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A variational method for tomographic reconstruction with

few views

I. Abraham ∗, R. Abraham and M. Bergounioux †

May 14, 2012

Abstract

In this article, we focus on tomographic reconstruction. The problem is to de-
termine the shape of the interior interface using a tomographic approach while very
few X-ray radiographs are performed. We present a variational model and numerical
analysis. We use a modified Nesterov algorithm to compute the solution. Numerical
results are presented.
keywords Inverse problem, Tomography, Variational model

1 Introduction

In this article, we focus on a specific application of tomographic reconstruction for a
physical experiment whose goal is to study the behavior of a material under a shock.
The experiment consists in causing the implosion of the hull of some material (usually,
a metal) using surrounding explosives. The problem is to determine the density and the
interior interface at a specific moment of the implosion. For this purpose, very few X-ray
radiographs are performed, and the denisty of the object must then be reconstructed using
a tomographic approach (see Figure 1.1).

In [1] we mentioned that several techniques exist for tomographic reconstruction, pro-
viding an analytic formula for the solution (see for instance [15] or [13]) as soon as a large
number of projections of the object, taken from different angles, are available. There is
a huge literature about theoretical and practical aspects of the problem of reconstruction
from projections, the applications of which concern medicine, optics, material science,
astronomy, geophysics, and magnetic resonance imaging (see [7]). When only few projec-
tions are known, these methods cannot be used directly, and some alternative methods
have been proposed to reconstruct the densities (see for instance [19]).

As in any tomographic reconstruction process, this problem leads to an ill-posed inverse
problem. As X-rays must cross a very dense object and only a few number of them arrive at
the detector, it is therefore necessary to add some amplification devices and very sensitive
detectors, which cause a high noise level [26, 25] .
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cedex 2, France

1



Figure 1.1: Tomography experiment

Figure 1.2: Different projections around the tomography axis

The tomographic reconstruction with few views problem has been widely studied. If
a large number of radiographs is available, we can use several efficient methods that lead
to exact formulas to compute the solution (see [22] or [15]).

Missing data problems can been studied with such methods as well ( [22], chapter 6 or
[27]). It is the case, for example, when the object is measured on a subset of its support
(so-called inner problem, see for example [12]). These techniques, as, for instance, the back-
filtered projection (in the full case) or the back-projection for the projection derivatives
(in the missing data case [24]) require a fine sampling of measures (here radiographs) to
be performing ([22], chapter 4). Therefore, they are not useful in the case where few
projection data are available.

The number of available projections (views) is closely related to the ill-posedness of
the reconstruction problem. Indeed, the smaller the number of data is, the larger is the
kernel of the related operator. Roughly speaking, there are an infinity of solutions and
this infinity is linked to the kernel dimension. Some methods have been proposed that
allow a partial reconstruction of the object [19]. In the case where we deal with specific
objects there exists methods selecting a solution with respect to some prior : in [18], [17]
the authors use a bayesian model while an optimization approach is used in [6],[5] where
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the problem is modelled as a minimal cost flow problem.
In [1] we have assumed that the components of the initial physical setup (object, hull,

explosives, etc) are axially symmetric and remain as such during the implosion process.
High speed image capture provides a snapshot of the deformation of an object by X-ray
radiography. Since this object is assumed to be axially symmetric, a single radiograph
suffices in theory to reconstruct the 3D object. The inverse problem remains ill-posed :
existence and uniqueness of a solution are ensured but there is a lack of stability. However,
interesting results have been obtained with a variational method ([8, 1]).

In the present paper, we do not assume that the object is axially symmetric any longer
but we have more than one radiograph. However, due to the experimental setup, we only
deal with very few radiographs, taken from three angles that we suppose to be 0,π4 and
π
2 for sake of simplicity. So the prior to choose is not straightforward. The previously
quoted methods are efficient as soon as we have much more data sets (projections) than
we have. In this paper we propose to use a variational method involving priors that are
not necessarily consistent with the physical point of view. Looking for more appropriate
models will be done in forthcoming works.

The paper is organized as follows. We first present the direct and inverse problems
with some classical methods that are not fruitful in this context. Next section is devoted
to the study of a variational model both from the theoretical and numerical points of view.
We present a generic algorithm. The last section is devoted to the numerical experiments:
discretization process, algorithmic tricks and results.

2 Mathematical modelling of the direct problem

In what follows, we assume that the X-sources are far enough from the object so that we
may assume that the X-rays are parallel. Therefore we can separate the horizontal planes
and reconstruct them independently (see Figure 2.1).

Figure 2.1: Parallel X-rays : the information along a detector segment depends on a planar
slice of the object.

We recall [1] that radiography measures the attenuation of X-rays through the object.
Let I0 denote the intensity of the incident X-rays flux. Then, the measured flux I at a
point M of the detector is given by

I = I0e
−

∫
∆ µ(`)d`,
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where the integral operates along the ray ∆ that reaches the point M of the detector, d` is
the infinitesimal element of length along the ray, and µ is the linear attenuation coefficient.
Considering the Neperian logarithm of this attenuation permits to deal rather with linear
operators, and the linear mapping

H : (∆, µ) 7−→ H(∆, µ) :=

∫
∆
µ(`) d`

is called the projection operator. Let us fix the z -coordinate and set µz : (x, y) 7→
µ(x, y, z). The operator H restricted to any horizontal plane (z constant) coincides with
the bidimensional Radon transform of µz. Let us recall its definition [21] :

Definition 2.1. Assume n ≥ 2 and define Sn−1 as the unit sphere of Rn. For any function
f ∈ S(Rn) the Radon transform R is defined as

Rf : Sn−1 × R → R
(ζ, s) 7→

∫
x.ζ=s f(x)dx =

∫
ζ⊥ f(sζ + y)dy .

where x.ζ stands for Rn usual inner product and ζ⊥ is the orthogonal subspace to Rζ.

Here S(Rn) is the Schwartz space of C∞, rapidly decreasing functions. For any f ∈ S(Rn),
Rf belongs to S(Sn−1×R). If n = 2, the Radon transform of a function f ∈ S(R2) reads

∀θ ∈ [0, π[, ∀s ∈ R Hf(θ, s) =

∫ +∞

−∞
f(t sin(θ) + s cos(θ),−t cos(θ) + s sin(θ)) dt

and the relation between R and H is : Hf(θ, s) = Rf (ζ, s) , where ζ = (cos θ, sin θ).
So, the reconstruction of the object requires the inversion of the Radon transform restricted
to any horizontal slice. Therefore, we focus now on the inversion in the 2D framework.
We assume that the object is completely represented by its attenuation coefficient µ pro-
portional to its density ρ : R2 → R. We assume in addition that ρ vanishes outside an
(2D) open disk Ω = B‖.‖2(0, a) of center 0 and radius a. Therefore, the support of ρ is
included in Ω. Here ‖.‖2 denotes the euclidean norm. In what follows, we call C0

c (Ω), the
space of continuous functions with compact support in Ω.

Remark 2.1. As ρ = 0 outside Ω ⊂]− a, a[×]− a, a[, then∫
Ω
ρ(x, y) dx dy =

∫ a

−a

∫ a

−a
ρ(x, y) dx dy

as soon as the integrals are defined.
For any θ ∈ [0, π[ the Radon transform of ρ ∈ C0

c (Ω), is defined as :

Hρ(θ, s) =

∫ +∞

−∞
ρ(t sin(θ) + s cos(θ),−t cos(θ) + s sin(θ)) dt

=

∫ +a

−a
ρ(t sin(θ) + s cos(θ),−t cos(θ) + s sin(θ)) dt.

It has a compact support included in ]−a, a[. For every θ ∈ [0, π[ let us note Hθ the
operator defined as

Hθρ : R → R
s 7→ Hρ(θ, s) .

4



Therefore

H0ρ(s) =

∫ +∞

−∞
ρ(t, s) dt =

∫ +a

−a
ρ(t, s) dt . (2.1)

Let Γθ be the rotation of center (0, 0) and angle θ:

∀ρ ∈ C0
c (Ω), Γθρ(x, y) = ρ(x cos(θ) + y sin(θ),−x sin(θ) + y cos(θ)),

so that the projection operator with angle θ ∈ [0, π] is

Hθ = H0 ◦ Γθ : C0
c (Ω)→ C0

c (]−a, a[).

We may extend the operator H0 to L2(Ω) by density with next proposition. In what
follows, for any subset E of Rs, (·, ·)L2(E) denotes the L2(E) inner product and ‖ · ‖L2(E)

the L2(E) hilbertian norm. We note (·, ·)2 and ‖ · ‖2 when there is no ambiguity.

Proposition 2.1. The operator Hθ is a bounded linear operator from
(
C0
c (Ω), ‖.‖L2(Ω)

)
to(

C0
c (]− a, a[), ‖.‖L2(]−a,a[)

)
.

Proof. Let be ρ ∈ C0
c (Ω). Then

‖H0ρ‖2L2 =

∫ a

−a

∣∣∣∣∫ a

−a
ρ(x, y)dx

∣∣∣∣2 dy =

∫ a

−a

(
ρ(., y) , 1]−a,a[

)2
L2(]−a,a[)

dy ≤ 2a‖ρ‖2L2

by Cauchy-Schwarz inequality. As Γθ is an isometry we have the same result for Hθ. �
We extend Hθ on L2(Ω) by density arguments and we denote similarly the extended
operator. We can define the adjoint operator of H0: H∗0 : L2(]−a, a[) −→ L2(Ω) such that

∀(v, ρ) ∈ L2(]−a, a[)× L2(Ω) (v ,H0ρ)L2(]−a,a[) = (H∗0v , ρ)L2(Ω) .

Proposition 2.2. The adjoint operator of H0 is given by

H∗0 : L2(]−a, a[) −→ L2(Ω)

H∗0v(x, y) := 1Ω(x, y)v(y), for a.e. y

where 1Ω is the indicator function of Ω : 1Ω(x, y) =

{
1 if (x, y) ∈ Ω

0 else

Proof. Let v ∈ L2(]−a, a[), ρ ∈ L2(Ω) and (ρn) be a sequence of C0
c (Ω) functions that

converges to ρ in L2(Ω). We get for every n > 0

(H∗0v , ρn)L2(Ω) = (v ,H0ρn)L2(]−a,a[) =

∫ a

−a
v(y)H0ρn(y) dy =

∫
Ω
v(y)ρn(x, y) dx dy .

Passing to the limit as n→ +∞ gives the result. �
We deduce H∗θ easily : H∗θ = (H0 ◦ Γθ)

∗ = Γ∗θ ◦H∗0 = Γ−θ ◦H∗0 .
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3 A variational model

In what follows, {θ0, θ1, . . . , θp−1} denotes the p acquisition angles (in [0, π[). The measured
data are πi(:= Hiρ) ∈ L2(]−a, a[) where Hi := Hθi , i = 0, · · · , p−1. It is easy to see that,
if a solution exists, it is not necessarily unique.

Figure 3.1: Example of three different solutions for the same 2-views data set .

As already mentioned, it is hopeless to get exact inversion formulas to solve

Hiρ = πi, i = 0, · · · , p− 1.

So we rather use a least square approach to minimize

p−1∑
i=0

‖Hiρ− πi‖2L2(]−a,a[). As the

kernel of Hi may be quite large , the space N =

p−1⋂
i=0

kerHi may be not reduced to {0}

and the functional is not coercive, not strictly convex. More precisely, if any minimizing
sequence lies in N it is not possible to prove its convergence. Moreover, even if we get a
solution, we dot not have uniqueness. Therefore, we have to add some prior information
on ρ . It is classical to consider the total variation of functions, which is an efficient tool
to reduce noise, as a penalization term.

3.1 Functional framework

In what follows, E is an open bounded subset of Rn. We recall here the definition of the
the space of bounded variation functions (see [3]):

BV (E) = {u ∈ L1(E) | Φ(u) < +∞},

where

Φ(u) = sup

{∫
E
u(x) div ξ(x) dx | ξ ∈ C1

c (E), ‖ξ‖∞ ≤ 1

}
. (3.1)

The application Φ is a semi-norm and the space BV (E), endowed with the norm ‖u‖BV =
‖u‖L1 + Φ(u), is a Banach space. The derivative in the sense of the distributions of every
u ∈ BV (E) is a bounded Radon measure, denoted Du, and Φ(u) =

∫
E |Du| is the total
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variation of Du. We next recall standard properties of bounded variation functions (see
[2, 3]).

Proposition 3.1. Let E be an open subset of Rn with Lipschitz compact boundary.

1. For every u ∈ BV (E), the Radon measure Du can be decomposed into Du = Dudx+
Dsu, where Dudx is the absolutely continuous part of Du with respect of the Lebesgue
measure and Dsu is the singular part.

2. The mapping u 7→ Φ(u) is lower semi-continuous (denoted in short lsc) from BV (E)
to R+ for the L1(E) topology.

3. BV (E) ⊂ L1∗(E) with continuous embedding, where 1∗ :=
n

n− 1

4. BV (E) ⊂ Lp(E) with compact embedding, for every p ∈ [1, 1∗).

Remark 3.1. As the set Ω satisfies the assumptions of Proposition 3.1 with n = 2, we
may study the Radon operator restricted to BV (Ω) ⊂ L2(Ω).
Moreover we may extend the total variation operator to L2(Ω) as follows:

Φ̃ : L2(Ω) −→ [0,+∞]

u 7→
{

Φ(u) if u ∈ BV (Ω)
+∞ else.

In the sequel we denote similarly Φ̃ and Φ.

3.2 A variational model

We now consider the following minimization problem:

(P) : min
ρ∈BV (Ω)

Jε(ρ)

where ‖ · ‖2 stands for the L2(Ω) or L2(]− a, a[) norm and

Jε(ρ) :=
1

2

p−1∑
k=0

‖Hkρ− πk‖22 + τΦ(ρ) +
ε

2
‖Lρ‖22 , (3.2)

with τ > 0 and ε > 0. Let us comment the different terms:

• The first one :

p−1∑
k=0

‖Hkρ− πk‖22 is the fitting data term.

• The term τ Φ(ρ) is a total variation penalization term: it allows to reduce the noise.
The parameter τ can be tuned with respect to the noise level.

• The last one
ε

2
‖Lρ‖22 is a mathematical tool that forces the strict convexity and

coercivity of the cost functional and gives existence and uniqueness of a solution. The
parameter ε should be chosen as small as possible. L is a linear continuous bijective
operator from L2(Ω) to L2(Ω). We may choose for example L = IdL2(Ω) the identity
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operator (what we have done for the numerical tests of last section). However, this
choice makes poor physical meaning. We may rather think of convolution operator
(high-pass or low-pass filter for example). As L is a L2(Ω)-isomorphism we get the
existence of κ > 0 such that

‖Lu‖22 ≥ κ‖u‖22 ,

as well. Note that if L = IdL2(Ω) then κ = 1.

With Remark 3.1, problem (P) writes

(P) : inf
ρ∈L2(Ω)

Jε(ρ) := Fε(ρ) + τΦ(ρ)

where Fε is defined on L2(Ω) by :

Fε(ρ) :=
1

2

p−1∑
k=0

‖Hkρ− πk‖22 +
ε

2
‖Lρ‖22. (3.3)

Remark 3.2. It is known [20] that any solution to problem min
ρ∈BV (Ω)

Fε(ρ) is a solution

to min{‖Lρ‖2 | ρ ∈ BV (Ω) ,

p−1∑
k=0

‖Hkρ− πk‖22 ≤ Cε } , where Cε depends on ε. Moreover,

with additional assumptions on ε (see [16]) any sequence of solutions to min
ρ∈BV (Ω)

Fε(ρ)

converges to a solution to min{‖Lρ‖2 | ρ ∈ BV (Ω) ,

p−1∑
k=0

‖Hkρ− πk‖22 = 0} , as ε→ 0.

Theorem 3.1. The minimization problem (P) admits a unique solution.

Proof. The proof is standard. Let (ρn) be a minimizing sequence of BV (Ω). Then Lρn
and ρn are bounded in L2(Ω). As Hi is linear continuous from L2(Ω) to L2(] − a, a[) it
is weakly continuous as well and Hiρn − πi weakly converges to Hiρ− πi in L2(]− a, a[).
The lower semi-continuity of the L2 norm and the continuity of L give

Fε(ρ) ≤ lim inf
n→∞

Fε(ρn).

Moreover, the sequence (Φ(ρn)) is bounded as well. Since Ω is bounded, it follows that
the sequence (ρn) is bounded in BV (Ω), and hence, up to a subsequence, it converges to
some ρ ∈ BV (Ω) for the weak-star topology. The compact embedding property recalled
in Proposition 3.1 implies that the sequence (ρn) converges strongly to ρ in L1(Ω) . Since
Φ is lsc with respect to the L1(Ω) topology, it follows that

Φ(ρ) ≤ lim inf
n→∞

Φ(ρn).

Finally
Jε(ρ) ≤ lim inf

n→∞
Jε(ρn) = inf Jε ,

and therefore ρ is a solution of (P). Uniqueness is a consequence of the strict convexity
of Jε.
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We look now for optimality conditions and we need differentiability of the functional
Jε. It is clear that Fε is differentiable and

∀ρ ∈ L2(Ω) ∇Fε(ρ) = εL∗Lρ+

p−1∑
k=0

H∗k (Hkρ− πk) ∈ L2(Ω) ,

where H∗k is the adjoint operator of Hk. Unfortunately, the total variation Φ : BV (Ω)→ R
is not differentiable. Therefore, we are going to investigate the dual problem (in the sense
of convex analysis). We follow the method of Weiss et al. [28] to use a Nesterov-like
algorithm to get the solution.

3.3 Dual problem

We first recall basic definitions and properties for convex duality.

Definition 3.1. Let (E, ‖.‖E) be a Banach space and T : E −→ R ∪ {+∞} a convex
function. The (Legendre-Fenchel) conjugate function of T is defined as

T ∗ : E′ −→ R ∪ {+∞}
X 7−→ sup

x∈E
{〈X ,x〉E − T (x)}

where E′ is the dual space of E and 〈· , ·〉E denotes the duality bracket between E and E′.

We know ( [14] ) that if T : E −→ R ∪ {+∞} is a convex function then T ∗ is lower
semi-continuous, and positively homogeneous. In addition, if T is lower semi-continuous
then T ∗∗ = T .
Before we define the dual problem of (P) we have to compute the conjugate functions of
Fε and Φ respectively.

Proposition 3.2. The conjugate function of Fε satisfies

∀µ ∈ L2(Ω) F ∗ε (µ) =
(
µ ,A−1

ε (µ+ d)
)

2
− Fε

(
A−1
ε (µ+ d)

)
. (3.4)

where

Aε =

(
p−1∑
k=0

H∗kHk

)
+ εL∗L, d =

p−1∑
k=0

H∗kπk, . (3.5)

Proof. For every µ ∈ L2(Ω), we have

F ∗ε (µ) = sup
ρ∈L2(Ω)

{(µ, ρ)2 − Fε(ρ)} .

The function Gε(ρ) := ρ 7−→ (µ, ρ)2 − Fε(ρ) is concave, differentiable and

∇Gε(ρ) = µ−∇Fε(ρ).

The supremum of Gε is obtained by solving ∇Gε(ρ) = 0, that is µ−∇Fε(ρ) = 0. So

µ =

p−1∑
k=0

H∗k(Hkρ− πk) + εL∗Lρ.

9



Setting Aε and d as in (3.5) we have to solve

Aε(ρ) = µ+ d . (3.6)

System (3.6) has a unique solution for every µ ∈ L2 since the application Aε : L2(Ω) →
L2(Ω) is an isomorphism. Indeed, the continuity of the linear operator Aε comes from the
continuity of Hi, H

∗
i , L and L∗ and we get

∀ρ ∈ L2(Ω) εκ‖ρ‖22 ≤ (Aερ , ρ)2 ≤ ‖Aε‖‖ρ‖
2
2 . (3.7)

This implies that Aε is coercive and injective. Moreover, Aε is self-adjoint so that εκ ≤
‖A∗ε‖ as well. This gives the surjectivity of Aε ([9] Theorem II.19) and we get ‖A−1

ε ‖ ≤ κ
ε .

The solution to (3.6) is ρε,µ = A−1
ε (µ+ d) so that F ∗ε (µ) is given by relation (3.4). �

Proposition 3.3 ([4, 10] ). The conjugate function of Φ is Φ∗ = χK where χC is the

characteristic function of a the subset C : χC(µ) =

{
0 if µ ∈ C
+∞ else

and K is the closure

in L2(Ω) of
K =

{
h | ∃ψ ∈ C1

c (R2,R2), ‖ψ‖∞ ≤ 1, h = divψ
}
. (3.8)

Now, we are ready to define the dual problem to (P). First, we recall a generic convex
duality result :

Theorem 3.2. [14] Let X be a normed space and f, g : X −→ R∪{+∞} convex functions
such that there exists u0 ∈ dom(g) and f is continuous at u0. Then

inf
u∈X

(f(u) + g(u)) = max
v∈X′

(−f∗(v)− g∗(−v))

The dual problem (P∗) is then

(P∗) max
µ∈L2(Ω)

−F ∗ε (µ)− τΦ∗
(
−µ
τ

)
.

With proposition 3.3 (P∗) writes

(P∗) : max
µ∈K
−F ∗ε (µ) ,

where K is given by (3.8) and F ∗ε by (3.4).

Proposition 3.4. The function F ∗ε is differentiable and

∇F ∗ε (µ) = A−1
ε (µ+ d) . (3.9)

Moreover, F ∗ε is Lipschitz continuous with
κ

ε
as a Lipschitz constant.

Proof. The computation of ∇F ∗ε is easy with (3.4). In addition relation (3.7) yields that
‖A−1

ε ‖ ≤ κ
ε . This ends the proof. �
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3.4 Nesterov algorithm

We are now ready to use an algorithm by Y. Nesterov [23] to solve

inf
u∈Q

(E(u)) (3.10)

where E : Rs → R ∪ {+∞} is a differentiable convex, α-Lipschitz function and Q is a
closed convex subset of Rs.

Definition 3.2. A function d : Rs → R ∪ {+∞} is a proximal function on Q if

• d is strongly convex: Q is differentiable and there exists σQ > 0 such that

∀(u, v) ∈ Q×Q (∇d(u)−∇d(v), u− v)2 ≥ σQ‖u− v‖22 , (3.11)

• there exists u0 ∈ Q such that

∀v ∈ Q d(u) ≥
σQ
2
‖u− u0‖22 .

Let dQ be a proximal function on Q. The algorithm is the following

Algorithm 3.1 Generic algorithm for problem (3.10)

Input : Maximum iterations number nmax - starting point v0

Output : unmax estimate of u∗

for 0 ≤ k ≤ nmax do
Compute uk = argmin

u∈Q

{
(∇E(vk) , u− vk)2 + α

2 ‖u− vk‖
2
2

}
Compute wk = argmin

w∈Q

{
α

σQ
dQ(w) +

k∑
i=0

i+ 1

2

(
E(vi) + (∇E(vi) , w − vi)2

)}
Set vk+1 =

2

k + 3
wk +

k + 1

k + 3
uk

end for

Theorem 3.3. ([23], Th 2) Let {uk}k>0 be the sequence generated by the above algorithm
and let u∗ be the solution to problem (3.10). Then for every k > 0

0 ≤ E(uk)− E(u∗) ≤
4αdQ(u∗)

σQ(k + 1)(k + 2)
.

Following [28] we use this scheme to solve the dual problem (P∗). Here E = F ∗ε and
Q = K. A classical choice for dK is dK(u) = 1

2‖u‖
2
2 with u0 = 0 and σK = 1.

4 Numerical realization

In what follows we consider that three data sets are available (p = 3) corresponding to
angles θ0 = 0, θ1 = π

2 and θ2 = π
4 . With the previous notations

H0 := Hθ=0, H1 := Hθ=π
2

and H2 := Hθ=π
4
.

Morevover, for sake of simplicity we choose L = IdL2(Ω). However, any convolution
operator can be handled very easily using the Fast Fourier Transform.
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4.1 Discretization process

The discretization process is standard. Fix N ∈ N and choose a uniform grid on [−a, a]×
[−a, a] whose nodes are (xk, yl)1≤k,l≤N . The discretization step is h := 2a/N so that

xk = −a+ kh =
2k −N
N

a, y` = −a+ `h =
2`−N
N

a k, ` = 0, · · · , N .

We approximate functions by piecewise constant functions that are identified to RN2

vectors. In the sequel, we denote similarly L2(Ω) functions (resp. L2(]− a, a[) functions )
and their discrete approximation in RN2

(resp. in RN ). We set X := RN2
and Y := X×X.

For s ∈ {N,N2}, the space Rs is endowed with the classical inner product and the induced
euclidean norm. More precisely, we use the usual norms in Y

‖u‖1 =

N∑
i,j=1

(
|u1
i,j |+ |u2

i,j |
)
, ‖u‖2 =

 N∑
i,j=1

|ui,j |22

 1
2

, ‖u‖∞ = max
1≤i,j≤N

|ui,j |2

where u = (u1, u2) ∈ Y and |ui,j |2 :=
√

(u1
i,j)

2 + (u2
i,j)

2, 1 ≤ i, j ≤ N.
The gradient of ρ is approximated as (∇hρ)i,j =

(
(∇hρ)1

i,j , (∇hρ)2
i,j

)
with a forward scheme

(∇hρ)1
i,j =


ρi+1,j − ρi,j

h
if i < N

0 if i = N
and (∇hρ)2

i,j =


ρi,j+1 − ρi,j

h
if j < N

0 if j = N
(4.1)

and the discrete divergence operator writes

∀µ = (µ1, µ2) ∈ Y (divhµ)i,j =

(
(d1µ

1)i,j + (d2µ
2)i,j

)
h

where a backward scheme is used :

(d1µ
1)i,j =


µ1
i,j − µ1

i−1,j if 1 < i < N

µ1
i,j if i = 1

−µ1
i,j if i = N

and (d2µ
2)i,j =


µ2
i,j − µ2

i,j−1 if 1 < j < N

µ2
i,j if j = 1

−µ2
i,j if j = N

(4.2)

4.1.1 Discrete form of the projection operators.

Recall that

Hθρ(y) =

∫ +∞

−∞
1Ω(x, y)ρ(x cos θ + y sin θ,−x sin θ + y cos θ) dx.

• We first compute H0 for θ = 0. For every y ∈]− a, a[ we get

H0ρ(y) =

∫ +∞

−∞
1Ω(x, y)ρ(x, y)dx =

∫ a

−a
1

[−
√
a2−y2,

√
a2−y2]

(x)ρ(x, y) dx.

Let us set

Mk,` =

{
h if x2

k + y2
` ≤ a2

0 else
= h

{
1 if (2k −N)2 + (2`−N)2 ≤ N2

0 else

12



Therefore

∀` ∈ {1, · · · , N} H0ρ(y`) ' H0ρ(`) :=
N∑
k=1

Mk,` ρ(k, `) . (4.3)

• Case θ =
π

2
. We use the same reasoning to get

∀k ∈ {1, · · · , N} H1ρ(xk) ' H1ρ(k) :=

N∑
`=1

M`,k ρ(k, `) . (4.4)

• Case θ =
π

4
. The detector has to be discretized in a different way because it is not

parallel to the axis of the cartesian grid. Let z1, · · · , z2N−1, be an uniform grid on the

detector with step h̃ =
h√
2

and zN = 0 so that

∀` ∈ {1, · · · , 2N − 1} z` = (`−N)h̃ =
(`−N)h√

2
=

(`−N)

N

√
2a .

For every ` such that |z`| ≤ a, we get

H2ρ(z`) =

∫ √a2−z2
`

−
√
a2−z2

`

ρ

(
x+ z`√

2
,
−x+ z`√

2

)
dx =

√
2

∫ √a2−z2
`

+z`√
2

−
√
a2−z2

`
+z`√

2

ρ
(
x,−x+

√
2z`

)
dx .

A simple computation gives

∀` ∈ {1, · · · , 2N − 1} |z`| ≤ a ⇐⇒ N

(
1−
√

2

2

)
≤ ` ≤ N

(
1 +

√
2

2

)
.

In the sequel we denote

IN =

{
` ∈ N | N(1−

√
2

2
) ≤ ` ≤ N(1 +

√
2

2
)

}
(⊂ {1, · · · , 2N − 1}) .

Setting x = −a+ th we get

H2ρ(z`) = h
√

2

∫ `+

√
N2
2 −(`−N)2

2

`−
√
N2
2 −(`−N)2

2

ρ (−a+ th,−a+ (`− t)h) dt .

Finally, for every ` ∈ IN

H2ρ(z`) = h
√

2

∫ N

0
1

[
`−

√
N2
2 −(`−N)2

2
,
`+

√
N2
2 −(`−N)2

2
]

(t)ρ (−a+ th,−a+ (`− t)h) dt

= h
√

2
N∑
k=1

∫ k

k−1
1

[
`−

√
N2
2 −(`−N)2

2
,
`+

√
N2
2 −(`−N)2

2
]

(t)ρ (−a+ th,−a+ (`− t)h) dt .

' h
√

2

N∑
k=1

1
[
`−

√
N2
2 −(`−N)2

2
,
`+

√
N2
2 −(`−N)2

2
]

(k)ρ(k, `− k).
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For every ` ∈ {1, · · · , 2N − 1} and k ∈ {1, · · · , N}, set

M̃k,` =

{
h
√

2 if |`− 2k| ≤
√

N2

2 − (`−N)2 and ` ∈ IN
0 else

= h
√

2

{
1 if (2k − `)2 + (`−N)2 ≤ N2

2

0 else

∀` ∈ {1, · · · , 2N − 1} H2ρ(z`) ' H2ρ(`) :=
N∑
k=1

M̃k,l ρ(k, `− k) . (4.5)

4.1.2 Discrete form of the adjoint operators.

We compute first H∗0 and H∗1 : let be u ∈ X and w ∈ RN :

(H0u,w)RN =

N∑
`=1

(H0u)(`)w(`) =

N∑
`=1

N∑
k=1

Mk,` u(k, `)w(`)

=
N∑

`,k=1

u(k, `)Mk,`w(`) .

So
∀k, ` ∈ {1, · · · , N} (H∗0w)(k, `) = Mk,`w(`) .

Similarly
∀k, ` ∈ {1, · · · , N} (H∗1w)(k, `) = M`,k w(k) .

Let us compute H∗2 : let be u ∈ X and w ∈ R2N−1:

(H2u,w)R2N−1 =
2N−1∑
`=1

(H2u)(`)w(`) =
2N−1∑
`=1

N∑
k=1

M̃k,` u(k, `− k)w(`)

=
N∑
k=1

2N−1−k∑
p=1−k

u(k, p)M̃k,p+k w(p+ k) .

So
∀k, p ∈ {1, · · · , N} (H∗2w)(k, p) = M̃k,p+k w(p+ k) .

4.2 Nesterov algorithm

The discrete problem reads

(Ph) : inf
ρ∈X

Fh(ρ) + τ‖∇hρ‖1 (4.6)

where Fh is a discrete approximation of F and ∇h is a discrete gradient (see (4.1)). More
precisely we may define Fh as

Fh(ρ) =
1

2

2∑
k=0

‖Hkρ− πk‖22 +
ε

2
‖ρ‖22

14



where ‖.‖2 is either the `2- norm in RN (for H0 and H1) , the `2 -norm in R2N−1 (for H2)
or the `2- norm in RN2

. The dual problem writes

(P∗h) : inf
q∈Y

F ∗h (−divh(q)) + τ`∗1(− q
τ

) (4.7)

where F ∗h is the Fh conjugate function, `∗1 is the conjugate function of the `1 -norm (‖ · ‖1)
and divh is the discrete divergence operator in (4.2).
The following result has been proved in [28]

Theorem 4.1. The dual problem is equivalent to

inf
q∈Kτ

(F ∗h (−divh(q))) (4.8)

with Kτ = {q ∈ Y, ‖q‖∞ ≤ τ}. The application q 7→ F ∗h (−div(q)) is α -Lipschitz continu-

ous and differentiable, with α =
2‖divh‖22

σ (here σ is the Fh strong convexity coefficient as
in Definition (3.11)).
The solution ρ̄ to the primal problem satisfies

ρ̄ = ∇F ∗h (−divh(q̄)),

where q̄ is the solution to the dual problem.

In the sequel ΠKτ is the orthogonal projection on the set Kτ . The solution to problem
(4.8) is computed with Algorithm (3.10), E = F ∗h ◦ (−div), Q = Kτ , dQ = 1

2‖ · −ξ0‖22,
where ξ0 ∈ Q. This gives

Algorithm 4.1 Algorithm to solve problem (4.8)

Input : Iterations number J - starting point ξ0 ∈ Kτ

Output : qJ approximation of q̄

Set α = 2‖divh‖22
Set G−1 = 0
for 0 ≤ k ≤ J do

ηk = ∇h
(
∇F ∗h (−divh(ξk))

)
qk = ΠKτ

(
ξk −

ηk
α

)
Gk = Gk−1 +

k + 1

2
ηk, νk = ΠKτ

(
ξ0 −

Gk
α

)
.

ξk+1 =
2

k + 3
νk +

k + 1

k + 3
qk

end for

4.3 Implementation

We apply Algorithm (4.1) to our problem to obtain

15



Algorithm 4.2 Algorithm for problem (4.7)

Input : Iterations number : J - Number of views : p
Angles : (θ0, ..., θp−1) - Data : (π0, . . . , πp−1)
- starting point ξ0 ∈ Kτ

Set α = 8/ε.
Output : qJ approximation of q̄

Compute Aε :=

p−1∑
k=0

H∗kHk + εIN2 and d =

p−1∑
k=0

H∗kπk;

Set G−1 = 0
for 1 ≤ ` ≤ J do

1. Compute µ` the solution to

Aε µ` = −divh(ξ`) + d (4.9)

2. η` = ∇hµ`
3. q` = Πτ

(
ξ` −

η`
α

)
4. G` = G`−1 +

`+ 1

2
η`.

5. ν` = Πτ

(
ξ0 −

G`
α

)
.

6. ξ`+1 =
2

`+ 3
ν` +

`+ 1

`+ 3
q`

end for

Here IN2 stands for the N2×N2 identity matrix and Πτ is the `∞ projection on a `2 ball

of radius τ : Πτ (V )i =

{
Vi if |Vi|2 ≤ τ
τ Vi
|Vi|2 else

.

The (approximate) solution ρJ ' ρ̄ of problem (4.6) is

ρJ = ∇F ∗h (−divh(qJ) + d)

where qJ is an approximate solution q̄ of problem (4.7) computed by Algorithm (4.2).
Practically we solve once again system (4.9)

Aε ρJ = −divh(qJ) + d .

5 Numerical results

5.1 Test image and data

We consider an academic test object whose size is 256× 256 pixels. The different com-
ponents are geometric objets with arbitrary uniform density. The (simulated) projection
data are presented in next figure :
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(a) θ = π
2

(b) Original test image

(c) θ = π
4

(d) θ = 0

Figure 5.1: Test image and projection data

(a) Reconstruction with
step angle equal to 1, from
0 to 180

(b) Reconstruction with
step angle equal to 2, from
0 to 180

(c) Reconstruction with
step angle equal to 10,
from 0 to 180

(d) Reconstruction with
angles 0, 45 and 90

Figure 5.2: Reconstruction with filtered-back projection formula for data without noise
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As expected the classical filtered-back projection gives very bad results because of the
very few number of available data. Figure 5.1 presents the reconstruction with a Rak-Lam
filter and a Hamming window.

The tests have been performed using MATLAB c©. The prescribed tolerance εtol is
equal to 10−4 and Nmax = 2000. The accuracy for the conjugate gradient loop has been
set to 10−3 and the number of iterations limited to N(= 256).

5.2 Noiseless reconstruction

5.2.1 Sensitivity with respect to ε

We first consider the case of noiseless data (which is unrealistic of course). Theoretically,
the parameter ε should be chosen as small as possible, but the problem turns to be
unstable (Aε is ill-conditioned) if ε is too small. The numerical results for different values
ε = 10−s, s = 0, · · · , 4 (see figure below) lead to the choice ε = 0.1 or ε = 0.01 .

(a) ε = 1 (b) ε = 10−1 (c) ε = 10−2

(d) ε = 10−3 (e) ε = 10−4 (f) Original

Figure 5.3: Noiseless data - sensitivity with respect to ε - τ = 5

We call ρorig the original image and ρτ the computed solution. We report in Table
5.2.1,

• Fε(ρorig) and Fε(ρτ ),

• Φ(ρorig) and Φ(ρτ ), the respective total variation

• the L2- norm of the solution,
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• the fitting data term

eτ =
1

2

∑
‖Hk ρτ − πk‖22

• the relative error :

e :=
‖ρorig − ρτ‖2
‖ρorig‖2

• the number of iterations, and

• the CPU-time. As we have not optimized the codes, the absolute CPU time makes
no sense. We report here the CPU time to give a relative information.

ε = 1 ε = 10−1 ε = 10−2 ε = 10−3 ε = 10−4

Fε(ρorig) 5.107 e+03 5.107 e+02 5.107 e+01 5.107 5.107 e-01
Fε(ρτ ), 4.817 e+03 5.427e+02 1.221 e+02 1.217 e+03 3.08 e+03
Φ(ρorig) 1.535 e-02 1.535 e-02 1.535 e-02 1.535 e-02 1.535 e-02
Φ(ρτ ) 3.89 e-02 2.21 e-02 2.72 e-02 7.6e-02 1.65 e-01

eτ 177.9 66.93 71.51 1266 3069
‖ρτ‖2 1.47 e-03 1.48 e-03 1.53 e-03 1.62 e-03 7.18 e-03

e 4.37 e-01 4.37 e- 01 2.81 e-01 6.75 e-01 4.66
Iterations number 2000 1341 1789 1553 1732
CPU time /104 (s) 2.060 5.045 7.5 12.86 18.34

Table 5.2.1: Sensitivity with respect to ε - Noiseless data - τ = 5

The above results clearly show the instability effects when ε is too small.

5.2.2 Sensitivity with respect to τ

τ Fε(ρorig) Fε(ρτ ) Φ(ρorig) Φ(ρτ ) ‖ρτ‖2 eτ e ∗ 10 It. CPU time

/102 /102 ∗102 ∗102 ∗103 number /104 (s)

5 5.10 5.42 1.535 2.20 1.48 6.693e+01 4.37 1341 5.045

15 5.10 6.00 1.535 2.24 1.48 2.183 e+02 3.50 2000 7.51

25 5.10 9.63 1.535 2.30 1.52 4.68 e+02 3.40 1463 5.44

35 5.10 12.36 1.535 2.46 1.53 7.32 e+02 2.58 1821 6.72

40 5.10 18.42 1.535 2.58 1.52 1.34 e+03 3.84 1585 2.72

50 5.10 15.01 1.535 2.92 1.49 1.385 e+03 3.40 1584 2.68

60 5.10 18.715 1.535 2.74 1.50 2.09 e+03 3.22 1821 2.08

70 5.10 25.81 1.535 3.02 1.50 1.719 e+03 5.31 1668 1.93

Table 5.2.2: Sensitivity with respect to τ - Noiseless data - ε = 0.1

Figure 5.4 shows the solutions for ε = 0.1 and different values of the regularization pa-
rameter τ .
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(a) τ = 5 (b) τ = 15 (c) τ = 25

(d) τ = 35 (e) τ = 50 (f) τ = 60

Figure 5.4: Noiseless data - ε = 0.1 - sensitivity with respect to τ

We note that the original object does not minimize the cost functional Fε, at last for
small τ . This comes from the modelling feature : the model we chose is not realistic
enough. We have to look for another model that takes into account more accurately the
physical context. Moreover, the best results are obtained with small values of τ . This
was predictable: in case the data are noiseless, the total variation penalization term is not
useful (since there is no noise to remove). The total variation weight should quite small
since the most important part of the functional F is the fitting data term.

We note that the reconstruction is not satisfying : we get an ellipse ( with a small
excentricity parameter along the axis θ = π

4 ) instead of a disk. Indeed such an object
has projections very close to the ones of the original disk. It is hopeless to get a nice
reconstruction without additional prior that allows to control this kind of perturbations.
Other affects ( blur) are related to the large value of τ . In that case, the optimal solution
is far from the original solution.

5.3 Case where data are noisy

Now we consider noisy data: we have added to the “exact” (simulated) projection a
gaussian white noise which standard deviation σ.

We report in next table the quantitative behaviour of the solutions. We have added
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the Signal to Noise Ratio, that we define here as

SNRτ = log10


∑
i

‖Hiρτ‖22∑
i

‖Hi(ρτ − ρorig)‖22

 .

Indeed, the noise can only be observed on the data and the relevance of the solution is
measured via its projections.

τ = 1 τ = 15 τ = 25 τ = 35 τ = 45 τ = 55 τ = 65

Fε(ρorig) 3.376 3.376 3.376 3.376 3.376 3.376 3.376
/104

Fε(ρτ ) 0.998 1.631 2.003 2.244 2.437 2.600 2.657
/104

Φ(ρorig) 1.535 1.535 2 1.535 1.535 1.535 1.535 1.535
∗102

Φ(ρτ ) 8.03 4.638 3.599 3.125 2.782 2.704 2.574
∗102

eτ 5.464 11.787 15.481 17.864 19.751 21.332 21.992
/103

e ∗ 10 4.654 4.518 4.685 4.465 4.320 3.974 4.316

SNR 2.08 2.42 2.54 2.61 2.64 2.67 2.65

Iterations 224 571 761 903 1038 873 1239
number

CPU time 0.734 1.928 2.530 2.958 3.343 2.872 4.009
/104 (s)

Table 5.3.1: Noisy data reconstruction - ε = 1 - Sensitivity to τ

We present results for σ = 0.05 (Figure 5.5).

(a) θ = 0 (b) θ = π
4

(c) θ = π
2

Figure 5.5: Noisy data - Gaussian noise with σ = 0.05

Next figure shows different solutions for ε = 1 and different τ values:
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(a) τ = 1 (b) τ = 15

(c) τ = 35 (d) τ = 55

(e) τ = 65 (f) Original

Figure 5.6: Reconstruction with noisy data - ε = 1 − σ = 0.05

The sensitivity to parameter τ is an important point. If τ is too small, we cannot get
rid of the noise efficiently. If it is too large the computed solution is far from the (real)
expected one. The parameter τ has to be related to the noise level. Next figure presents
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the evolution of SNRτ with respect to τ for different values of σ

(a) SNR - σ = 0.1 (b) SNR - σ = 0.05 (c) SNR - σ = 0.01

Figure 5.7: SNR behavior with respect to τ and different σ, ε = 1 (dotted line) and ε = 0.1
(continuous line)

6 Conclusion

The variational model allows to get acceptable results for a severely ill posed problem .
However, the penalization term ε

2‖Lρ‖
2
2 is not physically realistic if we choose L = Id.

The choice of L as high-pass or low-pass filter allows to add priors on the reconstructed
object : we may decide to recover specific frequencies of the object .
The numerical scheme has to be improved as well : the resolution of the linear system
(4.9), Aεµ = b should be faster. It may be performed using a Choleski decomposition of
Aε if we get performant hardware. It should be interesting as well to use a new efficient
primal-dual algorithm [11] that is a good alternative to the Nesterov method.

At last, we need to add priors on the object to let the model more precise and realistic.
In practise, the object is “almost” axisymmetric and could be recovered using a deforma-
tion from a symmetric one. One can recover a symmetric object from the available data
with techniques of [1, 8] . Then we may look for a deformation vector field that drives
the axisymmetric object to the non symmetric one. This point of view will be studied in
a forthcoming work.
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