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ABSTRACT

We compare the performance of the texture and the ampli-

tude based mixture density models for urban area extraction

from high resolution Synthetic Aperture Radar (SAR) images.

We use an Auto-Regressive (AR) model with t-distribution

error for the textures and a Nakagami density for the ampli-

tudes. We exploit a Multinomial Logistic (MnL) latent class

label model as a mixture density to obtain spatially smooth

class segments. We combine the Classification EM (CEM)

algorithm with the hierarchical agglomeration strategy and a

model order selection criterion called Integrated Completed

Likelihood (ICL). We test our algorithm on TerraSAR-X data

provided by DLR/DFD.

Index Terms— High resolution SAR, classification, tex-

ture, multinomial logistic, Classification EM

1. INTRODUCTION

In remote sensing, image classification finds many application

areas varying from crop and forest classification to urban area

extraction. Finite Mixture Model (FMM) is a suitable sta-

tistical model to represent SAR image histogram and to per-

form a model based classification [1], [2]. The EM algorithm

[3] has been used for parameter estimation in latent variable

models such as FMM. In this study, we prefer to use an EM

based algorithm called Classification EM (CEM) [4], whose

computational cost is lower than both the stochastic methods

and the conventional EM algorithm. Two drawbacks of the

FMM based classification approach using EM algorithm can

be sorted as 1) determination of the necessary number of class

to represent the data and 2) initialization of the classes [5], [6].

In order to deal with these drawbacks, we combine the hierar-

chical agglomeration, CEM and ICL [7] criterion as in [8] to

obtain an unsupervised classification algorithm which is able

to find the necessary number of classes in the mixture model.

In this paper, rather than pixel-based mixture model, we

use a block-based FMM which assembles both the SAR am-

plitudes and the texture statistics into a FMM simultaneously.

In this approach, we factorize the block density using the

Bayes rule in two parts which are 1) the amplitude density

based on the central pixel of the block and 2) texture den-

sity based on the conditional density of the surrounding pixels

given the central pixel.

We use a non-Gaussian 2D AR model for residual tex-

ture representation. In this autoregressive model, we express

a pixel as a linear combination of its neighboring pixels. We

assume that the regression error is an independent and iden-

tically distributed (iid) Student’s t-distribution. t-distribution

is a convenient model for robust regression and it has been

used in image processing as a robust statistical model [9]. For

amplitude based classification, we use the Nakagami density

which is a theoretical multi-look SAR amplitude model [2].

The secondary target in land cover classification from

SAR images is to find spatially connected and smooth class

label maps. A Bayesian approach allows us to include

smoothing constraints to classification problems. In our

spatial smoothness model, we assign a binary latent class

map for each class which indicates the pixels belonging to

that class. We introduce the spatial interaction within each

binary map adopting multinomial logistic model.

In Section 2 and 3, the mixture model and unsupervised

CEM algorithm are given. The simulation results are shown

in Section 4. Section 5 presents the conclusion and future

work.

2. MULTINOMIAL LOGISTIC MIXTURE OF

TEXTURE AND AMPLITUDE BASED DENSITIES

We assume that the observed amplitude sn ∈ R+ at the nth

pixel, where n ∈ R = {1, 2, . . . , N} represents the lexico-

graphically ordered pixel index, is free from any noise and

instrumental degradation. We denote s to be the vector rep-

resentation of the entire image and sn to be the vector rep-

resentation of the d × d image block located at nth pixel.

Every pixel in the image has a latent class label. Denot-

ing by K the number of classes, we encode the class label

as a K dimensional categorical vector zn whose elements

zn,k, k ∈ {1, 2, . . . ,K} have the following properties: 1)

zn,k ∈ {0, 1} and 2)
∑K

k=1 zn,k = 1. We may write the prob-

ability of sn as the marginalization of the joint probability



density p(sn, zn|Θ,πn) = p(sn|zn,Θ)p(zn|πn), [1], as

p(sn|Θ,πn) =
∑

zn

K
∏

k=1

[p(sn|θk)πn,k]
zn,k (1)

where πn = {πn,1, . . . , πn,K} represent the mixture propor-

tions and ensure that
∑K

k=0 πn,k = 1. θk are the parameters

of the class densities and Θ = {θ1, . . . , θK} is the set of the

parameters.

Our aim is to use the amplitude and the texture statistics

together to classify the SAR images. We may write the den-

sity of an image block as a joint density of the central pixel

and the surrounding pixels as p(sn|θk) = p(sn, s∂n|θk). Us-

ing Bayes rule, we factorize the density of the image block

as

p(sn|θk) = pA(sn|θk)pT (s∂n|sn, θk) (2)

In this last expression, the first and the second terms represent

the amplitude and the texture densities, respectively.

We introduce a t-MRF texture model to use the contextual

information for classification. We write the texture model us-

ing the neighbors of the pixel in N (n) as

sn =
∑

n′∈N (n)

αk,n′sn′ + tk,n (3)

where αk,n′ are the auto-regression coefficients and the re-

gression errors tk,n are an iid t-distributed zero-mean random

variables with βk degrees of freedom and scale parameters

δk. In this way, we write the class texture density as a t-
distribution such that

pT (s∂n|sn,αk, βk, δk) =
Γ((1 + βk)/2)

Γ(βk/2)(πβkδk)1/2

×

[

1 +
(sn − s

T
∂nαk)

2

βkδk

]−
βk+1

2

(4)

where the vector αk contains the regression coefficients

αk,n′ .

We model the class amplitudes using Nakagami density,

which is a basic theoretical multi-look amplitude model for

SAR images [2].

We are able to introduce spatial interactions of the cat-

egorical random field by defining a binary spatial auto-

regression model. The related probability density of this

model is a Multinomial Logistic density which is written as

p(zn|Z∂n, η) =

K
∏

k=1

(

exp(ηvk(zn,k))
∑K

j=1 exp(ηvj(zn,j))

)zn,k

(5)

where vk(zn,k) = 1 +
∑

m∈M(n) zm,k and Z∂n = {zm :

m ∈ M(n),m 6= n} is the set which contains the neighbors

of zn in a window M(n) defined around n. The function

vk(zn,k) returns the number of labels which belong to class k
in the given window.

Table 1. Unsupervised Amplitude and Texture density mix-

tures of MnL with CEM (ATML-CEM).

Initialize the classes for K = Kmax.

WHILE K ≥ Kmin, DO

η = c, c ≥ 0
WHILE the number of changes > N × 10−3, DO

E-step: Calculate the posteriors of the

class labels

C-step: Classify the pixels regarding to

the posteriors

M-step: Estimate the parameters of am-

plitude and texture densities

Update the smoothness parameter η

Find the weakest class

Find the closest class to the weakest class

Merge these two classes

K ← K − 1

3. UNSUPERVISED CLASSIFICATION

ALGORITHM

Our strategy follows the same general philosophy as the one

proposed in [8], [10]. We start the CEM algorithm with a

large number of classes, K = Kmax, and then we reduce

the number of classes to K ← K− 1 by merging the weakest

class in probability to the one that is most similar to it with re-

spect to a distance measure. The weakest class may be found

using the average probabilities of each class. We use a sym-

metric KL type distance measure called Jensen-Shannon di-

vergence [11] which is defined between two probability den-

sity functions to find the closest class to the weakest class. We

merge them to constitute a new class and repeat this procedure

until we reach the predefined minimum number of classes

Kmin. We determine the necessary number of classes by ob-

serving the ICL criterion given in [10]. The summary of the

algorithm can be found in Table 1.

4. SIMULATION RESULTS

This section presents the high resolution SAR image classi-

fication results of the proposed method called ATML-CEM

(Amplitude and Texture density mixtures of MnL with CEM),

compared to the corresponding results obtained with other

methods. The competitors are Multiphase Level Set (MLS)

[12], [13] and K-MnL. We have also tested two different

versions of ATML-CEM method which are amplitude based

AML-CEM [10] and texture based TML-CEM.

The sizes of the windows for texture and label models are

selected to be 3×3 and 13×13 respectively by trial and er-
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Fig. 2. ICL and BIC values of the classified TSX image for

several numbers of classes (from 1 to 15).

ror. We initialize the algorithm as described in [10] and esti-

mate all the parameters along the iterations. MLS method is

based on the piecewise constant multiphase Chan-Vese model

and implemented by [12], [13]. In this method, we set the

smoothness parameter to 2000 and step size to 0.0002 for all

data sets. We tune the number of iterations to reach the best

result. The K-MnL method is the sequential combination of

K-means clustering for classification and Multinomial Logis-

tic label model for segmentation to obtain a fairer comparison

with the K-means clustering since K-means does not provide

any segmented map.

We tested the algorithms on the following TerraSAR-X

image TSX: 900 × 600 pixels, HH polarized, TerraSAR-X

SpotLight (8.2 m ground resolution) 4-look image which was

acquired over the city of Rosenheim in Germany (see Fig. 1).

Fig. 3 shows several classification maps found by ATML-

CEM with different numbers of classes. From this figure, we

can see the evolution of the class maps along the agglomer-

ation based algorithm. We can see the plotted ICL and BIC

values with respect to number of classes in Fig. 2. The vari-

ations in the ICL and BIC plots are slowed down after 3 or 4

respectively. Since the difference between the values at 3 and

4 is very small and our aim is to find the minimum number of

classes, we may say that the mixture model with 3 number of

classes is almost enough to represent this data set.

For TSX image in Fig.1, the ground-truth map has been

generated manually and covers 20% of the whole image.

Fig.1 shows the classification results. The numerical accu-

racy results are given in Table 2 for 3-classes. In both semi-

supervised and unsupervised cases, ATML-CEM provides

better results than the others in average. The combination of

the amplitude and the texture features helps to increase the

quality of classification in average. From Fig. 1, we can see

that the MLS and K-MnL methods fail to classify the urban

areas. MLS provides a noisy classification map.

(a) K = 12 (b) K = 7

(c) K = 5 (d) K = 3

Fig. 3. Classification maps of TSX image obtained with

unsupervised ATML-CEM method for different numbers of

classes K = {3, 5, 7, 12}.

Table 2. Accuracy (in %) of the semi-supervised (Ss) and

unsupervised (U) classification of TSX image in water, urban

and land areas and overall.
water urban land average

K-MnL (Ss) 100.00 79.03 80.33 86.45

MLS (Ss) 89.47 35.62 84.71 69.93

AML-CEM (U) 92.36 98.29 80.97 90.54

TML-CEM (U) 89.88 96.18 72.32 86.12

ATML-CEM (U) 94.17 98.76 80.93 91.29

5. CONCLUSION

We have proposed a Bayesian model which uses amplitude

and texture features together in a FMM along with nonsta-

tionary latent class labels. Using these two features together

in the model, we obtain better high resolution SAR image

classification results for the given SAR image, especially in

the urban areas.

6. ACKNOWLEDGMENT

The authors would like to thank Aurélie Voisin (Ayin INRIA,
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(a) TSX image (b) Semi-supervised K-MnL (c) Semi-supervised MLS

(d) Unsupervised ATML-CEM (e) Unsupervised AML-CEM (f) Unsupervised TML-CEM

Fig. 1. (a) TSX image and classification maps obtained by (b) semi-supervised K-MnL, (c) semi-supervised MLS, (d) unsu-

pervised ATML-CEM, (e) unsupervised AML-CEM and (f) unsupervised TML-CEM methods. Blue, red and green colors

represent water, urban and land areas, respectively.
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