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flowshop scheduling problems with unavailability periods” [International Journal
of Production Economics 121 (2009) 81 — 87]
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Abstract

In Allaoui & Artiba (2009) (Allaoui H., Artiba A. “Johnson’s algorithm : A key to solve optimally or approxi-
mately flowshop scheduling problems with unavailability periods” [International Journal of Production Economics
121 (2009) 81 — 87]) the authors propose optimality conditions for the Johnson sequence in presence of one unavail-
ability period on the first machine and pretend for a performance guarantee of 2 when several unavailability periods
may occur. We establish in this note that these conditions are false, and that minimizing the makespan in presence
of more than one unavailability period is not in APX, unless P = NP. We also point out that the results given for
the stochastic part of the problem are incorrect. Finally, we propose a simplified proof and a generalization for the

two-stage hybrid flowshop.

Optimality condition for the Johnson’s Algorithm

Allaoui & Artiba (2009) give in Section 2 & 3 two
conditions of optimality for the sequence delivered by
Johnson’s Algorithm (JA) and the Modified Johnson’s
Algorithm (MJA) in presence of one unavailability pe-
riod on the first machine, under the non-resumable
model. Proposition 1 claims that a null idle time I)p is
a sufficient condition for the JA sequence to be optimal.
Unfortunately Ip is simply introduced as the “idle time
due to the maintenance period” and no precise definition
is given. Nethertheless the same optimality conditions
(as stated in Example 2 and Proposition 3) are detailed
by the authors in a previous article and happen to be
false, see Rapine (submitted). In fact even when both
conditions are fullfilled, the JA sequence is not neces-
sarily optimal.

JA as a heuristic

The authors state in Section 4 that the JA sequence
has a performance guarantee of 2 for the non-resumable
case when the first machine is subject to several unavail-
ability periods. The result is incorrect, most probably
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due to the amazing definition of & in the first para-
graph. Indeed even for a single resource, minimizing
the makespan subject to 2 unavailability periods can not
be approximated within any constant guarantee, unless
P = NP. We have the following result:

Lemma 1. If P = NP, the two machine flowshop prob-
lem is not in APX in the non-resumable case if more than
one unavailability period occurs on the first machine.

Proof. The gap preserving reduction is immediate from
PARTITION, which is one of the first problems proved
NP-complete by Garey & Johnson (1979). An instance
x of PARTITION is constituted of n integers ay, . .., a,.
It is asked whether there exists a partition S UT of [1, n]
such that ;. a; = Y7 a;. Without loss of general-
ity we can restrict to instances such that }’; a; is even,
and define A = };a;/2. Given a fixed value 4 > 1,
we transform the instance x into an instance g(x) of the
flowshop problem as follows: We have n jobs, each job
i with processing time a; on the first machine and, say,
1 on the second machine. Two unavailability periods
occur on the first machine, respectively on time interval
[A,A + 1] and [2A + 1,[A(2A + 2)]]. It is clear that if
x is a positive instance of PARTITION, then the opti-
mal makespan of g(x) is equal to 2A + 2, whereas if x
is a negative instance, the optimal makespan of g(x) is
greater than A(2A +2). As a consequence no polynomial
time algorithm can have a performance guarantee lower
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than A unless P = NP. Since this holds for any constant
A, the problem can not belong to APX. O

JA combines with other rule

In Section 5 the authors consider a two-stage hybrid
flowshop composed of a single machine at the first stage
and two machines on the second stage. They propose a
heuristic combining the JA sequence with the LBM rule,
and prove a performance guarantee of 3 for it. Their re-
sult is correct; however their Proposition 10 can be gen-
eralized to any list scheduling algorithm for the second
stage, and its proof simplified. List scheduling algo-
rithms, introduced by Graham (1969), are a very pop-
ular approach in scheduling theory. Its principle is to
greedily allocate tasks to idle resources, breaking ties
between tasks concurrently available using a priority
list.

Proposition 2. Using the JA sequence on the first stage,
any list scheduling algorithm on the second stage leads
to a performance guarantee of 3.

Proof. Let CL,, be the makespan obtained by a list al-
gorithm L, and let / be the last task of the schedule. For
short let us denote by r; the completion time of / on the
first stage and by ¢ its starting time on the second stage.
By definition we have

Ch = Ci = ti+ppp = (V/ + %Pl,z) +(tl -1+ %Plﬁ)
The first term is lower or equal to 2C7,,, due to Lemma 9
in Allaoui & Artiba (2009). For the second term, the
greedy allocation of list scheduling algorithms implies
that both machines of the second stage are continuously
busy on time interval [r, #;]. Using the conservation of
the work, we obtain that 2(¢; — r;) + p;2 < 2C} .« The

max-*

result follows. O

We can further generalize this result to the case of
m parallel machines on the second stage. Lemma 9 re-
mains valid considering the splash relaxation of the sec-
ond stage to a single ressource with processing times
Dj2/m, but this bound becomes poor when m is large.
A more natural relaxation of the second stage is to con-
sider an infinite number of machines. Observe that this
relaxation is equivalent to minimizing the maximum
lateness Lyx on a single resource. With no unavailabil-
ity period, it is folklore that this problem is solved opti-
mally by the Jackson sequence, where tasks are sched-
uled in nonincreasing order of their queue (here p;»).

Lemma 2. Using the Jackson sequence on the first
stage, any list scheduling algorithm leads to a perfor-
mance guarantee of 3 whatever the number of machines
on the second stage.

Proof. As previously, let CE = be the makespan ob-
tained by a list algorithm L, and [/ be the last task of

the schedule. The same analysis leads to
CILnax =C = (}"1 + p1.2) +(—-n) < Lélax + C;lax

where L7 . is the maximum lateness of the Jackson
sequence for the relaxation. We have to prove that
L] < 2C:i... Let L}, be the optimal lateness with-
out considering the unavailability period. Clearly we
have L}, < Cr... Since this lateness is obtained by
the Jackson sequence and since the unavailability period
[s, e] delays at most of e time units the start of a task, we
have L. < L. + e. If the optimal makespan is lower
than e, it implies that any sequence completes before the

unavailability period on the first stage, and in particular

J . 5 :
Lo y Ly x < Crax- Otherwise we have e < Cj,,, and
* *
thus L) . < Ly . + Chax- The result follows. O

An extension of Johnson’s rule

In this last section the authors considered a stochas-
tic version of the problem where each processing time
is a random variable exponentially distributed. The first
machine is subject to one unavailability period during
time interval [s, e]. The authors study Talwar’s sequence
(TO), which is optimal in expectation when no unavail-
ability period occurs. The results of this section are all
highly questionnable or incorrect due to many errors in
the proofs or imprecisions in the definitions.

First Proposition 11 states an optimality condition
similar to the one of Proposition 1 for the JO sequence,
namely that the TO sequence is optimal if /gap has a
centered distribution. Once again the random variable
Igap (the counterpart of I),p in Proposition 1), the idle
time due to the gap”, is not properly defined. But what-
ever its definition, one can wonder how such a random
variable could have a centered distribution (all process-
ing times have exponential distribution) ? and most of
all how such a random variable could take some neg-
ative values (implying a negative idle time) ? Thus
Proposition 11 may be correct (the implication is true),
but it is certainly useless (the condition is never veri-
fied).

Second, the validity of Theorem 12 is questionable
due to several errors in the proof. In Equation 12, the
density fz of the sum of 2 random variables X and Z



should be the integral on the interval [0, z] (instead of
[0, +00]). Nevertheless the derived expressions for py |+
p12 and py; + pao are correct, except for the case where
processing times have the same distribution. For two
random variables X and Y exponentially distributed with
the same parameter A, the correct expression is:

frar(@) = ez

The main problem of the proof comes from the expres-
sion used for the expectation of the min of 2 random
variables X and Y. The authors write that:

E(min(X,Y)) = fo Sx(@fr(2)dz

This is clearly false. For instance if variables X and Y
follow a uniform distribution, respectively on [0, 1] and
[1,2], the expectation of min(X, Y) is clearly E[X] = 0.5
while the previous formula gives a null expectation.
These calculus can certainly be repaired, but the argu-
ment of the proof itself is not convincing. As a mat-
ter of fact the authors compute for each sequence (J;J>
and J,Jp) the conditionnal expectation of its makespan,
knowing that only the first operation fits before the un-
availability period. They argue, rightfully, that TO is op-
timal if both operations are scheduled after the unavail-
ability period. However the probability of this event,
that is the first operation of the sequence does not fit be-
fore the unavailability period, is by definition sequence
dependent. Its probability for the sequence J;J, differs
from the sequence J>J; if 41} # A,;. Hence establish-
ing that E[Cax(J1J2)IJ; fits] < E[Ciax(J2J1)|J> fits] is
not sufficient to prove that the inequality holds in un-
conditional expectation.

Finally, the authors give in Proposition 13 a necessary
condition for k jobs to fit surely (with probability 1) be-
fore the unavailability period. The expression given for
the distribution of the sum of k random variables expo-
nentially distributed is incorrect. In fact this quantity
is well known as the k-Erlang distribution, and has the
following expression, see Bertsekas & Tsitsiklis (2008):

/lk xk—l —Ax
Ji(x) = m e

This error jeopardizes Proposition 13. But besides that,
such a result does not make sense. Indeed the exponen-
tial distribution has not a finite support: By definition
for any value s, the probability for a single random vari-
able X with exponential distribution A to be greater than
sis P(X > s) = 1 — Fx(s) = e > 0. Thus there is no
way to derive a condition for the first k jobs to fit with
probability 1 before the unavailability period.
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