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1 INTRODUCTION

Finding systems that are robust to the environment, while maintaining acceptable data rates, remains
one of the major difficulty faced by underwater acoustic communication (UAC) system designers.
However, experiments conducted over the last few years have shown that, even in difficult shallow
water channels, it now appears possible to significantly increase the data rate with respect to the
achievable performance of current commercial-on-the-shelf (COTS) modems. Among the promising
transmission techniques, multi-carrier systems such as OFDM (Orthogonal Frequency Division Multi-
plexing) [1-4] have generated much interest. This is mainly due to the simplicity of OFDM receivers
and to the flexibility offered by such systems.

An assessment of the ultimate performance of OFDM systems appears critical to determine whether
such a technique could actually yield a significant breakthrough in UAC. For instance, multi-carrier
systems are known to limit the interference at the receiver, which improves the robustness of UAC
systems. However, this robustness improvement is generally paid back by the loss of spectral effi-
ciency induced by the use of time and/or frequency guard intervals required to limit the interference.
The optimal trade-off between low interference and high spectral efficiency is a key ingredient in
OFDM system design that has yet to be found. To obtain a better understanding of the interplay be-
tween interference and the achievable transmission rates, we suggest to study the information rate of
UA-OFDM systems. The channel capacity, defined as the amount of information that can be transmit-
ted with arbitrarily small error probability, appears as a good figure of merit for performance analysis
as it jointly considers interference and spectral efficiency.

Unlike the capacity of other channels, the capacity of the shallow water UAC channel has been sel-
domly addressed [5-8]. Along the line of [9] and motivated by recent results in information theory [10],
this paper investigates achievable rates of underwater acoustic OFDM systems. We consider chan-
nels where time and frequency dispersion is high enough that (i) neither the transmitter nor the re-
ceiver can have a priori knowledge of the channel state information, and (ii) intersymbol/intercarrier
interference (ISI/ICI) cannot be neglected in the information theoretic treatment. Expressions for
these rates take into account the “cross-channels” established by the ISI/ICI and are based on lower
bounds on mutual information that assume independent and identically distributed input data symbols.
In agreement with recent statistical analyses of experimental shallow-water data [11], the channel is
modeled as a multivariate Rician fading process with a slowly time-varying mean and with potentially
correlated scatterers, which is more general than the common wide-sense stationary uncorrelated
scattering model.

This paper is organized as follows. Section 2 is devoted to the presentation of the system model and
the main assumptions. Achievable rates of OFDM systems transmitting over UA channels are derived
in Section 3. In Section 4, the information rate of OFDM systems transmitting over experimental
doubly dispersive UA channels surveyed at sea is numerically assessed. Finally, conclusions are
given in Section 5.
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2 SYSTEM MODEL

2.1 NOTATION

Throughout this paper, lowercase boldface letters denote vectors, e.g. x, and uppercase boldface
letters denote matrices, e.g., A. The Hadamard (element-wise) products of two matrices A and B is
written as A ® B. The entries of a matrix A are denoted by [A]y ,,, Where the indices k and n start
at 0. B(:*) designates a submatrix of a block matrix B. The Kronecker symbol is denoted by o(k).
We let diag (x) designate a diagonal square matrix whose main diagonal contains the elements of the
vector x. The inner product between two signals y(t) and z(¢) is denoted as (y, z) = fj;o y(t)z*(t)dt.
Finally, E {.} denotes expectation.

2.2 CHANNEL MODEL

We consider a doubly selective baseband equivalent underwater acoustic channel, modeled as a
random linear time-varying system H that maps input signals z(¢) into output signals y(t) according
to the 1/O relationship

y(t) = (o) 1) + w(t) = [ ha(r.)a(t ~ 7)dr + wd) &)
where hy(7,t) is the channel impulse response and w(t) denotes the ambient noise. According to
recent results on the statistical characterization of UA channels [11], the impulse response is modeled
as a trend stationary random process so that, for all ¢, ¢; and t; € R

hi(7,t) = hu(r,t) + hu(r,t), 2)
with
E {hH(Ta t)} = BH(Ta t)7 (3)
and
E{(hu(r,t1) — E{hu(r,t1)}) (ha(r 1) — E{hu(r.tz)})*} = E {EH(T, )R (T, t2>}
= E{hu(rhi(rt+t:—t)}. @)

hu(r,t) is called the trend and is a slowly time-varying deterministic component. hg(7,t) is a zero-
mean wide-sense stationary random process assumed to be Gaussian. This model describes the
UA channel as a multivariate Rician fading process with a slowly time-varying mean. hy(7,t) can be
interpreted as the contribution of (pseudo) deterministic physical phenomena to channel fluctuations
(wave undulation, range/depth dependence, bathymetry changes etc.) and HH(T, t) represents the
channel fluctuations attributable to scatterers that result in fast fading. Note that since no particular
assumption is made about the correlation of scatterers, the model is very general and includes the
WSSUS model as a subset. Without loss of generality, the channel is assumed to be normalized so
that

T—oo T

1 & D2 drdt —
lim /_%/TIE{|hH(,t)| Y drdt = 1. )

We define the channel Rice factor as the power ratio between the deterministic trend and the random
component, i.e.,

T —
o ff% fT | (7, t)|2drdt ©
K= lm — — .
12T [ B {|ha(r,t)P} dr
The ambient noise w(t) is assumed to be Gaussian and to result from the mixture of four sources :
turbulence, shipping, waves and thermal noise with non flat power spectral densities (PSD) denoted
by W(f) and given in [8].
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2.3 OFDM SIGNAL

OFDM signaling schemes can be described by two Weyl-Heisenberg (WH) sets [12,13]: the one used
at transmission, expressed as

A 27T
(9. T, F) = {gun(t) = g(t = KT)e*™ gl =1}, ., )

and the one used at reception, defined as

A j21n
(1, T, F) Z {qn(t) = ot = kT)e> ™y 2 =1}, (8)

where T, F' > 0 are the time and frequency shifts of the prototype function ¢(¢) and ~(¢). The signaling
scheme is here assumed to be (bi)orthogonal, so that

(Ghon, Vi) = 6(k — K)o (n — n'). 9)

To ease the readability of the results presented in the sequel, we shall restrict our analysis to orthog-
onal receive pulses (i.e., (Y n, Vi'.n') = 0(k — k' )d(n —n’)).

The transmitted signal is
K—-1N-1

2(t) =) wrngrnlt), (10)

k=0 n=0
where N is the number of subcarriers and KT is the approximate duration of the transmitted signal.
xr,n, denotes the data symbols. Since little is known about the exact structure of optimal signaling
under the general constraints listed in the introduction, we restrict our analysis to zero-mean, inde-
pendent and identically distributed (i.i.d.) symbols. We assume that the average power of the input

signals is limited so that
K—-1N-1

o S S E{laa) = P (11)

k=0 n=0

where P < +oco is the maximum average power available. The signal-to-noise ratio (SNR) is then
defined as

A P
pE (12)
Jo W)
where B = NF denotes the system bandwidth.
At reception, the output signal y(¢) is projected onto the set {~;,(¢)} to obtain
A
Yen = <y7’7k,n> - <H-r7'7k,n> + <w7’7k,n> . (13)
N——
a
=Wk, n
Yk,n Can be developed as
K-1N-1
Yen = <Hgk,n, 7k,n>$k.,n + Z Z <Hgk’,n’; 7k,n>xk’,n’ + Wk, n, (14)
k’=0n'=0
(k' ,n")#(k,n)

where the second term on the right-hand side (RHS) of (14) represents the intersymbol and intercar-
rier interference.

The relation (14) can be compactly expressed as
y = Hx + w, (15)
where the channel input and output vectors of size NK x 1 are respectively defined by

A T . A
X = [Xg X? e X?(—l] , with X = [:L'k70 Tl xk_,N,l]T R
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A T . A T
yE [ye vyl vkoa] , withy, = [yko vk Yen—1]

and where w is defined analogously. The NK x N K channel matrix H is given by

HO0 ... HOK)
HE| , (16)
HE0) ... HEK)
where the matrix block H(®:¥") of size N x N satisfy
/ N
[HO] 2 (g ) (17)

Since we do not neglect interference, the matrix H is not diagonal and can be decomposed as follows
H = diag (h) + Z, (18)

where h is the direct channel vector corresponding to the main diagonal of H and Z is the ISI/ICI
cross-channel matrix containing the off-diagonal terms of H.

3 ACHIEVABLE RATES

3.1 DEFINITION

Let Py be the set of probability distributions on x that satisfy the constraints given in (11). The
maximum achievable rate for an OFDM system is then given by [14]

1
C = Klgnoo ®T S#F I(y; %), (29)
where I(y;x) = hg(y) — he(y|x) is the mutual information between y and x with hg(y) the differ-
ential entropy of y. In the noncoherent setting, i.e., without a priori knowledge of the channel state
information, the maximum achievable rate is notoriously hard to characterize analytically. However,
by evaluating the mutual information I(y;x) for a specific input distribution, and by relying on the
following inequality on mutual information [15]

I(y;x) > I(y;x|H) — I(y; H|x), (20)

we can get a lower bound on C that yields an information-theoretic criterion useful for the analysis
of UA-OFDM systems. Note that the first term on the RHS of (20) corresponds to the coherent
information rate under perfect channel knowledge at reception and the second term can be interpreted
as a penalty term that quantifies the rate loss due to the lack of channel knowledge.

3.2 LOWER BOUND

Theorem 1 The maximum achievable rate of an OFDM system with i.i.d. input symbols satisfying the
average-power constraint (11) and transmitting over the channel modeled by (2) is lower-bounded as
CH < C, where

L1 _ h : :

CH = Cet = lim inf (P (0, K) + Pz (o) (21)
with C°" the achievable rate of UA-OFDM systems with perfect channel knowledge at reception given
by

1 PT _
C" = lim EEH {1og det (I + WHHTdiag (ry) 1) } . (22)

K—o0
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Here, the entries of the N K x 1 noise power vector r,, are defined as
ro(n+kK) 2 WnF), ne[0,N—1], ke [0,K —1]. (23)

Py (o, K) and Pz (a) can be seen as penalty terms that characterize the rate loss due to direct and
cross channel uncertainty, respectively. P, (o, K) is expressed as
1 PT . _1
Py (o, K) = BT log det <I + N—athlag (rw) ) , (24)

where Rj, denotes the covariance matrix of the direct channel vector h, and Pz («) satisfies

1= PT i
Py (a) = ? 7;0 log (1 + mgiy) s (25)

where &%n is the ISI/ICI power, at subcarrier n, due to the random part of the channel.

Proof: A sketch of the proof can be found in Appendix A. The complete proof is available in [16].

4 NUMERICAL ANALYSIS

Bounds on the information rate applied to experimental doubly dispersive UA channels surveyed at
sea are analyzed in this section. Common OFDM systems with rectangular pulse shaping are used
as a framework in our investigation. ¢(t) and ~(t) are thus defined as

1 if t<T . if T,<t<T,
9(t) = { \{)T othelrwise persh and(t) = { o i ’ (26)
0 otherwise,

where T, = T'— 1/ F denotes the guard time between OFDM symbols.

Two shallow water channels, recorded in Mediterranean sea, are considered. Table 1 summarizes
the main characteristics of these channels. Both channels result from sea trials performed by Thales
Underwater Systems in the Mediterranean sea off La Ciotat (France) in October 2004. From the raw
data and for each channel, the trend hy(7, t) is separated from the random component h (7, t) using
the empirical mode decomposition method [11]. The maximum time delay spread is estimated as the
difference between the longest and the shortest delay where the average power delay profile exceeds
1% of its maximum value (i.e., taps that are 20 dB below the strongest tap are assumed to result from
noise and are artificially set to 0). The maximum Doppler spread is similarly defined from the Doppler
power spectrum as the maximum delay spread from the average power delay profile. To compute the
various expectations required to evalutate the bound C™!, a large number of channel realizations are
generated using the channel stochastic replay approach presented in [11]. The grid parameters T
and F are chosen according to the grid-matching rule [10]: T/ F = Tmax/Vmax-

Through the evolution of the achievable rate (21) as a function of T'F', Figure 1 shows possible trade-
offs between interference minimization and loss of signal-space dimensions. As T'F' increases, the
duration of the guard interval increases as well, which results in a lower interference at reception.
However, for large T'F, the rate loss due to the use of this interval is predominant over the interference
decrease. This figure provides a measure of reassurance that current practice in designing OFDM
systems for underwater channels is reasonable. That is, oversizing guard intervals duration (i.e.,
choosing large T'F) compared to the channel maximum delay spread is not much detrimental to the
information rate, whereas a too small T'F' can significantly decreases this rate, especially in highly
dispersive channels such as channel (b).

Figure 2 shows the achievable rate C! as a function of the SNR p. It suggests that significant rate
improvements are possible compared to state-of-the-art UA-OFDM systems. For instance, reliable
OFDM transmissions at 2 to 4 bits/sec/Hz are achievable provided an average signal-to-noise ratio of
15 to 20 dB, whereas in the same SNR range, single-input single-output UA-OFDM systems usually
operate with a spectral efficiency around 1 bits/sec/Hz [1-3].
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Table 1: Summary of at sea experiments
| | Channel (a) | Channel (b) ]

Center frequency (kHz) 6 6
Bandwidth (kHz) 1 1
Distance (m) 2500 5000
Water depth (m) 60-120 60-120
Tmax (MS) 35 47
Vmax (HZ) 2.7 3.2
K (dB) 49 1.6

N
w

C™ (bits/s/Hz)

1.5

—— Channel (a)
- - -Channel (b)
0.5 | | | | | | |

1 11 1.2 13 14 15 1.6 1.7 1.8 1.9 2

Figure 1: Lower bound C*! as a function of TF, p = 15 dB.

[$)]

4.5- 8
4, -
i~ 3.5+ 8
=
=3 ]
= 2.5- ~
<
- 2 1
© 1.5+ 8
1, -
0.5 - : : ——Channel (a), TF=1.1]
= - - -Channel (b), TF=1.4
0 i i i i i : :
-10 -5 0 5 10 15 20 25 30

SNR (dB)

Figure 2: Lower bound C™! as a function of the SNR p.

5 CONCLUSIONS

The information-theoretic analysis provided in this paper allow us to obtain a better understanding
of the ultimate performance achievable by UA OFDM systems. Numerical assessments on real UA
channels with spreading factors (product between the delay and Doppler spread) around 10~2 show
that reliable OFDM transmissions at 2 to 4 bits/sec/Hz are achievable provided an average signal-
to-noise ratio (SNR) of 15 to 20 dB (more details and results can be found in [16]). Although quite
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realistic, the system model used in this paper could be more constrained. In particular, to strengthen
our results it would be interesting to add a peak-power limitation to our model. It is well known that
OFDM systems can be sensitive to this limitation when power amplifier do not operate with a large
back-off.

APPENDIX A

A lower bound on C' can be obtained by evaluating the mutual information I(y;x) for a specific input
distribution. Specifically, x is chosen such that x ~ CA (0, £LT). The proof of Theorem 1 next relies
on the following information theoretic inequality [15, 17]:

I(y;x) > I(y;x[H) — I(y; H[x). (27)

COMPUTATION OF I(y; x|H)

The random vectors involved in the computation of I(y;x|H) = hg(y|H) — he(y|x,H) being all
Gaussian, using standard results on entropy it can be shown that

I(y;x|H) = Eq {logdet (I + %HHTdiag (rw)_l) } , (28)

COMPUTATION OF I(y; H|x)

The off-diagonal elements of H being generally non-null in highly dispersive environments, the deriva-
tion of I(y;H|x) is not as easy. To obtain the result stated in Theorem 1, y is first split into an
interference-free part and an interference-only part, and then, I(y;H|x) is upper-bounded. More
precisely,

y=hox+w;+Zx+ wy, (29)
——— N —
é)ﬁ éyQ

where w; are two independent random vectors such that w; ~ CN (0, « x diag (r,,)) and wy ~
CN(0,(1 — a) x diag (ry,)), with 0 < a < 1. By invoking the chain rule and the data processing
inequality, it can be shown that

I(y; H[x) < I(y1; h[x) + I(y2; Z]x). (30)

Using that y; is Gaussian given h and x, and as a consequence of Jensen'’s inequality, I(y1; h|x) can
be upper-bounded as

PT _
I(y1;h|x) <logdet (I + N—thiag (rw) 1) , (31)
«
where Ry, denotes the covariance matrix of the direct channel vector h.

Zx being Gaussian given x, using Hadamard’s and Jensen’s inequality, I(y2;Z|x) is then upper-

bounded as follows
N-—1 PT )
. < —~
I(ys;Z|x) < K ; log (1 + N = o)) O‘In) , (32)

where &%n is the ISI/ICI power, at subcarrier n, due to the random part of the channel.

Theorem 1 is then tightened by choosing « that minimizes the penalty term, which concludes the
proof.
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