3.8) yields that A -1 ε ≤ κ ε . This ends the proof.

Nesterov algorithm

We are now ready to use an algorithm by Y. Nesterov [START_REF] Nesterov | Smooth minimization of non-smooth functions[END_REF] to solve • d is strongly convex: Q is differentiable and there exists σ Q > 0 such that

∀(u, v) ∈ Q × Q (∇d(u) -∇d(v), u -v) 2 ≥ σ Q u -v 2 2 , (3.12) 
• there exists

u 0 ∈ Q such that ∀v ∈ Q d(u) ≥ σ Q 2 u -u 0 2 2 .
Let d Q be a proximal function on Q. The algorithm is the following Algorithm 3.1 Generic algorithm for problem (3.11)

Input : Maximum iterations number nmax -starting point v 0 Output : u nmax estimate of u * for 0 ≤ k ≤ nmax do Compute u k = argmin u∈Q (∇E(v k ) , u -v k ) 2 + α 2 u -v k 2 2 Compute w k = argmin w∈Q α σ Q d Q (w) + k i=0 i + 1 2 E(v i ) + (∇E(v i ) , w -v i ) 2 Set v k+1 = 2 k + 3 w k + k + 1 k + 3 u k end for
Theorem 3.9 : ([23], Th 2) Let {u k } k>0 be the sequence generated by the above algorithm and let u * be the solution to problem (3.11). Then for every k > 0

0 ≤ E(u k ) -E(u * ) ≤ 4αd Q (u * ) σ Q (k + 1)(k + 2)
.

Following [START_REF] Weiss | Efficient schemes for total variation minimization under constraints in image processing[END_REF] we use this scheme to solve the dual problem (P * ). Here

E = F * ε and Q = K. A classical choice for d K is d K (u) = 1 2 u 2
2 with u 0 = 0 and σ K = 1.

Numerical realization

In what follows we consider that three data sets are available (p = 3) corresponding to angles θ 0 = 0, θ 1 = π 2 and θ 2 = π 4 . With the previous notations

H 0 := H θ=0 , H 1 := H θ= π 2 and H 2 := H θ= π 4 .
Moreover, for sake of simplicity we choose L = Id L 2 (Ω) . However, any convolution operator can be handled very easily using the Fast Fourier Transform.

Discretization process

The discretization process is standard. Fix N ∈ and choose a uniform grid on [-a, a] × [-a, a] whose nodes are (x k , y l ) 1≤k,l≤N . The discretization step is h := 2a/N so that

x k = -a + kh = 2k -N N a, y = -a + h = 2 -N N a k,= 0, • • • , N .
We approximate functions by piecewise constant functions that are identified to N 2 vectors. In the sequel, we denote similarly L 2 (Ω) functions (resp. L 2 (]a, a[) functions ) and their discrete approximation in N 2 (resp. in N ). We set X := N 2 and Y := X × X. For s ∈ {N, N 2 }, the space s is endowed with the classical inner product and the induced euclidean norm. More precisely, we use the usual norms in Y

u 1 = N i,j=1 |u 1 i,j | + |u 2 i,j | , u 2 =   N i,j=1 |u i,j | 2 2   1 2 , u ∞ = max 1≤i,j≤N |u i,j | 2 where u = (u 1 , u 2 ) ∈ Y and |u i,j | 2 := (u 1 i,j ) 2 + (u 2 i,j ) 2 , 1 ≤ i, j ≤ N. The gradient of ρ is approximated as (∇ ρ) i,j = (∇ h ρ) 1 i,j , (∇ h ρ) 2
i,j with a forward scheme

(∇ h ρ) 1 i,j =    ρ i+1,j -ρ i,j h if i < N 0 i fi = N and (∇ h ρ) 2 i,j =    ρ i,j+1 -ρ i,j h if j < N 0 i fj = N (4.
13) and the discrete divergence operator writes

∀µ = (µ 1 , µ 2 ) ∈ Y (div h µ) i,j = (d 1 µ 1 ) i,j + (d 2 µ 2 ) i,j h
where a backward scheme is used :

(d 1 µ 1 ) i,j =      µ 1 i,j -µ 1 i-1,j if 1 < i < N µ 1 i,j if i = 1 -µ 1 i,j if i = N and (d 2 µ 2 ) i,j =      µ 2 i,j -µ 2 i,j-1 if 1 < j < N µ 2 i,j if j = 1 -µ 2 i,j if j = N (4.14)
4.1.1. Discrete form of the projection operators.

Recall that

H θ ρ(y) = +∞ -∞
1 Ω (x, y)ρ(x cos θ + y sin θ, -x sin θ + y cos θ) dx.

• We first compute H 0 for θ = 0. For every y ∈]a, a[ we get

H 0 ρ(y) = +∞ -∞ 1 Ω (x, y)ρ(x, y)dx = a -a 1 [- √ a 2 -y 2 , √ a 2 -y 2 ] (x)ρ(x, y) dx.
Let us set

M k, = h if x 2 k + y 2 ≤ a 2 0 else = h 1 if (2k -N ) 2 + (2 -N ) 2 ≤ N 2 0 else Therefore ∀ ∈ {1, • • • , N} H 0 ρ(y ) H 0 ρ() := N k=1 M k, ρ(k, ) . (4.15) 
• Case θ = π 2 . We use the same reasoning to get

∀k ∈ {1, • • • , N} H 1 ρ(x k ) H 1 ρ(k) := N =1 M ,k ρ(k, ) . (4.16) • Case θ = π 4
. The detector has to be discretized in a different way because it is not parallel to the axis of the cartesian grid. Let z 1 , • • • , z 2N -1 , be an uniform grid on the detector with step h = h √ 2 and z N = 0 so that

∀ ∈ {1, • • • , 2N -1} z = ( -N ) h = ( -N )h √ 2 = ( -N ) N √ 2a .
For every such that |z | ≤ a, we get

H 2 ρ(z ) = √ a 2 -z 2 - √ a 2 -z 2 ρ x + z √ 2 , -x + z √ 2 dx = √ 2 √ a 2 -z 2 +z √ 2 - √ a 2 -z 2 +z √ 2 ρ x, -x + √ 2z dx .
A simple computation gives

∀ ∈ {1, • • • , 2N -1} |z | ≤ a ⇐⇒ N 1 - √ 2 2 ≤ ≤ N 1 + √ 2 2
.

In the sequel we denote

I N = ∈ | N (1 - √ 2 2 ) ≤ ≤ N (1 + √ 2 2 ) (⊂ {1, • • • , 2N -1}) .
Setting x = -a + th we get

H 2 ρ(z ) = h √ 2 + √ N 2 2 -(-N ) 2 2 - √ N 2 2 -(-N ) 2 2 ρ (-a + th, -a + ( -t)h) dt .
Finally, for every

∈ I N H 2 ρ(z ) = h √ 2 N 0 1 [ - √ N 2 2 -(-N ) 2 2 , + √ N 2 2 -(-N ) 2 2 ] (t)ρ (-a + th, -a + ( -t)h) dt = h √ 2 N k=1 k k-1 1 [ - √ N 2 2 -(-N ) 2 2 , + √ N 2 2 -(-N ) 2 2 ] (t)ρ (-a + th, -a + ( -t)h) dt . h √ 2 N k=1 1 [ - √ N 2 2 -(-N ) 2 2 , + √ N 2 2 -(-N ) 2 2 ] (k)ρ(k, -k). I. Abraham, R. Abraham & M. Bergounioux For every ∈ {1, • • • , 2N -1} and k ∈ {1, • • • , N}, set M k, = h √ 2 if | -2k| ≤ N 2 2 -( -N ) 2 and ∈ I N 0 else = h √ 2 1 if (2k -) 2 + ( -N ) 2 ≤ N 2 2 0 else ∀ ∈ {1, • • • , 2N -1} H 2 ρ(z ) H 2 ρ() := N k=1 M k,l ρ(k, -k) .
(4.17 We compute first H * 0 and H * 1 : let be u ∈ X and w ∈ N :

(H 0 u, w) N = N =1 (H 0 u)()w() = N =1 N k=1 M k, u(k, )w() = N ,k=1 u(k, )M k, w() . So ∀k, ∈ {1, • • • , N} (H * 0 w)(k, ) = M k, w() .
Similarly

∀k, ∈ {1, • • • , N} (H * 1 w)(k, ) = M ,k w(k) .
Let us compute H * 2 : let be u ∈ X and w ∈ 2N -1 :

(H 2 u, w) 2N -1 = 2N -1 =1 (H 2 u)()w() = 2N -1 =1 N k=1 M k, u(k, -k)w() = N k=1 2N -1-k p=1-k u(k, p) M k,p+k w(p + k) . So ∀k, p ∈ {1, • • • , N} (H * 2 w)(k, p) = M k,p+k w(p + k) .

Nesterov algorithm

The discrete problem reads

(P h ) : inf ρ∈X F h (ρ) + τ ∇ h ρ 1 (4.18)
where F h is a discrete approximation of F and ∇ h is a discrete gradient (see (4.13)). More precisely we may define F h as

F h (ρ) = 1 2 2 k=0 H k ρ -π k 2 2 + ε 2 ρ 2 2
where . 2 is either the 2 -norm in N (for H 0 and H 1 ) , the 2 -norm in 2N -1 (for H 2 ) or the 2 -norm in N 2 . The dual problem writes

(P * h ) : inf q∈Y F * h (-div h (q)) + τ * 1 (- q τ ) (4.19)
where F * h is the F h conjugate function, * 1 is the conjugate function of the 1 -norm ( • 1 ) and div h is the discrete divergence operator in (4.14).

The following result has been proved in [START_REF] Weiss | Efficient schemes for total variation minimization under constraints in image processing[END_REF] Theorem 4.1 : The dual problem is equivalent to

inf q∈Kτ (F * h (-div h (q))) (4.20) with K τ = {q ∈ Y, q ∞ ≤ τ }. The application q → F * h (-div(q)) is α -Lipschitz continuous and differentiable, with α = 2divh 2 2 σ
(here σ is the F h strong convexity coefficient as in Definition (3.12)). The solution ρ to the primal problem satisfies

ρ = ∇F * h (-div h (q)),
where q is the solution to the dual problem.

In the sequel Π Kτ is the orthogonal projection on the set K τ . The solution to problem (4.20) is computed with Algorithm (3.11),

E = F * h •(-div), Q = K τ , d Q = 1 2 • -ξ 0 2 2
, where ξ 0 ∈ Q. This gives Algorithm 4.1 Algorithm to solve problem (4.20)

Input : Iterations number J -starting point ξ 0 ∈ K τ Output : q J approximation of q Set α = 2div h 2 2 Set G -1 = 0 for 0 ≤ k ≤ J do η k = ∇ h ∇F * h (-div h (ξ k )) q k = Π Kτ ξ k - η k α G k = G k-1 + k + 1 2 η k , ν k = Π Kτ ξ 0 - G k α . ξ k+1 = 2 k + 3 ν k + k + 1 k + 3 q k end for 4.3. Implementation
We apply Algorithm (4.1) to our problem to obtain Input : Iterations number : J -Number of views : p Angles : (θ 0 , ..., θ p-1 ) -Data : (π 0 , . . . , π p-1 ) -starting point ξ 0 ∈ K τ Set α = 8/ε.

Output : q J approximation of q

Compute A ε := p-1 k=0 H * k H k + εI N 2 and d = p-1 k=0 H * k π k ; Set G -1 = 0 for 1 ≤ ≤ J do 1.
Compute µ the solution to

A ε µ = -div h (ξ ) + d (4.21) 2. η = ∇ h µ 3. q = Π τ ξ - η α 4. G = G -1 + + 1 2 η . 5. ν = Π τ ξ 0 - G α . 6. ξ +1 = 2 + 3 ν + + 1 + 3 q end for
Here I N 2 stands for the N 2 × N 2 identity matrix and Π τ is the ∞ projection on

a 2 ball of radius τ : Π τ (V ) i = V i if |V i | 2 ≤ τ τ Vi |Vi|2 else .
The (approximate) solution ρ J ρ of problem (4.18) is

ρ J = ∇F * h (-div h (q J ) + d)
where q J is an approximate solution q of problem (4.19) computed by Algorithm (4.2). Practically we solve once again system (4.21)

A ε ρ J = -div h (q J ) + d .

Numerical results

Test image and data

We consider an academic test object whose size is 256× 256 pixels. The different components are geometric objets with arbitrary uniform density. The (simulated) projection data are presented in next figure : As expected the classical filtered-back projection gives very bad results because of the very few number of available data. Figure 5.2 presents the reconstruction with a Rak-Lam filter and a Hann window.

The tests have been performed using MATLAB c . The prescribed tolerance ε tol is equal to 10 -4 and N max = 2000. The accuracy for the conjugate gradient loop has been set to 10 -3 and the number of iterations limited to N (= 256).

Noiseless reconstruction

Sensitivity with respect to ε

We first consider the case of noiseless data (which is unrealistic of course). Theoretically, the parameter ε should be chosen as small as possible, but the problem turns to be unstable (A ε is ill-conditioned) if ε is too small. The numerical results for different values ε = 10 -s , s = 0, • • • , 4 (see figure below) lead to the choice ε = 0.1 or ε = 0.01 . We call ρ orig the original image and ρ τ the computed solution. We report in Table 5.2.1,

• F ε (ρ orig ) and F ε (ρ τ ),

• Φ(ρ orig ) and Φ(ρ τ ), the respective total variation • the L 2 -norm of the solution,

• the relative fitting data term

e τ = H k ρ τ -π k 2 2 π k 2 2
• the relative error :

e := ρ orig -ρ τ 2 ρ orig 2
• the number of iterations, and • the CPU-time. As we have not optimized the codes, the absolute CPU time makes no sense. We report here the CPU time to give a relative information. We note that the original object does not minimize the cost functional F ε , at last for small τ . This comes from the modelling feature : the model we chose is not realistic enough. We have to look for another model that takes into account more accurately the physical context. Moreover, the best results are obtained with small values of τ . This was predictable: in case the data are noiseless, the total variation penalization term is not useful (since there is no noise to remove). The total variation weight should quite small since the most important part of the functional F is the fitting data term.

ε = 1 ε = 10 -1 ε = 10 -2 ε = 10 -3 ε = 10 -4 F ε (ρ orig ) 2.
We note that the reconstruction is not satisfying : we get an ellipse ( with a small excentricity parameter along the axis θ = π 4 ) instead of a disk. Indeed such an object has projections very close to the ones of the original disk. It is hopeless to get a nice reconstruction without additional prior that allows to control this kind of perturbations. Other affects ( blur) are related to the large value of τ . In that case, the optimal solution is far from the original solution. We report in next table the quantitative behaviour of the solutions. We have added the Signal to Noise Ratio, that we define here as

SN R τ = log 10     i H i ρ τ 2 2 i H i (ρ τ -ρ orig ) 2 2     .
Indeed, the noise can only be observed on the data and the relevance of the solution I. Abraham The sensitivity to parameter τ is an important point. If τ is too small, we cannot get rid of the noise efficiently. If it is too large the computed solution is far from the (real) expected one. The parameter τ has to be related to the noise level. Next figure presents the evolution of SN R τ with respect to τ for different values of σ 

Conclusion

The variational model allows to get acceptable results for a severely ill posed problem . However, the penalization term ε 2 Lρ 2 2 is not physically realistic if we choose L = Id. The choice of L as high-pass or low-pass filter allows to add priors on the reconstructed object : we may decide to recover specific frequencies of the object . The numerical scheme has to be improved as well : the resolution of the linear system (4.21), A ε µ = b should be faster. It may be performed using a Choleski decomposition of A ε if we get performant hardware. It should be interesting as well to use a new efficient primal-dual algorithm [START_REF] Chambolle | A first-order primal-dual algorithm for convex problems with applications to imaging[END_REF] that is a good alternative to the Nesterov method.

At last, we need to add priors on the object to let the model more precise and realistic. In practise, the object is "almost" axisymmetric and could be recovered using a deformation from a symmetric one. One can recover a symmetric object from the available data with techniques of [START_REF] Abraham | A penalization approach for tomographic reconstruction of binary axially symmetric objects[END_REF][START_REF] Bergounioux | A variational method using fractional order hilbert spaces for tomographic reconstruction of blurred and noised binary images[END_REF] . Then we may look for a deformation vector field that drives the axisymmetric object to the non symmetric one. This point of view will be studied in a forthcoming work.

Figure 1 . 1 .Figure 1 . 2 .

 1112 Figure 1.1. Tomography experiment

Figure 2 . 1 .

 21 Figure 2.1. Parallel X-rays : the information along a detector segment depends on a planar slice of the object.

Definition 2 . 1 :

 21 d is called the projection operator. Let us fix the z -coordinate and set µ z : (x, y) → µ(x, y, z). The operator H restricted to any horizontal plane (z constant) coincides with the bidimensional Radon transform of µ z . Let us recall its definition [21] : Assume n ≥ 2 and define S n-1 as the unit sphere of n . For any function f ∈ S( n ) the Radon transform R is defined as Rf : S n-1 × → (ζ, s) → x.ζ=s f (x)dx = ζ ⊥ f (sζ + y)dy . where x.ζ stands for n usual inner product and ζ ⊥ is the orthogonal subspace to ζ. Here S( n ) is the Schwartz space of C ∞ , rapidly decreasing functions. For any f ∈ S( n ), Rf belongs to S(S n-1 × ). If n = 2, the Radon transform of a function f ∈ S( 2 ) reads ∀θ ∈ [0, π[, ∀s ∈ Hf (θ, s) = +∞ -∞ f (t sin(θ)+s cos(θ), -t cos(θ)+s sin(θ)) dt and the relation between R and H is : Hf (θ, s) = Rf (ζ, s) , where ζ = (cos θ, sin θ).

ρ

  vanishes outside an (2D) open disk Ω = B .2 (0, a) of center 0 and radius a. Therefore, the support of ρ is included in Ω. Here . 2 denotes the euclidean norm.

Remark 1 :

 1 As ρ = 0 outside Ω ⊂]a, a[×]a, a[, then Ω ρ(x, y) dx dy = a , y) dx dy as soon as the integrals are defined. For any θ ∈ [0, π[ the Radon transform of ρ ∈ C 0 c (Ω), is defined as : Hρ(θ, s) = +∞ -∞ ρ(t sin(θ) + s cos(θ), -t cos(θ) + s sin(θ)) dt = +a -a ρ(t sin(θ) + s cos(θ), -t cos(θ) + s sin(θ)) dt. It has a compact support included in ]-a, a[. For every θ ∈ [0, π[ let us note H θ the operator defined as H θ ρ : → s → Hρ(θ, s) . Therefore H 0 ρ(s) = +∞ -∞ ρ(t, s) dt = +a -a ρ(t, s) dt . (2.1)

Figure 3 . 1 .

 31 Figure 3.1. Example of three different solutions for the same 2-views data set .

Proposition 3 . 1 :( 1 )

 311 Let E be an open subset of n with Lipschitz compact boundary. For every u ∈ BV (E), the Radon measure Du can be decomposed into Du = Du dx + D s u, where Du dx is the absolutely continuous part of Du with respect of the Lebesgue measure and D s u is the singular part.

  given by relation (3.5). Proposition 3.5 [4, 10]: The conjugate function of Φ is Φ * = χ K where χ C is the characteristic function of a the subset C : χ C (µ) = 0 if µ ∈ C +∞ else and K is the closure in L 2 (Ω) of

  E : s → ∪ {+∞} is a differentiable convex, α-Lipschitz function and Q is a closed convex subset of s . Definition 3.8: A function d : s → ∪ {+∞} is a proximal function on Q if

) 4 . 1 . 2 .

 412 Discrete form of the adjoint operators.

Algorithm 4 . 2

 42 Algorithm for problem(4.19) 

(a) θ = π 2 ( 4 (d) θ = 0 Figure 5 . 1 . 2 Figure 5 . 2 .

 24051252 Figure 5.1. Test image and projection data

Figure 5 . 3 .

 53 Figure 5.3. Noiseless data -sensitivity with respect to ετ = 15

Figure 5 . 4 .

 54 Figure 5.4. Noiseless data -sensitivity with respect to ετ = 15 -binary threshold : 0.5

Figure 5 .

 5 Figure 5.5 shows the solutions for ε = 0.1 and different values of the regularization parameter τ .

Figure 5 . 5 .Figure 5 . 6 .

 5556 Figure 5.5. Noiseless dataε = 0.1 -sensitivity with respect to τ

5. 3 .

 3 Case where data are noisy Now we consider noisy data: we have added to the "exact" (simulated) projection a gaussian white noise with standard deviation σ. We present results for σ = 0.05 (Figure5.6).

= π 2 (c) θ = π 4 Figure 5 . 7 .

 2457 Figure 5.7. Noisy data -Gaussian noise with σ = 0.05

Figure 5 . 8 .

 58 Figure 5.8. Reconstruction with noisy dataε = 1σ = 0.05

3 . 1 .

 31 Noisy data reconstruction (σ = 0.05) -ε = 1 -Sensitivity to τ -Fε(ρorig) = 2.07 e + 04, Φ(ρorig) = 1.02 1e -02Next figures show the projections of the computed object with respect to the observed (noisy) projections and to the exact one.

2 Figure 5 . 9 .

 259 Figure 5.9. Comparison between computed, observed and exact projectionsσ = 0.05, ε = 1, τ = 55

Figure 5 . 11 .

 511 Figure 5.11. SNR behavior with respect to τ and different σ, ε = 1 (dotted line) and ε = 0.1 (continuous line)

Table 5 .

 5 2.1. Sensitivity with respect toε -Noiseless data -τ = 15 -Φ(ρorig) = 1.02e-02, π k 2 2 = 2.07e+06.

				31 e+03 2.31 e+02 2.31 e+01	2.31	2.31 e-01
		F ε (ρ τ ),		2.21 e+03 3.76 e+02 2.08 e+02 3.68 e+02	26.01
		Φ(ρ τ )		1.49 e-02	1.64 e-02	3.06 e-02	11.9 e-02 1.99 e-01
		e τ		1.5 e-04	8.3 e-05	8.9 e-05	1.7 e-04	1.2 e-05
		ρ τ 2 e		9.4 e-04 5.54 e-01 3.64 e-01 2.98 e-01 9.7 e-04 1 e-03	2.2 e-03 19.1 e-01	9.4 e-04 6.1 e-01
	Iterations number	961	1707		1776	1538	1972
	CPU time /10 4 (s)	2.76	6.73		8.44	7.31	9
	The above results clearly show the instability effects when ε is too small.
	5.2.2. Sensitivity with respect to τ	
	We report the different errors in next table :
	τ 5	F ε (ρ τ ) 2.73 e+02 1.58 e-02 9.5 e-04 Φ(ρ τ ) ρ τ 2	e τ 3.7 e-05 0.497 1570 e It.	CPU time (s) 6.21 e+04
	15 3.76 e+02 1.64 e-02 9.75 e-04 8.27 e-05 0.365 1707	6.73 e+04
	25 6.04 e+02 1.56 e-02 9.94 e-04 1.88 e-04 0.261 1587	6.65 e+04
	35 7.56 e+02 2.09 e-02 9.82 e-04 2.64 e-04 0.317 1546	6.72 e+04
	40 8.17 e+02 1.78e-02 9.87 e-04 2.92 e-04 0.284 2000	8.68 e+04
	50 10.4 e+02 1.84 e-02 9.99 e-04 3.99 e-04 0.292 1583	6.8 e+04
	60	11 e+02	1.80 e-02 9.9 e-04	3.8 e-04 0.275 1782	7.68 e+04
	70 13.7 e+02 2.16 e-02 9.88 e-04 5.6 e-04 0.337 1676	7.19 e+04

Table 5 .

 5 

	2.2. Sensitivity with respect to τ -Noiseless data -ε = 0.1 -Fε(ρorig) = 2.31e + 02 and Φ(ρorig) =
	1.02e -02.

Table 5 .

 5