
HAL Id: hal-00697129
https://hal.science/hal-00697129v2

Preprint submitted on 14 May 2012 (v2), last revised 6 Jul 2012 (v3)

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

SOLUTION OF 2D BOUSSINESQ SYSTEMS WITH
FREEFEM++: THE FLAT BOTTOM CASE

Georges Sadaka

To cite this version:
Georges Sadaka. SOLUTION OF 2D BOUSSINESQ SYSTEMS WITH FREEFEM++: THE FLAT
BOTTOM CASE. 2012. �hal-00697129v2�

https://hal.science/hal-00697129v2
https://hal.archives-ouvertes.fr


Solution of 2D Boussinesq systems with

FreeFem++: the flat bottom case

Georges Sadaka∗

May 14, 2012

Abstract

FreeFem++ is an open source platform to solve partial differential equations numerically, based on
finite element methods. The FreeFem++ platform has been developed to facilitate teaching and basic
research through prototyping. For the moment this platform is restricted to the numerical simula-
tions of problems which admit a variational formulation. We will use FreeFem++ in this work to
solve a three-parameter family of Boussinesq type systems in two space dimensions which approx-
imate the three-dimensional Euler equations over an horizontal bottom and which was studied in
[DouMitSau07, DouMitSau09, ChenGou09].

1 Introduction

It has often been observed that variations of the bottom could influence the damping of the waves
including extreme ones as Tsunamis : the coral reef or the underwater forests in the first shoreline,
mangroves; these underwater reefs are also used to prevent corrosion effects of coastal (see P. Azerad
and al. [AzeBoucIvoIseMoh08] and [AzeBoucIvoIseMoh08]). In these cases, the underwater relief
damped the wave energy, in contrast, in other situations we seek to harness this energy: some
companies even offer projects underwater reefs for erectile produce energy from waves (see http:

//www.aquamarinepower.com/).

Chen, Goubet, Dougalis, Mitsotakis and Saut have considered 2D models with flat bottom [ChenGou09,
DouMitSau07] then with variable bottom [Chen09, DiaDut07, Mit09], on the other hand Dutykh,
Katsaounis and Mitsotakis have developed a code in finite volumes for the Boussinesq system with
variable bottom in 1D ([DutKatMit11]) and Mitsotakis and al. in Galerkin finite elements (using
B-splines [DouMitSau07]).

In this paper, we develop a FreeFem++ code for the simulation of Boussinesq equations with flat bottom
:

ηt +∇ ·V +∇ · (ηV) + a∆∇ ·V− b∆ηt = 0;

Vt +∇η + 1
2∇|V|

2 + c∆∇η − d∆Vt = 0,
(1)

we first check that the simulations provided by our numerical code are consistent with the results of
the recent literature, including the work of Dougalis, Mitsotakis et Saut [DouMitSau07, DouMitSau09,
DouMitSau10]. This establishes the adequacy of the chosen finite element discretization.
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The article is organized as follows: first we discretize the problem in space by using finite element
method and in time by using an explicit second order Runge-Kutta scheme, then we develop all the
step of the FreeFem++ code to solve the problem by using the technique of mesh adaptation and at the
end we present some numerical result.

2 The Problem

We recall in this section the Boussinesq system in 2D which has been derived in [Sad11] as approximations
to the three-dimensional Euler equations and describe irrotational free surface flow of an ideal fluid
over an horizontal bottom.

2.1 Problem settings

The 2D Boussineq system for the incompressible fluid flows in Ω ⊂ R2 is :

ηt +∇ ·V +∇ · (ηV) + a∆∇ ·V− b∆ηt = 0;

Vt +∇η + 1
2∇|V|

2 + c∆∇η − d∆Vt = 0,
(2)

The variables in (2) are non-dimensional and unscaled : X = (x, y) ∈ Ω and t > 0 are proportional to
position along the channel and time, respectively, η = η(X, t) is proportional to the deviation of the

free surface from its rest position, V = V(X, t) =

(
u(X, t)
v(X, t)

)
= (u, v)T = (u; v) is proportional to

the horizontal velocity of the fluid at some height, ∇ =

(
∂x
∂y

)
is the gradient, ∇ ·

(
?
)

= ∂x ?+∂y

is the divergence and ∆ = ∂xx + ∂yy is the laplacian. The coefficients a, b, c and d are given by the
following formulas :

a =
1

2

(
θ2 − 1

3

)
ν, b =

1

2

(
θ2 − 1

3

)
(1− ν), c =

1

2

(
1− θ2

)
µ, d =

1

2

(
1− θ2

)
(1− µ) (3)

where ν, µ are real constants and 0 6 θ 6 1.
We note that the dispersive constants a, b, c and d satisfy the physical constraints (see [BonaChenSau04]
for detail):

a+ b+ c+ d =
1

3
and c+ d ≥ 0 (4)

We now list some of the several family of Boussinesq systems 2D in Table 1 of the form (2) :

In [DouMitSau07], V. Dougalis, D. Mitsotakis and J-C. Saut have studied the Well-Posedness of the
Boussinesq system (2) (where b 6= 0 and d 6= 0) and have shown that this system is at least nonlinearly
well-posed locally; and in the case of KdV-KdV system (where b = d = 0, a = c = 1/6), F. Linares, D.
Pilod and J-C. Saut proved recently in [LinPilSau11] the Well-Posedness of this system.

Following [WalBer02], we can write (2) as :

Υ−∆V = 0;

ηt +∇ ·V +∇ · (ηV) + a∇ ·Υ− b∆ηt = 0;

Θ−∆η = 0;

Vt +∇η + 1
2∇|V|

2 + c∇Θ− d∆Vt = 0,

(5)

where Υ =
(
Υ1,Υ2

)T
=
(
Υ1; Υ2

)
.
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System θ2 ν µ References

BBM-BBM 2/3 0 0

[Chen09],
[ChenGou09],

[DouMitSau07],
[DouMitSau09],

[DouMitSau10].

Bona-Smith 2/3 ≤ θ2 ≤ 1 0
4− 6θ2

3(1− θ2)

[ChenGou09],
[DouMitSau07],
[DouMitSau09],

[DouMitSau10].

“ General ” Boussinesq 0 ≤ θ2 ≤ 1 any any
[ChenGou09],

[DouMitSau07],
[DouMitSau10].

KdV-KdV 2/3 1 1 [LinPilSau11]

Table 1: Examples of Boussinesq systems in 2D.

3 Numerical Scheme

In this section, we will show the spatial discretization using finite element method with P1 continuous
piecewise linear functions as shown in [WalBer02] and for the time marching scheme an explicit second
order Runge-Kutta [Dem91] scheme as used in [DouMitSau07].
We will use in our code a mesh adaptation technic that we can use solving the problem by using the
method based on the declaration of the problem obtained by the weak formulation of the system (5);
or by using the second method that consist to build matrices and vectors to solve the direct system
AX = B, where the matrix A and the vectors X,B will be defined in the sequel.

3.1 Spatial discretization

We let Ω be a convex, plane domain, let Th denote a regular, quasi uniform triangulation of Ω with
triangles of maximum size h < 1 [BreSco94], let Vh = {vh ∈ C0(Ω̄); vh|T ∈ P1(T ),∀T ∈ Th} denote
a finite-dimensional subspace of H1(Ω) = {u ∈ L2(Ω) s.t. ∂u

∂x ,
∂u
∂y ∈ L2(Ω)} where P1 is the set of

polynomials of R of degrees ≤ 1 and let 〈·; ·〉 denote the L2 inner product on Ω.
Consider the weak formulation of the system (5), find ηh, uh, vh ∈ Vh such that ∀φh ∈ Vh we have :〈

Υ1
h;φh

〉
− 〈∆uh;φh〉 = 0;

〈
Υ2

h;φh
〉
− 〈∆vh;φh〉 = 0; 〈Θh;φh〉 − 〈∆ηh;φh〉 = 0;〈

(Id− b∆)ηht +∇ · (uh; vh) + ηhxuh + ηhuhx + ηhyuh + ηhuhy + a∇ ·
(
Υ1

h; Υ2
h

)
;φh

〉
= 0;〈

(Id− d∆)uht + ηhx + uhuhx + vhvhx + cΘhx;φh

〉
= 0;〈

(Id− d∆)vht + ηhy + uhuhy + vhvhy + cΘhy;φh

〉
= 0.

(6)

To simplify, we denote Φ = φh,E = ηh,U = uh,V = vh,T = Θh,P = Υ1
h and Q = Υ2

h, so the system
(6) is equivalent to the following system :

〈P; Φ〉 = 〈∆U; Φ〉 ; 〈Q; Φ〉 = 〈∆V; Φ〉 ; 〈T; Φ〉 = 〈∆E; Φ〉 ;〈
(Id− b∆)∂tE; Φ

〉
= −〈∇ · (U; V) + ExU + EUx + EyV + EVy + a∇ · (P; Q) ; Φ〉
= −F (E,U,V,P,Q) ;〈

(Id− d∆)∂tU; Φ
〉

= −〈Ex + UUx + VVx + cTx; Φ〉 = −G (E,U,V,T) ;〈
(Id− d∆)∂tV; Φ

〉
= −〈Ey + UUy + VVy + cTy; Φ〉 = −H (E,U,V,T) .

(7)
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3.2 Time marching scheme

Our method is based on an explicit second order Runge-Kutta scheme. To this end, let us denote by
(En+1,Un+1,Vn+1) and (En,Un,Vn,Pn,Qn,Tn) the approximate value at time t = tn+1 and t = tn,
respectively and by δt the time step size. Then, by using (7), the unknown fields at time t = tn+1 are
defined as the solution of the system


〈Pn; Φ〉 = 〈∆Un; Φ〉 ; 〈Qn; Φ〉 = 〈∆Vn; Φ〉 ; 〈Tn; Φ〉 = 〈∆En; Φ〉 ;

〈En+1; Φ〉 = 〈En +
Ek1 + Ek2

2
; Φ〉; 〈Un+1; Φ〉 = 〈Un +

Uk1 + Uk2

2
; Φ〉;

〈Vn+1; Φ〉 = 〈Vn +
Vk1 + Vk2

2
; Φ〉.

(8)

where :
〈
(Id− b∆)Ek1; Φ

〉
= −δt · F (En,Un,Vn,Pn,Qn) ;〈

(Id− d∆)Uk1; Φ
〉

= −δt ·G (En,Un,Vn,Tn) ;〈
(Id− d∆)Vk1; Φ

〉
= −δt ·H (En,Un,Vn,Tn) ;〈

Pk1; Φ
〉

=
〈
Uk1

xx + Uk1
yy; Φ

〉
;
〈
Qk1; Φ

〉
=
〈
Vk1

xx + Vk1
yy; Φ

〉
;
〈
Tk1; Φ

〉
=
〈
Ek1

xx + Ek1
yy; Φ

〉
.

(9)

and
〈
(Id− b∆)Ek2; Φ

〉
= −δt · F

(
En + Ek1,Un + Uk1,Vn + Vk1,Pn + Pk1,Qn + Qk1

)
;〈

(Id− d∆)Uk2; Φ
〉

= −δt ·G
(
En + Ek1,Un + Uk1,Vn + Vk1,Tn + Tk1

)
;〈

(Id− d∆)Vk2; Φ
〉

= −δt ·H
(
En + Ek1,Un + Uk1,Vn + Vk1,Tn + Tk1

)
.

(10)

By integrating by parts where we have second order derivative and by developing all the terms of the
first order derivative in (8), (9) and (10), we deduce:

〈Pn; Φ〉 = −〈∇Un;∇Φ〉+

〈
∂Un

∂n
; Φ

〉
∂Ω

; 〈Qn; Φ〉 = −〈∇Vn;∇Φ〉+

〈
∂Vn

∂n
; Φ

〉
∂Ω

;

〈Tn; Φ〉 = −〈∇En;∇Φ〉+

〈
∂En

∂n
; Φ

〉
∂Ω

;

(11)



〈
Ek1; Φ

〉
+ b

〈
∇Ek1;∇Φ

〉
− b

〈
∂Ek1

∂n
; Φ

〉
∂Ω

= −δt · F (En,Un,Vn,Pn,Qn) ;〈
Uk1; Φ

〉
+ d

〈
∇Uk1;∇Φ

〉
− d

〈
∂Uk1

∂n
; Φ

〉
∂Ω

= −δt ·G (En,Un,Vn,Tn) ;〈
Vk1; Φ

〉
+ d

〈
∇Vk1;∇Φ

〉
− d

〈
∂Vk1

∂n
; Φ

〉
∂Ω

= −δt ·H (En,Un,Vn,Tn) ;〈
Pk1; Φ

〉
= −

〈
∇Uk1;∇Φ

〉
+

〈
∂Uk1

∂n
; Φ

〉
∂Ω

;〈
Qk1; Φ

〉
= −

〈
∇Vk1;∇Φ

〉
+

〈
∂Vk1

∂n
; Φ

〉
∂Ω

;〈
Tk1; Φ

〉
= −

〈
∇Ek1;∇Φ

〉
+

〈
∂Ek1

∂n
; Φ

〉
∂Ω

;

(12)
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and 

〈
Ek2; Φ

〉
+ b

〈
∇Ek2;∇Φ

〉
− b

〈
∂Ek2

∂n
; Φ

〉
∂Ω

=

−δt · F
(
En + Ek1,Un + Uk1,Vn + Vk1,Pn + Pk1,Qn + Qk1

)
;〈

Uk2; Φ
〉

+ d
〈
∇Uk2;∇Φ

〉
− d

〈
∂Uk2

∂n
; Φ

〉
∂Ω

=

−δt ·G
(
En + Ek1,Un + Uk1,Vn + Vk1,Tn + Tk1

)
;〈

Vk2; Φ
〉

+ d
〈
∇Vk2;∇Φ

〉
− d

〈
∂Vk2

∂n
; Φ

〉
∂Ω

=

−δt ·H
(
En + Ek1,Un + Uk1,Vn + Vk1,Tn + Tk1

)
.

(13)

Remark : It’s easy with FreeFem++ to define boundary condition, in fact if we have the Dirichlet
Boundary Conditions on a border Γ1 ⊂ R like U|Γ1

= f , then it is defined as on(gamma1,u=f), where u

is the unknown function in the problem. We note that the Neumann Boundary Conditions on Γ2 ⊂ R,

like
∂U

∂n
|Γ2

= g, appear in the Weak formulation of the problem after integrating by parts for example

in the system (11) we have

〈
∂U

∂n
; Φ

〉
Γ2

= 〈g; Φ〉Γ2
=

∫
Γ2

g · Φ which is defined in FreeFem++ by

int1d(Th,gamma2)(g*phi) where Th is the triangulated domain of Ω. We will see in the next section
how it’s also easy to define the Bi-Periodic Boundary Conditions.
We remark also that the system (8) can be written on the following matrix form:

 M 0 0
0 M 0
0 0 M


︸ ︷︷ ︸

A

·

 En+1

Un+1

Vn+1


︸ ︷︷ ︸

X

=


〈En +

Ek1 + Ek2

2
; Φ〉

〈Un +
Uk1 + Uk2

2
; Φ〉

〈Vn +
Vk1 + Vk2

2
; Φ〉


︸ ︷︷ ︸

B

(14)

where Mij =

∫
Ω

φiφjdxdy is the mass matrix.

Algorithm 1:

Finally, to solve the systems (8), (11), (12) and (13), we follow as :

Set En = E0 = ηh0 = η0,U
n = U0 = uh0 = u0,V

n = V0 = vh0 = v0

Set Pn = Ph0,Q
n = Qh0,T

n = Th0,P
k1 = Phk1,Q

k1 = Qhk1,T
k1 = Thk1

Set En+1 = ηh,U
n+1 = uh,V

n+1 = vh
Set Ek1 = ηhk1,U

k1 = uhk1,V
k1 = vhk1,E

k2 = ηhk2,U
k2 = uhk2,V

k2 = vhk2

For t = 0 : δt : T
Mesh adaptation, (optional)

Compute Ph0, Qh0, Th0 Compute ηhk1, uhk1, vhk1

Compute Phk1, Qhk1, Thk1 Compute ηhk2, uhk2, vhk2

Compute ηh, uh, vh
Set ηh0 = ηh, uh0 = uh, vh0 = vh

End for
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Algorithm 2:

Another method to solve the systems (11), (12) and (13), taking into account (14) :

Set En = E0 = ηh0 = η0,U
n = U0 = uh0 = u0,V

n = V0 = vh0 = v0

Set Pn = Ph0,Q
n = Qh0,T

n = Th0,P
k1 = Phk1,Q

k1 = Qhk1,T
k1 = Thk1

Set En+1 = ηh,U
n+1 = uh,V

n+1 = vh
Set Ek1 = ηhk1,U

k1 = uhk1,V
k1 = vhk1,E

k2 = ηhk2,U
k2 = uhk2,V

k2 = vhk2

Compute A(if we want to use the mesh adaptation

we must compute A in the for-loop time)

For t = 0 : δt : T
Mesh adaptation, (optional)

Update ηh0 = ηh0;uh0 = uh0; vh0 = vh0; ηh = ηh;uh = uh; vh = vh;
(with mesh adaptation)

Compute Ph0, Qh0, Th0 Compute ηhk1, uhk1, vhk1

Compute Phk1, Qhk1, Thk1 Compute ηhk2, uhk2, vhk2

Compute A(with mesh adaptation)

Set X = [ηh, uh, vh] Compute B Solve AX = B
Set ηh0 = ηh, uh0 = uh, vh0 = vh

End for

4 Code

In this section we will present by details all the step of the FreeFem++ code to solve (8) to (14).

4.1 Construction of the domain Ω

We note that in FreeFem++ the domain is assumed to described by its boundary that is on the left side
of the boundary which is implicitly oriented by the parametrization.
Let Ω be the rectangle defined by its frontier ∂Ω = [−5, 5]×[−1, 1] where his vertices areA(−5,−1), B(5,−1), C(5, 1)
and D(−5, 1), so we must define the border AB,BC,CD and DA of ∂Ω by using the keyword border

then the triangulation Th of Ω is automatically generated by using the keyword buildmesh. Note
that in FreeFem++ the automatic mesh generation is based on the Delaunay-Voronoi algorithm, cf.
[LucPir98].

real Dx=.2; // discretization space parameter

int aa=-5,bb=5,cc=-1,dd=1;

border AB (t = aa, bb){x = t ;y = cc;label = 1;};

border BC (t = cc, dd){x = bb;y = t ;label = 2;};

border CD (t = bb, aa){x = t ;y = dd;label = 3;};

border DA (t = dd, cc){x = aa;y = t ;label = 4;};

mesh Th = buildmesh( AB(floor(abs(bb-aa)/Dx)) + BC(floor(abs(dd-cc)/Dx)) + CD(

åfloor(abs(bb -aa)/Dx)) + DA(floor(abs(dd -cc)/Dx)) );

The keyword label can be added to define a group of boundaries for later use (Boundary Conditions
for instance). Boundaries can be referred to either by name (AB for example) or by label ( 1 here).

4.2 Finite Element Space

A finite element space (F.E.S) is, usually, a space of polynomial functions on elements of Th, triangles
here, with certain matching properties at edges, vertices, ...
In our case, since we have after integrating by parts in the equation (11) a first derivative order in
space, then we must use for the F.E.S. at least P1 of continuous piecewise linear functions. Then the
F.E.S. is defined as

6



Figure 1: Plot of the border (left) and the mesh (right)

fespace Vh( Th , P1 );

In the case of Bi-Periodic Boundary Condition, they will be set in the F.E.S as

fespace Vh( Th , P1 ,periodic =[[1,x],[3,x],[2,y],[4,y]] );

Since ηh, uh, vh and φh ∈ Vh, we define etah, uh, vh, etah0, uh0, vh0, Ph0, Qh0, Th0, etahk1,

etahk2, uhk1, uhk2, vhk1, vhk2,

Phk1, Qhk1, Thk1, etah0pk1, uh0pk1, vh0pk1, Th0pk1,

Ph0pk1, Qh0pk1, phih as piecewise-P1 continuous linear functions, as

Vh etah , uh, vh, etah0 , uh0 , vh0 , Ph0 , Qh0 , Th0 , etahk1 , etahk2 , uhk1 , uhk2 ,

åvhk1 , vhk2 , Phk1 , Qhk1 , Thk1 , etah0pk1 , uh0pk1 , vh0pk1 , Th0pk1 , Ph0pk1 ,

åQh0pk1 , phih;

where

etah0pk1=etah0+etahk1; uh0pk1=uh0+uhk1; vh0pk1=vh0+vhk1;

Th0pk1=Th0+Thk1; Ph0pk1=Ph0+Phk1; Qh0pk1=Qh0+Qhk1;

4.3 Scheme parameter

Using (3), we define the parameter θ2, ν, µ, δt, Tf, a, b, c and d where δt is the time step size and Tf is
the final time of the program. These parameter will be declared in the next section depending on each
numerical case.

real theta2 , nu, mu, dt, Tf; // to be declared

real a = .5*( theta2 - 1./3.)*nu, b = .5*( theta2 - 1./3.) *(1. - nu), c = .5*(1.

å - theta2)*mu , d = .5*(1. - theta2)*(1. - mu);

4.4 Initial data

We define the initial data as following :

etah0=eta0;// to be declared

uh0=u0;// to be declared

vh0=v0;// to be declared
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4.5 Declaration of the problems

Note that in FreeFem++ the scalar product in L2 : 〈, φh〉 =

∫
Ω

· φh = int2d(Th)( *phih ) ; also we

can define a macro for the gradient ∇u = (∂x(u), ∂y(u))T , divergence ∇ ·
(
u
v

)
= ∂x(u) + ∂y(v) and

for the right hand side function F (E,U,V,P,Q), G (E,U,V,T) ,H (E,U,V,T) defined in (7) using
the keyword macro, that will be used in the sequence, as :

macro grad(u)[dx(u),dy(u)]//

macro div(u,v)(dx(u)+dy(v))//

macro F(e,u,v,p,q)(div(u,v)+dx(e)*u+e*dx(u)+dy(e)*v+e*dy(v)+a*div(p,q))//

macro G(e,u,v,t)(dx(e)+dx(u)*(u)+dx(v)*(v)+c*dx(t))//

macro H(e,u,v,t)(dy(e)+dy(u)*(u)+dy(v)*(v)+c*dy(t))//

We note that all the variable (e,u,v,p,q,t) used in the macro are dummies.
We declare the problem for Pn,Qn,Tn defined is the system (11) as :

problem PH0(Ph0 ,phih) = int2d(Th)(Ph0*phih) + int2d(Th)(grad(uh0) ’*grad(phih))

å + "Boundary Conditions of uh for Ph0";

problem QH0(Qh0 ,phih) = int2d(Th)(Qh0*phih) + int2d(Th)(grad(vh0) ’*grad(phih))

å + "Boundary Conditions of vh for Qh0";

problem TH0(Th0 ,phih) = int2d(Th)(Th0*phih) + int2d(Th)(grad(etah0) ’*grad(phih

å)) + "Boundary Conditions of etah for Th0";

then the problems to find Ek1,Uk1,Vk1,Pk1,Qk1,Tk1 of the system (12) are declared as :

problem ETAHK1(etahk1 ,phih) = int2d(Th)(etahk1*phih) + int2d(Th)(grad(etahk1)

å’*grad(phih)*b) + int2d(Th)( F(etah0 ,uh0 ,vh0 ,Ph0 ,Qh0)*phih*dt ) + "

åBoundary Conditions of etah for etahk1";

problem UHK1(uhk1 ,phih) = int2d(Th)(uhk1*phih) + int2d(Th)(grad(uhk1) ’*grad(

åphih)*d) + int2d(Th)( G(etah0 ,uh0 ,vh0 ,Th0)*phih*dt)+"Boundary Conditions

åof uh for uhk1";

problem VHK1(vhk1 ,phih) = int2d(Th)(vhk1*phih) + int2d(Th)(grad(vhk1) ’*grad(

åphih)*d) + int2d(Th)( H(etah0 ,uh0 ,vh0 ,Th0)*phih*dt)+"Boundary Conditions

åof vh for vhk1";

problem PHK1(Phk1 ,phih) = int2d(Th)(Phk1*phih) + int2d(Th)(grad(uhk1) ’*grad(

åphih)) + "Boundary Conditions of uh for Phk1" ;

problem QHK1(Qhk1 ,phih) = int2d(Th)(Qhk1*phih) + int2d(Th)(grad(vhk1) ’*grad(

åphih)) + "Boundary Conditions of vh for Qhk1" ;

problem THK1(Thk1 ,phih) = int2d(Th)(Thk1*phih) + int2d(Th)(grad(etahk1) ’*grad(

åphih)) + "Boundary Conditions of etah for Thk1" ;

and the problems to find Ek2,Uk2,Vk2 of the system (13) are declared as :

problem ETAHK2(etahk2 ,phih) = int2d(Th)(etahk2*phih) + int2d(Th)(grad(etahk2)

å’*grad(phih)*b) + int2d(Th)( F(etah0pk1 ,uh0pk1 ,vh0pk1 ,Ph0pk1 ,Qh0pk1)*phih

å*dt) + "Boundary Conditions of etah for etahk2";

problem UHK2(uhk2 ,phih) = int2d(Th)(uhk2*phih) + int2d(Th)(grad(uhk2) ’*grad(

åphih)*d) + int2d(Th)( G(etah0pk1 ,uh0pk1 ,vh0pk1 ,Th0pk1)*phih*dt) + "

åBoundary Conditions of uh for uhk1";

problem VHK2(vhk2 ,phih) = int2d(Th)(vhk2*phih) + int2d(Th)(grad(vhk2) ’*grad(

åphih)*d) + int2d(Th)( H(etah0pk1 ,uh0pk1 ,vh0pk1 ,Th0pk1)*phih*dt) + "

åBoundary Conditions of vh for vhk1";

Finally, to find En+1,Un+1,Vn+1 defined in the system (8), we declare the corresponding problem as :

problem ETAH(etah ,phih) = int2d(Th)(etah*phih) - int2d(Th)(etah0*phih) - int2d

å(Th)(( etahk1 + etahk2) * phih /2.);
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problem UH(uh ,phih) = int2d(Th)(uh*phih) - int2d(Th)(uh0*phih) - int2d(Th)((

åuhk1 + uhk2) * phih /2.);

problem VH(vh ,phih) = int2d(Th)(vh*phih) - int2d(Th)(vh0*phih) - int2d(Th)((

åvhk1 + vhk2) * phih /2.);

Remark: In order to make our code faster, we can use the keyword init in the declaration of the
problem, for example :

problem ETAH(etah ,phih ,init =0) = int2d(Th)(...); // if we want to compute the

åmass matrix

problem ETAH(etah ,phih ,init =1) = int2d(Th)(...); // if we want to use the mass

å matrix computed before

4.6 Solve of the problems

To solve all the problems defined above, we make a for-loop time and we call the problems by their
names when we want them to be solved, then we update the data and at the end we plot the solution
using the keyword plot.
We note that in each iteration of the for-loop a mesh adaptation will be done which depend on the
error (err) which is the P1 interpolation error level, where hmin is the minimum edge size and nbvx is
the maximum number of vertices generated by the mesh generator.

for (real t=0.;t<=T;t+=dt){

Th=adaptmesh(Th,etah0 ,err=1e-4,hmin=Dx,nbvx=1e6); // we can use adaptmesh

åeach 10 iterations or more.

PH0; QH0; TH0;

ETAHK1; UHK1; VHK1;

PHK1; QHK1; THK1;

etah0pk1=etah0+etahk1; uh0pk1=uh0+uhk1; vh0pk1=vh0+vhk1;

Th0pk1=Th0+Thk1; Ph0pk1=Ph0+Phk1; Qh0pk1=Qh0+Qhk1;

ETAHK2; UHK2; VHK2;

ETAH; UH; VH;

etah0=etah; uh0=uh; vh0=vh; // update of the data

plot(etah0 ,cmm="t="+t+"sec",fill=true ,value=true ,dim =3);

}

In the case of Bi-Periodic Boundary Condition, we must build an adapted periodic mesh, so we use :

Th=adaptmesh(Th,etah0 ,err=1e-4,hmin=Dx,nbvx=1e6,periodic =[[1,x],[3,x],[2,y

å],[4,y]]);

In order to use the second method, we build the matrix A before the for-loop time as:

varf Mass(u, phih) = int2d(Th)( u * phih );

matrix A, MASS;

MASS = Mass(Vh,Vh);

A = [[MASS , 0, 0],[0, MASS , 0],[0, 0, MASS ]];

set(A,solver=GMRES); // to be set

Then we build the vector B in the for-loop time as :

for (real t=0.;t<=T;t+=dt){

PH0; QH0; TH0;

ETAHK1; UHK1; VHK1;

PHK1; QHK1; THK1;

etah0pk1=etah0+etahk1; uh0pk1=uh0+uhk1; vh0pk1=vh0+vhk1;

Th0pk1=Th0+Thk1; Ph0pk1=Ph0+Phk1; Qh0pk1=Qh0+Qhk1;
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ETAHK2; UHK2; VHK2;

Vh B1, B2, B3, etahk1pk2D2 , uhk1pk2D2 , vhk1pk2D2;

real[int] B(3*Vh.ndof), X(3*Vh.ndof), X0(3*Vh.ndof), W(3*Vh.ndof);

etahk1pk2D2 = .5* etahk1 + .5* etahk2;

uhk1pk2D2 = .5* uhk1 + .5* uhk2;

vhk1pk2D2 = .5* vhk1 + .5* vhk2;

X0=[etah0[], uh0[], vh0 []];

B1[]= MASS*etahk1pk2D2 [];

B2[]= MASS*uhk1pk2D2 [];

B3[]= MASS*vhk1pk2D2 [];

B=[B1[],B2[],B3[]];

X = A^-1*B;

W = X + X0;

[etah[], uh[], vh[]] = W;

etah0=etah; uh0=uh; vh0=vh; // update of the data

plot(etah0 ,cmm="t="+t+"sec",fill=true ,value=true ,dim =3);

}

Finally, if we want to use mesh adaptation in the second method, we must compute the matrix A in
the for-loop time as :

for (real t=0.;t<=T;t+=dt){

Th=adaptmesh(Th,etah0 ,err=1e-4,hmin=Dx,nbvx=1e6); // we can use adaptmesh each

å 10 iterations or more.

etah0=etah0;uh0=uh0;vh0=vh0; etah=etah;uh=uh;vh=vh; // to update our data in

åthe new mesh

PH0; QH0; TH0;

ETAHK1; UHK1; VHK1;

PHK1; QHK1; THK1;

etah0pk1=etah0+etahk1; uh0pk1=uh0+uhk1; vh0pk1=vh0+vhk1;

Th0pk1=Th0+Thk1; Ph0pk1=Ph0+Phk1; Qh0pk1=Qh0+Qhk1;

ETAHK2; UHK2; VHK2;

matrix A, MASS;

MASS = Mass(Vh,Vh);

A = [[MASS , 0, 0],[0, MASS , 0],[0, 0, MASS ]];

set(A,solver=GMRES); // to be set

Vh B1, B2, B3, etahk1pk2D2 , uhk1pk2D2 , vhk1pk2D2;

real[int] B(3*Vh.ndof), X(3*Vh.ndof), X0(3*Vh.ndof), W(3*Vh.ndof);

etahk1pk2D2 = .5* etahk1 + .5* etahk2;

uhk1pk2D2 = .5* uhk1 + .5* uhk2;

vhk1pk2D2 = .5* vhk1 + .5* vhk2;

X0=[etah0[], uh0[], vh0 []];

B1[]= MASS*etahk1pk2D2 [];

B2[]= MASS*uhk1pk2D2 [];

B3[]= MASS*vhk1pk2D2 [];

B=[B1[],B2[],B3[]];

X = A^-1*B;

W = X + X0;

[etah[], uh[], vh[]] = W;

etah0=etah; uh0=uh; vh0=vh; // update of the data

plot(etah0 ,cmm="t="+t+"sec",fill=true ,value=true ,dim =3);

}
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4.7 Numerical simulations

In the sequel, we present the results of numerical simulations of the evolution of initially localized
heaps of fluid of initial velocity zero. Unless specified, all computations were performed on the square
Ω =]− 40, 40[×]− 40, 40[, a P1 continuous piecewise linear functions was used for the finite element
space and for all the numerical simulations, we work with the space discretization ∆x = 0.5 and the
time step ∆t = 0.1.
We deduce from the subsection 4.1 that the border y = −40, x = 40, y = 40 and x = −40 have the label
1,2,3 and 4, respectively.

4.7.1 Rate of convergence

At the beginning, we prove in the figure below, that the RK2 time scheme considered for the BBM-BBM
system is of order 2. In this example, we took zero Dirichlet homogenous Boundary Conditions for ηh,
uh and vh on the whole boundary and we have consider the following exacts solutions :

ηex = et · sin(πx) · (y − 1) · y,

uex = et · x · cos(3πx/2) · sin(πy),

vex = et · sin(πx) · cos(3πy/2) · y.

Then, we compute the corresponding right hand side in order to obtain the L2 norm of the error
between the exact solution and the numerical one in the table below.

N |ηh − ηex|L2 |uh − uex|L2 |vh − vex|L2

10 0.00871494 0.0233966 0.0230945
20 0.00265707 0.00641675 0.00632314
40 0.000670301 0.00160223 0.00157848
80 0.0001817 0.000419198 0.000412791
160 4.80657e-05 0.000108456 0.000106767

Table 2: L2 norm of the error for η, u, v.

Figure 2: Rate of convergence for BBM-BBM.
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4.7.2 Computation time

In this section, we consider the BBM-BBM Boussinesq system on the domain Ω =]− 40, 40[×]− 40, 40[
with P1 continuous piecewise linear functions, the space discretization ∆x = 0.5, the time step ∆t = 0.1
and as initial data ηh0(x, y) = 0.2e−(x2+y2)/5, uh0(x, y) = vh0(x, y) = 0 with zero Dirichlet homogenous
Boundary Conditions for ηh, uh and vh on the whole boundary.
In order to solve this system, we will show the time comparison of different method:

• M1 to solve Algorithm 1 without using adaptmesh technique and the keyword init.

• M1init to solve Algorithm 1 using the keyword init and without using adaptmesh technique.

• M1A-4 to solve Algorithm 1 using adaptmesh technique with err=1e-4 and without the
keyword init.

• M1A-2 to solve Algorithm 1 using adaptmesh technique with err=1e-2 and without the
keyword init.

• M2 to solve Algorithm 2 without using adaptmesh technique and the keyword init.

• M2init to solve Algorithm 2 using the keyword init and without using adaptmesh technique.

• M2A-4 to solve Algorithm 2 using adaptmesh technique with err=1e-4 and without the
keyword init.

• M2A-2 to solve Algorithm 2 using adaptmesh technique with err=1e-2 and without the
keyword init.

We present in Table 3, the time of computation in second at time T = 10s using all the different method
cited before. All computation was made on a Macbook OS X, Intel core 2 Duo (CPU), 4Go (Memory),
2 Ghz (Processor).

M1 M1init M1A-4 M1A-2
1555.48 722.507 115.485 45.3462

M2 M2init M2A-4 M2A-2
1217.01 619.462 99.5689 39.3365

Table 3: Comparison of computation time for the different method used to solve the BBM-BBM
system.

We note that, without using the mesh adaptation technique, we have the same result for all the
computed solution, so we can see from Table 3 that the best method to use is the M2init.
In other hand, using the mesh adaptation technique, we can remark from Table 3 that the computation
time is bester then other method, but unfortunately, we have a little difference between the computed
solution, that we plot in Figure 3 the square of L2 norm of the error between the computed solution
using the M1 method and the one computed with the M1A-8, M1A-6, M1A-4, M1A-2 methods
where we have err=1e-8, err=1e-6, err=1e-4, err=1e-2, respectively vs the time till T = 30s. We
also plot in Figure 4 the mean of all the square of L2 norm of the error computed for different mesh
adaptation method.

We can remark from this result that we have the same result using M1A-8, M1A-6, M1A-4 method
and the mean error between the solution computed with these method and the computed one using the
M1 is of order 10−5 and we can see the large time difference.
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Figure 3: Comparaison of the erreur
between the solution.

Figure 4: Mean of the erreur between
the solution.

4.7.3 Reflection of expanding symmetric waves at two boundaries of the BBM-BBM
Boussinesq system

In Figures 5,6 we show the reflection from two parts of the boundary of an expanding symmetric wave
of the BBM-BBM Boussinesq system where a = c = 0 and b = d = 1/6. For this experiment we used as

initial data the functions ηh0(x, y) = .2e−(x2+y2)/5, uh0(x, y) = vh0(x, y) = 0. We used zero Neumann
Boundary Conditions for ηh on the whole boundary, zero Dirichlet data for uh and vh on x = −40
and y = 40 (where we have the wall), and zero Neumann boundary data for uh and vh on x = 40 and
y = −40. The expanding waves are reflected from the x = −40 and y = 40 parts of the boundary.
We note that in Figure 5 we show the effect of the mesh adaptation following the evolution of ηh in
time and in Figure 6 we show the propagation of the solution ηh.

Figure 5: Plot of the solution and the mesh to the BBM-BBM Boussinesq system where a = c = 0 and
b = d = 1/6 for different time t = {0.1, 20, 40, 70}
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Figure 6: Solution of the BBM-BBM Boussinesq system where a = c = 0 and b = d = 1/6 for different
time t = {0, 20, 40, 70}

4.7.4 Expanding symmetric waves under the KdV-KdV Boussinesq system

In Figure 7, we present the evolution of the ηh profile emanating from the radially symmetric initial
data ηh0(x, y) = .5e−(x2+y2)/5, uh0(x, y) = vh0(x, y) = 0, under the KdV-KdV Boussinesq system where
a = c = 1/6 and b = d = 0. We used Bi-Periodic Boundary Conditions for ηh, uh and vh and we work
with the time step ∆t = 0.001. We remark here that with these Bi-Periodic Boundary Conditions
for η, u and v and their derivatives, in addition by integrating the equations in the system (2) on

the hole domaine, we deduce the following mass conservation : (Id− b∆)

∫
Ω

ηt = 0 and the relations

(Id− d∆)

∫
Ω

ut = 0, (Id− d∆)

∫
Ω

vt = 0. Hence :

∫
Ω

η = cte =

∫
Ω

η0,

∫
Ω

u = cte =

∫
Ω

u0,

∫
Ω

v = cte =

∫
Ω

v0. (15)

In other hand, numerically, we see that these defined quantity are well conserved over time and we
have : ∫

Ω

η = cte =

∫
Ω

η0 = 7.84527,

∫
Ω

u = cte =

∫
Ω

u0 = 0,

∫
Ω

v = cte =

∫
Ω

v0 = 0.

We can see in Figure 7 a small amplitude periodic profile (ripples) which has been observed in
[BDM07] (in the case of 1D KdV-KdV system).
Other simulation of different Boussinesq system can be found in [Sad11].
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Figure 7: Solution of the KdV-KdV Boussinesq system where a = c = 1/6 and b = d = 0 for different
time t = {0, 10, 20, 60}

5 Conclusion

We have presented a numerical approach with FreeFem++ to solve the Boussinesq system with a flat
bottom, we validated our code and establishes the adequacy of the chosen finite element discretization
by comparing the results with those of Mitsotakis and al.
We have established also the feasibility of simulating complex equations of hydrodynamics as Boussinesq
systems with FreeFem++.
Using this approach, we can consider the case of a variable bottom (in space and/or in time), see
[Sad11]. As a feature we address the simulation of Tsunamis with our approach, by including realistic
data (bathymetry, generation of tsunami waves).
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