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Information-Theoretic Analysis of Underwater

Acoustic OFDM Systems in Highly Dispersive

Channels
Francois-Xavier Socheleau, Milica Stojanovic, Christophe Laot and Jean-Michel Passerieux

Abstract

This paper investigates the signal-to-interference ratios and the achievable rates of underwater acoustic

(UA) OFDM systems over channels where time and frequency dispersion are high enough that (i) neither

the transmitter nor the receiver can have a priori knowledgeof the channel state information, and (ii)

intersymbol/intercarrier interference (ISI/ICI) cannotbe neglected in the information theoretic treatment.

The goal of this study is to obtain a better understanding of the interplay between interference and

the achievable transmission rates. Expressions for these rates take into account the “cross-channels”

established by the ISI/ICI and are based on lower bounds on mutual information that assume inde-

pendent and identically distributed input data symbols. Inagreement with recent statistical analyses of

experimental shallow-water data, the channel is modeled asa multivariate Rician fading process with

a slowly time-varying mean and with potentially correlatedscatterers, which is more general than the

common wide-sense stationary uncorrelated scattering model. Numerical assessments on real UA channels

with spreading factors around10−2 show that reliable OFDM transmissions at 2 to 4 bits/sec/Hz are

achievable provided an average signal-to-noise ratio of 15to 20 dB.
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I. INTRODUCTION

The various collections of underwater acoustic (UA) channels surveyed worldwide highlight the di-

versity of UA propagation environments and confirm in many cases the bad reputation of these channels

as communication media [1]–[4]. UA communication systems are usually prone to time and frequency

dispersion due to multi-path propagation and Doppler effects, and the absorption of acoustic waves at high

frequencies strongly limits their bandwidth. Finding systems that are robust to the environment, while

maintaining acceptable data rates, remains the major difficulty faced by UA communication system

designers. For a given propagation channel, this interplaybetween robustness and data rate results in

practice in choosing different modulation schemes according to the importance we give to one or the other

characteristic, the optimal trade-off being unknown in most cases. Historically, single-carrier modulations

with receivers relying on channel equalizers in the time domain have been widely studied and used in

practice for high-speed underwater communications [5]. Recently, multi-carrier (MC) systems such as

OFDM (Orthogonal Frequency Division Multiplexing) [6]–[9] have generated much interest due to the

simplicity of receivers and the flexibility they offer.

For time-invariant channels, modulation basis functions of common OFDM signals (e.g., cyclic prefix

based OFDM) can be seen as “eigen” functions of the channel operator and ensure the absence of

interference at reception. This way of “diagonalizing” thechannel allows the use of simple algorithms

for recovering the information from the received signal. For doubly dispersive channels, and particularly

in the UA context, perfect channel diagonalization can rarely be achieved as the environment is generally

random so that the channel eigenstructure differs from one channel realization to another. The channel

diagonalization can then only be performed in some approximate sense [10]–[12] and interference due

to time-frequency dispersion becomes inevitable. However, even if UA-OFDM systems can hardly avoid

interference, compared to single-carrier approaches, multiplexing the information to be transmitted on a

time-frequency grid offers the opportunity to optimize more degrees of freedom. OFDM system design

is classically approached from the viewpoint of intersymbol/intercarrier interference (ISI/ICI) through

maximization of the signal-to-interference ratio (SIR) [10], [11], [13]–[15]. For a given set of channels,

finding the MC signaling scheme that maximizes the average SIR is a way of designing robust systems

that do not require complex equalization algorithms at reception. While the SIR may be a good figure of

merit to assess the robustness of communications in doubly dispersive environments, it does not reveal the

effect of the chosen signaling scheme on the information rate. The robustness improvement is generally

paid back by the loss of spectral efficiency induced by the useof time and/or frequency guard intervals

April 20, 2012 DRAFT



3

required to limit the interference. For instance, typical UA-OFDM systems use a guard interval between

symbols that is lower-bounded by the maximum delay spread ofthe channel, which often lasts several

tens of milliseconds. Compared to the active symbol duration, this interval is usually not negligible and

can significantly reduce the transmission efficiency. Therefore, it remains unclear whether or not OFDM

systems should tolerate slightly increased interference but operate at higher data rate.

Motivated by recent results in information theory and UA channel modeling, an information-theoretic

analysis of the trade-off between maximization of SIR and minimization of guard intervals is proposed

in this paper. More precisely, our main goal is to obtain a better understanding of the interplay between

interference and the achievable transmission rate of UA-OFDM systems. We pay special attention to UA

channels where time and frequency dispersion are high enough so that ISI/ICI cannot be neglected in the

information theoretic treatment. Our analysis addresses two questions. First, what are the achievable rates

of UA-OFDM in highly dispersive channels? And as a corollary, what are the consequences of OFDM

design choices on these rates?

The target of our analysis is the investigation of UA-OFDM information rate. To this end, we believe

that the following aspects need to be accounted for:

(A1) The UA channel is selective both in time and frequency.

(A2) The UA channel cannot systematically be modeled as a wide-sense stationary uncorrelated

scattering (WSSUS) process.

(A3) No perfect channel state information (CSI) is available at the transmitter nor the receiver.

(A4) Interference is not negligiblea priori.

These aspects are important as they may have a strong impact on the achievable rates of UA-OFDM

systems.(A1) is particularly true in shallow-water environments where the spreading factor (product

between the delay and Doppler spread) is usually around[10−3, 10−1] and can even exceed1 in some

cases [1]. The WSSUS assumption discussed in(A2) implies that the channel correlation function is

time-invariant and that the scatterers with different pathdelays are uncorrelated so that the second-order

statistics of the channel are reduced from four to two dimensions [16]. While this assumption may be

valid for data transmission at low bandwidth with static communication endpoints, it is not the case with

moving platforms and/or when the path-loss associated witheach channel path cannot be assumed to be

constant over the transmission bandwidth [2], [17].(A3) corresponds to what is commonly referred to

as thenoncoherent setting where neither the transmitter nor the receiver knows the current realization

of the channel perfectly [18]–[20]. This assumption has to be contrasted with thecoherent setting where
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a genie provides the receiver with perfect CSI.1 For most channels, the coherent model is not realistic

since receivers are not genie-aided and the effort to acquire the CSI usually induces some rate loss

(pilots insertion, channel estimation errors etc.). In addition, assuming perfect CSI at the transmitter is

also optimistic for most practical cases since the low propagation speed of acoustic waves imposes strong

constraints on the nature of the CSI provided by a feedback link. Since we focus on highly dispersive

channels, we consider in(A4) that interference must be explicitly accounted for in the information

theoretic treatment.

To the best of our knowledge, the information rate of OFDM systems under such general assumptions

has not yet been derived. However, recent works presented in[17] and more particularly in [21] give some

useful ingredients to derive this rate. In [17], the authorsderive bounds on the achievable rate of UA-

OFDM systems and consider the aspects(A1) and(A3), and(A2) in part. Although correlated scattering

is taken into account in their channel model, they assume wide-sense stationarity. As for interference, it is

neglected in their analysis. In [21], Durisi et al. explicitly account for interference terms but present their

results for WSSUS Rayleigh fading channels, which is not appropriate for the majority of UA channels

[2], [22].

The main contributions of this paper are the following:

• Based on the UA channel characterization presented in [2], we present an exact analysis of ISI/ICI of

UA-OFDM systems transmitting in non-WSSUS channels. The channel is modeled as a multivariate

Rician fading process with a slowly time-varying mean and with potentially correlated scatterers.

• The information rate of UA-OFDM systems is analyzed under the general scenario described by the

aspects(A1)-(A4).

• In order to extract guidelines useful for UA-OFDM system design, theoretical results are then nu-

merically assessed on rectangular pulse shaping OFDM transmitting over experimental UA channels

surveyed at sea.

This paper is organized as follows. Section II is devoted to the presentation of the system model and

the main assumptions. Signal-to-Interference ratios and achievable rates of OFDM systems transmitting

over UA channels are derived in Section III. In Section IV, wediscuss the impact of channel and OFDM

parameters on the information rate through various numerical experiments. Finally, conclusions are given

in Section V.

1We warn the reader that the wordcoherent is here used in an information-theoretic context and its definition slightly differs

from the one used in a demodulation context.
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II. SYSTEM MODEL

A. Notation

Throughout this paper, lowercase boldface letters denote vectors, e.g.x, and uppercase boldface letters

denote matrices, e.g.,A. The superscriptsT and † denote transposition and Hermitian transposition,

respectively. The Hadamard (element-wise) products of twomatricesA andB is written asA⊙B. The

entries of a matrixA are denoted by[A]k,n, where the indicesk andn start at 0.B(k,k′) designates a

submatrix of a block matrixB. The Kronecker symbol is denoted byδ(k). We let diag (x) designate a

diagonal square matrix whose main diagonal contains the elements of the vectorx. The inner product

between two signalsy(t) and z(t) is denoted as〈y, z〉 =
∫ +∞
−∞ y(t)z∗(t)dt. CN (m,R) designates the

distribution of a jointly proper Gaussian random vector [23] with meanm and covariance matrixR.

Finally, E {.} denotes expectation.

B. Channel Model

We consider a doubly selective baseband equivalent underwater acoustic channel, modeled as a random

linear time-varying systemH that maps input signalsx(t) into output signalsy(t) according to the I/O

relationship

y(t) = (Hx)(t) + w(t) =

∫

τ
hH(τ, t)x(t− τ)dτ + w(t), (1)

wherehH(τ, t) is the channel impulse response andw(t) denotes the ambient noise.

According to recent results on the statistical characterization of UA channels [2], the impulse response

is modeled as atrend stationary random process so that, for allt, t1 and t2 ∈ R

hH(τ, t) = h̃H(τ, t) + h̄H(τ, t), (2)

with

E {hH(τ, t)} = h̄H(τ, t), (3)

and

E {(hH(τ, t1)− E {hH(τ, t1)}) (hH(τ, t2)− E {hH(τ, t2)})∗} = E

{

h̃H(τ, t1)h̃
∗
H
(τ, t2)

}

= E

{

h̃H(τ, t)h̃
∗
H
(τ, t+ t2 − t1)

}

.(4)

h̄H(τ, t) is called the trend and is a slowly time-varying deterministic component.̃hH(τ, t) is a zero-

mean wide-sense stationary random process assumed to be Gaussian. This model describes the UA

channel as a multivariate Rician fading process with a slowly time-varying mean.̄hH(τ, t) can be
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interpreted as the contribution of (pseudo) deterministicphysical phenomena to channel fluctuations

(wave undulation, range/depth dependence, bathymetry changes etc.) and̃hH(τ, t) represents the channel

fluctuations attributable to scatterers that result in fastfading. Note that since no particular assumption

is made about the correlation of scatterers, the model is very general and includes the WSSUS model as

a subset.2 Without loss of generality, the channel is assumed to be normalized so that

lim
T→∞

1

T

∫ T

2

−T

2

∫

τ
E
{
|hH(τ, t)|2

}
dτdt = 1. (5)

We define the channel Rice factor as the power ratio between the deterministic trend and the random

component, i.e.,

κ = lim
T→∞

1

T

∫ T

2

−T

2

∫

τ |h̄H(τ, t)|2dτdt
∫

τ E

{

|h̃H(τ, t)|2
}

dτ
. (6)

We recall that̄hH(τ, t) is deterministic and that̃hH(τ, t) is wide-sense stationary so thatE

{

|h̃H(τ, t)|2
}

does not depend ont.

The ambient noisew(t) is assumed to be Gaussian and to result from the mixture of four sources [24]:

turbulence, shipping, waves and thermal noise with non flat power spectral densities (PSD). We therefore

modeledw(t) as a non-white zero-mean wide-sense stationary Gaussian random process with correlation

function

Rw(t2 − t1)
∆
= E {w(t1)w(t2)∗} , (7)

and PSD

W (f)
∆
=

∫

τ
Rw(τ)e

−j2πτf dτ. (8)

Simple approximated models forRw(τ) andW (f) are given in Appendix A.

In addition to the channel impulse response, another channel function that will be important for our

treatment is the delay-Doppler spreading function

GH(τ, ν) =

∫ ∞

−∞
hH(τ, t)e

−2jπνtdt

=

∫ ∞

−∞
h̃H(τ, t)e

−2jπνtdt

︸ ︷︷ ︸

∆

=G̃H(τ,ν)

+

∫ ∞

−∞
h̄H(τ, t)e

−2jπνtdt

︸ ︷︷ ︸

∆

=ḠH(τ,ν)

. (9)

2Under the WSS assumption, the channel impulse response would satisfy (4) as well as̄hH(τ, t1) = h̄H(τ, t2), ∀ t1, t2 ∈ R.

Under the assumption thatE
{

h̃H(τ1, t1)h̃
∗

H(τ2, t2)
}

= 0 for τ1 6= τ2, the channel would be said to exhibit delay uncorrelated

scattering (US).
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The channel I/O relation (1) can now be written as

y(t) =

∫

τ

∫

ν
GH(τ, ν)x(t− τ)e2jπνtdτdν + w(t). (10)

The spreading function is assumed to be compactly supportedon a rectangle and satisfies

GH(τ, ν) = 0, for (τ, ν) /∈ [0, τmax]× [−νmax/2; νmax/2], (11)

whereτmax andνmax denote the maximum time delay spread and the maximum Dopplerspread, respec-

tively. This assumption leads to the following definition ofthe channel spreading factor

∆H

∆
= τmax× νmax. (12)

Note that this assumption eases the analysis proposed in this paper but is only an approximation of

real channels behavior. In practice, to set values toτmax andνmax, it is often required to resort to more

empirical definitions (e.g., threshold-based definitions,as used in Section IV-B). Various definitions of

delay and Doppler spreads for real channels are discussed in[1, Section 4.5].

C. OFDM signal

OFDM signaling schemes can be described by two Weyl-Heisenberg (WH) sets [10], [11], [13]: the

one used at transmission, expressed as

(g, T, F )
∆
=
{
gk,n(t) = g(t− kT )ej2πnF t, ‖g‖2 = 1

}

k,n∈Z
(13)

and the one used at reception, defined as

(γ, T, F )
∆
=
{
γk,n(t) = γ(t− kT )ej2πnF t, ‖γ‖2 = 1

}

k,n∈Z
(14)

whereT, F > 0 are the time and frequency shifts of the prototype functiong(t) andγ(t). The signaling

scheme is here assumed to be (bi)orthogonal, so that

〈gk,n, γk′,n′〉 = δ(k − k′)δ(n − n′). (15)

To ease the readability of the results presented in the sequel, we shall restrict our analysis to orthogonal

receive pulses (i.e.,〈γk,n, γk′,n′〉 = δ(k − k′)δ(n − n′)).3

3Note that non-orthogonal receive pulses introduce noise correlation and noise-enhancement that can be harmful for advanced

equalization techniques. As an example, cyclic prefix basedOFDM receiver are orthogonal whereas zero-padding receivers (with

TF > 1) are not.
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The transmitted signal is

x(t) =

K−1∑

k=0

N−1∑

n=0

xk,ngk,n(t), (16)

whereN is the number of subcarriers andKT is the approximate duration of the transmitted signal.

xk,n denotes the data symbols. Since little is known about the exact structure of optimal signaling under

the general constraints listed in the introduction, we restrict our analysis to zero-mean, independent and

identically distributed (i.i.d.) symbols. We assume that the average power of the input signals is limited

so that
1

KT

K−1∑

k=0

N−1∑

n=0

E
{
|xk,n|2

}
= P, (17)

whereP < +∞ is the maximum average power available. The signal-to-noise ratio (SNR) is then defined

as

ρ
∆
=

P
∫ B
0 W (f)

, (18)

whereB = NF denotes the system bandwidth.

At reception, the output signaly(t) is projected onto the set{γk,n(t)} to obtain

yk,n
∆
= 〈y, γk,n〉 = 〈Hx, γk,n〉+ 〈w, γk,n〉

︸ ︷︷ ︸
∆

=wk,n

. (19)

yk,n can be developed as

yk,n = 〈Hgk,n, γk,n〉xk,n +

K−1∑

k′=0

N−1∑

n′=0
(k′,n′)6=(k,n)

〈Hgk′,n′ , γk,n〉xk′,n′ + wk,n, (20)

where the second term on the right-hand side (RHS) of (20) represents the intersymbol and intercarrier

interference.

The relation (20) can be compactly expressed as

y = Hx+w, (21)

where the channel input and output vectors of sizeNK × 1 are respectively defined by

x
∆
=
[
xT
0 xT

1 · · ·xT
K−1

]T
, with xk

∆
= [xk,0 xk,1 · · · xk,N−1]

T ,

y
∆
=
[
yT
0 yT

1 · · · yT
K−1

]T
, with yk

∆
= [yk,0 yk,1 · · · yk,N−1]

T ,

and wherew is defined analogously. TheNK ×NK channel matrixH is given by

H
∆
=








H(0,0) · · · H(0,K)

...
.. .

...

H(K,0) · · · H(K,K)








, (22)
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where the matrix blockH(k,k′) of sizeN ×N satisfy
[

H(k,k′)
]

n,n′

∆
= 〈Hgk′,n′ , γk,n〉. (23)

Since we do not neglect interference, the matrixH is not diagonal and can be decomposed as follows

H = diag (h) + Z, (24)

whereh is the direct channel vector corresponding to the main diagonal of H and Z is the ISI/ICI

cross-channel matrix containing the off-diagonal terms ofH.

III. I NFORMATION THEORETIC ANALYSIS OFUA-OFDM SYSTEMS

Three fundamental characteristics of the sets(g, T, F ) and (γ, T, F ) are generally involved in the

optimization/performance of MC systems.

• (bi)orthogonality: for an ideal channel wherey(t) = x(t), perfect demodulation is obtained iffg(t)

andγ(t) satisfy the condition (15).

• Localization: Localization of a prototype function involves the Heisenberg uncertainty principle and

characterizes its time-frequency concentration so that itdirectly affects the power of interference

observed at reception.

• Density: Spectral efficiency of MC systems is directly proportionalto the density1/TF of the time-

frequency grid that supports the transmission scheme. For instance, adding guard intervals between

OFDM symbols reduces the density due to the fact thatTF > 1 in this case, but as the product TF

gets larger, the power of ISI/ICI diminishes.

Ideally, we would like to construct a MC system that is (bi)orthogonal, with well localized prototype

functions (to limit the interference) and with a dense time-frequency grid (to maximize the spectral

efficiency). However, these three conditions cannot be satisfied simultaneously due to the Balian-Low

theorem [25, Th. 4.1.1]. More precisely, well-localized (bi)orthogonal pulses can only be found for

TF > 1 (see [26, Ch. 2] for more details). This loss in spectral efficiency is usually the price to pay to

mitigate ISI/ICI over doubly dispersive channels.4

These elements highlight the difficulty of finding a compromise between a low interference at reception

and a maximal use of the degrees of freedom offered by the channel. The optimal trade-off between low

interference and high spectral efficiency is a key ingredient in OFDM system design that has yet to

be found. To provide some guidelines that will help us to progress toward the optimal solution, we

4Note that other approaches, such as [13] or [27], privilege localization and spectral efficiency over (bi)orthogonality.
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suggest to study the signal-to-interference ratio as well as the information rate of UA-OFDM systems.

The information rate, defined as the amount of information that can be transmitted with arbitrarily small

error probability, appears as a good figure of merit for system design as it jointly considers interference

and spectral efficiency.

A. Signal-to-interference ratio

The signal-to-interference ratio at the symbolk and the subcarriern is defined as

SIRk,n
∆
=

E

{∣
∣
∣

[
H(k,k)

]

n,n
xk,n

∣
∣
∣

2
}

E







∣
∣
∣
∣
∣

∑K−1
k′=0

∑N−1
n′=0

(k′,n′)6=(k,n)

[
H(k,k′)

]

n,n′
xk′,n′

∣
∣
∣
∣
∣

2






(a)
=

E

{∣
∣
∣

[
H(k,k)

]

n,n

∣
∣
∣

2
}

∑K−1
k′=0

∑N−1
n′=0

(k′,n′)6=(k,n)

E

{∣
∣
∣

[
H(k,k′)

]

n,n′

∣
∣
∣

2
} , (25)

where (a) follows from the assumption that thexk,n are i.i.d. with zero mean. The numerator represents

the average power of the diagonal entries ofH, and the denominator the power of its off-diagonal entries.

Let Ag,γ(τ, ν) be the cross-ambiguity function ofg(t) andγ(t)

Ag,γ(τ, ν)
∆
=

∫

t
g(t)γ∗(t− τ)e−j2πνtdt. (26)

The signal as well as the interference power can be expressedas a function ofAg,γ(τ, ν). More precisely,

as shown in Appendix B

E

{∣
∣
∣
∣

[

H(k,k)
]

n,n

∣
∣
∣
∣

2
}

≈

∫

τ

∫

τ ′

∫

ν
S̃H(τ, τ

′, ν)A∗
γ,g(τ, ν)Aγ,g(τ

′, ν)ej2πnF (τ ′−τ)dν dτ ′dτ +

∣
∣
∣
∣

∫

τ
h̄H(τ, kT )A

∗
γ,g(τ, 0)e

−j2πnFτdτ

∣
∣
∣
∣

2

,

(27)

whereS̃H(τ, τ
′, ν) is the channel scattering function defined as

S̃H(τ, τ
′, ν) =

∫

u
R̃H

(
τ, τ ′, u

)
e−2jπνudu, (28)

with R̃H (τ, τ ′, u)
∆
= E

{

h̃H(τ, t)h̃
∗
H
(τ ′, t+ u)

}

. Note that in the case where the scatterers are assumed

to be uncorrelated, the scattering function is simplified toS̃H(τ, τ
′, ν)δ(τ ′ − τ).

April 20, 2012 DRAFT



11

The first term on the RHS of (27) represents the power carried by the fast fading random part of

the channel and the second term corresponds to the deterministic part of the channel. Similarly, the

interference power satisfies

K−1∑

k′=0

N−1∑

n′=0
(k′,n′)6=(k,n)

E

{∣
∣
∣
∣

[

H(k,k′)
]

n,n′

∣
∣
∣
∣

2
}

∆
= σ̃2

In + σ̄2
Ik,n

, (29)

whereσ̃2
In

is the interference power corresponding to the random part of the channel and is expressed as

σ̃2
In =

K−1∑

k′=1−K

N−1∑

n′=1−N
(k′,n′)6=(0,0)

∫

τ

∫

τ ′

∫

ν
S̃H(τ, τ

′, ν)A∗
γ,g

(
τ + k′T, ν + n′F

)
Aγ,g

(
τ ′ + k′T, ν + n′F

)

×ej2πF (n′+n)(τ ′−τ)dν dτ ′dτ. (30)

Note thatσ̃2
In

does not depend onk since, according to (4),̃hH(τ, t) is wide-sense stationary.

σ̄2
Ik,n

is the interference power due to the deterministic part of the channel and is given by

σ̄2
Ik,n

=

K−1∑

k′=1−K

N−1∑

n′=1−N
(k′,n′)6=(0,0)

∣
∣
∣
∣

∫

τ
h̄H(τ, (k

′ + k)T )A∗
γ,g

(
τ + k′T, n′F

)
e−j2πF (n′+n)τdτ

∣
∣
∣
∣

2

. (31)

Using the above quantities, we now define the average signal-to-interference ratio as

SIR
∆
= lim

K→∞
1

KN

K−1∑

k=0

N−1∑

n=0

SIRk,n. (32)

B. Achievable rate

Let Px be the set of probability distributions onx that satisfy the constraints given in (17). The

maximum achievable rate for an OFDM system is then given by [28]

C = lim
K→∞

1

KT
sup
Px

I(y;x), (33)

whereI(y;x) = hE(y)−hE(y|x) is the mutual information betweeny andx with hE(y) the differential

entropy ofy. In thenoncoherent setting, the maximum achievable rate is notoriously hard tocharacterize

analytically. However, by evaluating the mutual information I(y;x) for a specific input distribution, and

by relying on the following inequality on mutual information [29]

I(y;x) ≥ I(y;x|H) − I(y;H|x), (34)

we can get a lower bound onC that yields an information-theoretic criterion useful forthe analysis of

UA-OFDM systems. Note that the first term on the RHS of (34) corresponds to thecoherent information
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rate under perfect channel knowledge at reception and the second term can be interpreted as a penalty

term that quantifies the rate loss due to the lack of channel knowledge.

Theorem 1: The maximum achievable rate of an OFDM system with i.i.d. input symbols satisfying

the average-power constraint (17) and transmitting over the channel modeled by (2) is lower-bounded as

CL1 ≤ C, where

CL1 = lim
K→∞

1

KT
EH

{

log det

(

I+
PT

N
HH†diag (rw)

−1

)}

− inf
0<α<1

1

KT

[

log det

(

I+
PT

Nα
Rhdiag (rw)

−1

)

+K

N−1∑

n=0

log

(

1 +
PT

N(1− α)rw(n)
σ̃2
In

)]

.

(35)

Here, the entries of theNK × 1 noise power vectorrw are defined as

rw(n+ kK)
∆
= W (nF ), n ∈ [0, N − 1], k ∈ [0,K − 1], (36)

andRh denotes the covariance matrix of the direct channel vectorh, which entries are expressed as
[

R
(k,k′)
h

]

n,n′

=

∫

τ

∫

τ ′

∫

ν
S̃H(τ, τ

′, ν)A∗
γ,g(τ, ν)Aγ,g(τ

′, ν)ej2πνT (k−k′)ej2πF (n′τ ′−nτ)dν dτ ′dτ.(37)

Proof: See Appendix C.

Note that the penalty term in (35) only depends on the random component of the channel so that acquiring

CSI at reception gets more costly as the channel gets more fluctuating (e.g., estimatingH gets more

difficult as the power of its off-diagonal entries increases).

To get a better insight into the achievable rate, the following corollary presents a simplified scenario

of transmission that leads to a more tractable expression ofthe lower bound.

Corollary 1: In the case where the noise is assumed to be white and the scatterers uncorrelated, the

maximum achievable rate is lower bounded asCL2 ≤ C, where

CL2 = lim
K→∞

1

KT
EH

{

log det
(

I+ ρTFHH†
)}

− inf
0<α<1

B

TF

[
∫ 1/2

−1/2
log

(

1 +
ρTF

α
s̃(θ)

)

dθ + log

(

1 +
ρTF

1− α
σ̃2
I

)]

.

(38)

Here,ρ denotes the SNR defined in (18),s̃(θ) is the PSD of the zero-mean stationary channel process

{hk,n − E {hk,n}}k, and is expressed as

s̃(θ) =

∞∑

k=−∞

∫

τ

∫

ν
S̃H(τ, ν) |Aγ,g(τ, ν)|2 ej2πνkTdν dτe−j2πkθ, (39)
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and σ̃2
I satisfies

σ̃2
I =

K−1∑

k′=1−K

N−1∑

n′=1−N
(k′,n′)6=(0,0)

∫

τ

∫

ν
S̃H(τ, ν)|A∗

γ,g

(
τ + k′T, ν + n′F

)
|2dν dτ (40)

Proof: See Appendix D.

Note that the scenario depicted in Corollary 1 may be acceptable for systems transmitting in small

bandwidth (on the order of a kHz), where the noise PSD can be assumed flat and where the propagation

loss associated with each channel path is approximately constant over the transmit bandwidth, thus

reducing the correlation between channel arrival paths.

IV. N UMERICAL ANALYSIS

We next examine the signal-to-interference ratio and the bounds of the previous section in various

scenarios. Using a synthetic channel model, impact of time-frequency dispersion on the information rate

is first discussed in subsection IV-A. Bounds on the information rate applied to experimental doubly

dispersive UA channels surveyed at sea are then analyzed in subsection IV-B. Common OFDM systems

with rectangular pulse shaping are used as a framework in ourinvestigation.g(t) and γ(t) are thus

defined as

g(t) =







1√
T

if 0 < t ≤ T,

0 otherwise
andγ(t) =







1√
T−Tg

if Tg < t ≤ T,

0 otherwise,
(41)

whereTg = T − 1/F denotes the guard time between OFDM symbols.

A. Synthetic channel model

To illustrate the impact of channel dispersion on the performance of OFDM systems, we first consider

a canonical channel model. It has no particular physical justification, but mimics a bad scenario from the

viewpoint of a communication system [20] and will help us to provide general trends on OFDM system

robustness against channel dispersion.

We assume the following environment:

• Rayleigh fading, i.e.,κ = 0,

• uncorrelated scatterers with a brick-shaped scattering function S̃H(τ, ν) = 1/(τmax× νmax),

• white Gaussian noise.

Figure 1 shows the information rate as a function of the channel spreading factor∆H defined in (12).

The grid parametersT andF are chosen according to the grid-matching rule [30]:T/F = τmax/νmax,
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andTF is chosen so as to maximize (38).ρ is set to 15 dB andB = 5 kHz. τmax is randomly chosen

between 1 and 50 ms, andνmax between 0.1 and 50 Hz. As expected, the achievable rate of OFDM

systems is strongly affected by both the delay and the Doppler spread, and decreases as the channel

gets more dispersive. Note that as the rectangular prototype function is not equally localized in time

and frequency, there is not a single performance point for a given spreading factor. For∆H ≤ 10−3 and

ρ = 15 dB, OFDM systems should be able to communicate at roughly 4 bits/s/Hz, which represents 80%

of the achievable rate in an AWGN channel at the same SNR. Suchsystems can be relatively efficient as

long as∆H < 10−1. However, for∆H > 1, there is no guarantee that any data can be reliably transmitted.

B. Experimental UA channels recorded at sea

Three different shallow water channels, recorded in the Atlantic ocean and the Mediterranean sea,

are considered. Table I summarizes the main characteristics of these channels, and Figure 2 shows the

evolution of their respective power delay profiles as a function of time. Channel (a) results from data

collected by the DGA-TN5 in the Atlantic ocean off Brest (France) in October 2007, andchannel (b) and

(c) result from sea trials performed by Thales Underwater Systems in the Mediterranean sea off La Ciotat

(France) in October 2004. From the raw data and for each channel, the trend̄hH(τ, t) is separated from

the random componenth̃H(τ, t) using the empirical mode decomposition method [2]. The maximum time

delay spread is estimated as the difference between the longest and the shortest delay where the average

power delay profile exceeds 1% of its maximum value (i.e., taps that are 20 dB below the strongest

tap are assumed to result from noise and are artificially set to 0). The scattering functioñSH(τ, τ
′, ν)

is obtained from a correlogram estimate of PSD. The maximum Doppler spread is similarly defined

from the Doppler power spectrum as the maximum delay spread from the average power delay profile.6

To compute the various expectations required to evalutate the boundCL1, a large number of channel

realizations are generated using the channel stochastic replay approach presented in [2]. Throughout this

analysis,T andF satisfy the grid-matching rule mentioned previously (i.e., T/F = τmax/νmax).

In Figure 3, the average SIR is plotted as a function ofTF for the three channels. It can be noticed that

asTF increases, the duration of the guard interval increases as well, which results in a lower interference

at reception. The SIR increases significantly as long asTF is such that the guard interval duration is

lower than the maximum time delay spread. A further increaseof TF produces a slighter increase of the

5Direction Générale de l’Armement-Techniques Navales

6The Doppler power spectrum is defined as
∫

τ

∫

τ
′
S̃H(τ, τ

′, ν)dτ ′dτ .
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SIR, which indicates that ISI is more detrimental than ICI. The average SIR also depends on the channel

properties. As expected, for a givenTF , the larger the spreading factor, the smaller the SIR.

Through the evolution of the achievable rate (35) as a function of TF and the SNR, Figure 4 shows

possible trade-offs between interference minimization and loss of signal-space dimensions. It provides

a measure of reassurance that current practice in designingOFDM systems for underwater channels

is reasonable. That is, oversizing guard intervals duration (i.e., choosing largeTF ) compared to the

channel maximum delay spread is not much detrimental to the information rate, whereas a too small

TF can significantly decreases this rate, especially in highlydispersive channels such as channel (c).

The results of Figure 4 also suggest that significant rate improvements are possible compared to state-

of-the-art UA-OFDM systems. For instance, in channels (b) and (c), reliable OFDM transmissions at 2

to 4 bits/sec/Hz are achievable provided an average signal-to-noise ratio of 15 to 20 dB, whereas in the

same SNR range, single-input single-output UA-OFDM systems usually operate with a spectral efficiency

around 1 bits/sec/Hz [6]–[8]. The lower bound (35) obtainedfor channel (a) corroborates the results of

the previous subsection related to channels with small spreading factors, that is, over such channels we

should be able to communicate at 80% of the theoretical rate obtained over AWGN channels.

UA-OFDM systems are not genie-aided and have to spend some resources to acquire CSI at reception,

with the consequence of decreasing the data rate. Insights on how CSI impact the information rate can be

obtained through the numerical analysis of the ratioCL1/Ccoh, whereCcoh is defined as the achievable

rate of UA-OFDM systems with perfect channel knowledge at reception. According to Appendix C, we

have that

Ccoh = lim
K→∞

1

KT
EH

{

log det

(

I+
PT

N
HH†diag (rw)

−1

)}

, (42)

which corresponds to the first term on the RHS of (35). Note that Ccoh is also an upper-bound onC.7

As shown in Figure 5, the penalty induced by the absence of CSIis stronger for channels with larger

Doppler spread (estimatingH gets more difficult as the channel starts to fluctuate more rapidly), and can

lead up to a 30% rate loss for a SNR of 20 dB. In addition,CL1/Ccoh decreases with the SNR, which

indicates that CSI aquisition may become a rate limiting factor at high SNR.

V. CONCLUSIONS AND PERSPECTIVES

The information theoretic analysis provided in this paper led to the following conclusions:

7This can easily be shown by noticing thatI(y;x) ≤ I(y;x|H).
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• The information rate decreases with the channel spreading factor but remains acceptable (i.e., greater

than 1 bits/sec/Hz) as long as this factor is smaller than10−1 and the signal-to-noise ratio is greater

than 15 dB.

• Numerical assessments on real UA channels with spreading factors around10−2 showed that reliable

OFDM transmissions at 2 to 4 bits/sec/Hz are achievable provided an average signal-to-noise ratio

of 15 to 20 dB.

• Current practices in designing OFDM systems for underwaterchannels are reasonable. More pre-

cisely, slightly oversizing guard intervals duration compared to the channel maximum delay spread

is not much detrimental to the information rate, whereas underestimating this duration can be

devastating.

Although quite realistic, the system model used in this paper could be more constrained. In particular,

to strengthen our results, it would be interesting to add to our model a peak-power limitation, as in [31].

It is well known that OFDM systems can be sensitive to this limitation when power amplifier do not

operate with a large back-off. One way to tackle the problem would be to consider, in the information

theoretic treatment, the non-linear distortion due to possible clipping as additional noise. Another point

that deserves further attention, is to study the information rate boundCL1 as a figure of merit for pulse-

shaping optimization. While experimental results showed that large rates can be achieved with rectangular

pulses, the bound provided in this paper could be tightened by maximizing it over all Weyl-Heisenberg

sets.
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APPENDIX A

NOISE MODEL APPROXIMATION

To model the ambient noise in the sea, four sources are usually considered: turbulence, shipping, waves

and thermal noise. These four noise components can be modeled by a colored Gaussian noise with the

following empirical power spectral density (PSD) given in dB re µPa2 per Hz as a function of frequency

f in Hz [24]:

turbulence : 10 logWt(f) = 17− 30 log(10−3f), (43)

shipping : 10 logWs(f) = 40 + 20(s − 0.5) + 26 log(10−3f)− 60 log(10−3f + 0.03), (44)

waves : 10 logWw(f) = 50 + 7.5v1/2 + 20 log(10−3f)− 40 log(10−3f + 0.4), (45)

thermal noise : 10 logWth(f) = −15 + 20 log(10−3f), (46)

where0 ≤ s ≤ 1 is the shipping activity andv is the wind speed in m/s. The baseband equivalent noise

PSD, as defined in (8), is then given by

W (f) = Wt(f + fc) +Ws(f + fc) +Ww(f + fc) +Wth(f + fc), (47)

wherefc is the carrier frequency corresponding the0th subcarrier.

As noticed in [24], in the frequency region where most OFDM communication systems operate (1

kHz to 100 kHz), the noise PSD decays almost linearly on the logarithmic scale.8 This indicates that a

simple expression may be found for the auto-correlation function Rw(τ). In fact, by expressingRw(τ)

as

Rw(τ) = βe−µ|τ |e−j2πfcτ , (48)

whereβ > 0 andµ > 0, we get the following PSD [32]

W (f) = β
2µ

µ2 + 4π(f + fc)2
, (49)

that turns out to be a good approximation of the noise PSD in frequency range of interest. This

approximation is shown in Figure 6 withµ = 5.103 and β is chosen such that the noise powers of

models (47) and (49) perfectly match at 10 kHz.

8Surface motion, caused by wind-driven waves is the main contributor to the noise in that frequency range
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APPENDIX B

COMPUTATION OF THE SIGNAL AND THE INTERFERENCE POWER

For all k, k′, n, n′ ∈ Z, we have that

[

H(k,k′)
]

n,n′

∆
= 〈Hgk′,n′ , γk,n〉

(a)
=

∫

t

∫

τ

∫

ν
GH(τ, ν)g(t − k′T − τ)ej2πn

′F (t−τ)ej2πνtγ∗(t− kT )e−j2πnF tdν dτ dt

(b)
=

∫

τ

∫

ν
GH(τ, ν)e

−j2πn′Fτ

[∫

t
g∗(t− k′T − τ)γ(t− kT )e−j2πνte−j2π(n′−n)Ftdt

]∗
dν dτ

(c)
=

∫

τ

∫

ν
GH(τ, ν)A

∗
γ,g

(
τ + (k′ − k)T, ν + (n′ − n)F

)
e−j2πn′Fτej2π(ν+(n′−n)F )kT dν dτ,

(50)

where (a) and (b) follows from (9), (13) and (14), and (c) follows from the change of variablest′ = t−kT

and from (26).

From this expression, we can now derive the signal power

E

{∣
∣
∣
∣

[

H(k,k)
]

n,n

∣
∣
∣
∣

2
}

(a)
= E

{∣
∣
∣
∣

∫

τ

∫

ν

(

ḠH(τ, ν) + G̃H(τ, ν)
)

A∗
γ,g (τ, ν) e

j2π(νkT−nFτ) dν dτ

∣
∣
∣
∣

2
}

,

(b)
≈ E

{∣
∣
∣
∣

∫

τ

∫

ν
G̃H(τ, ν)A

∗
γ,g (τ, ν) e

j2π(νkT−nFτ) dν dτ

∣
∣
∣
∣

2
}

+

∣
∣
∣
∣

∫

τ
h̄H(τ, kT )A

∗
γ,g(τ, 0)e

−j2πnFτdτ

∣
∣
∣
∣

2

,

(c)
=

∫

τ

∫

ν

∫

τ ′

∫

ν′

E

{

G̃H(τ, ν)G̃
∗
H
(τ ′, ν ′)

}

A∗
γ,g (τ, ν)Aγ,g

(
τ ′, ν ′

)

×ej2π(νkT−nFτ)e−j2π(ν′kT−nFτ ′)dν ′ dτ ′ dν dτ

+

∣
∣
∣
∣

∫

τ
h̄H(τ, kT )A

∗
γ,g(τ, 0)e

−j2πnFτdτ

∣
∣
∣
∣

2

,

(d)
=

∫

τ

∫

τ ′

∫

ν
S̃H(τ, τ

′, ν)A∗
γ,g(τ, ν)Aγ,g(τ

′, ν)ej2πnF (τ ′−τ)dν dτ ′dτ

+

∣
∣
∣
∣

∫

τ
h̄H(τ, kT )A

∗
γ,g(τ, 0)e

−j2πnFτdτ

∣
∣
∣
∣

2

, (51)

where (a) follows from (50) and (9). In (b), we use thatE

{

G̃H(τ, ν)
}

= 0 and we implicitly assume that

the prototype functionsg(t) andγ(t) have a compact support and that the channel average component

h̄H(τ, t) is approximately constant (int) over that support. If we consider rectangular prototype functions,

the duration of their support is upper-bounded byT , which represents a few tens or hundreds of
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milliseconds. This has to be compared with the fluctuation period of h̄H(τ, t), which is rather a few tens

or hundreds of seconds [2]. Note that, theoretically, some prototype functions can have an infinite support.

However, the contribution to the received power from the part of the pulse that has a support greater

than few times the symbol periodT is rather negligible (e.g., for most infinite length prototype functions

such as Gaussian, Raised-Cosine etc., we usually have that
∫ 5T
−5T |g(t)|2dt ≈

∫∞
−∞ |g(t)|2dt). (d) holds

because, according to (4), the zero-mean random parth̃H(τ, t) of the channel is wide-sense stationary

so thatE
{

G̃H(τ, ν)G̃
∗
H
(τ ′, ν ′)

}

= S̃H(τ, τ
′, ν)δ(ν ′ − ν), where S̃H(τ, τ

′, ν) is the channel scattering

function defined in (28). Note that in the case where the scatterers are assumed to be uncorrelated

E

{

G̃H(τ, ν)G̃
∗
H
(τ ′, ν ′)

}

= S̃H(τ, ν)δ(ν
′ − ν)δ(τ ′ − τ), so that (51) simplifies to

E

{∣
∣
∣
∣

[

H(k,k)
]

n,n

∣
∣
∣
∣

2
}

≈
∫

τ

∫

ν
S̃H(τ, ν) |Aγ,g(τ, ν)|2 dν dτ +

∣
∣
∣
∣

∫

τ
h̄H(τ, kT )A

∗
γ,g(τ, 0)e

−j2πnFτdτ

∣
∣
∣
∣

2

. (52)

Similarly to (51), the interference power can be derived from the following development

E

{∣
∣
∣
∣

[

H(k,k′)
]

n,n′

∣
∣
∣
∣

2
}

(a)
= E

{∣
∣
∣
∣

∫

τ

∫

ν

(

ḠH(τ, ν) + G̃H(τ, ν)
)

A∗
γ,g

(
τ + (k′ − k)T, ν + (n′ − n)F

)

×e−j2πn′Fτej2π(ν+(n′−n)F )kT dν dτ

∣
∣
∣
∣

2}

(b)≈ E

{∣
∣
∣
∣

∫

τ

∫

ν
G̃H(τ, ν)A

∗
γ,g

(
τ + (k′ − k)T, ν + (n′ − n)F

)

×e−j2πn′Fτej2π(ν+(n′−n)F )kT dν dτ

∣
∣
∣
∣

2}

+

∣
∣
∣
∣

∫

τ
h̄H(τ, k

′T )A∗
γ,g

(
τ + (k′ − k)T, (n′ − n)F

)
e−j2πn′Fτdτ

∣
∣
∣
∣

2

(c)
=

∫

τ

∫

τ ′

∫

ν
S̃H(τ, τ

′, ν)A∗
γ,g

(
τ + (k′ − k)T, ν + (n′ − n)F

)

×Aγ,g

(
τ ′ + (k′ − k)T, ν + (n′ − n)F

)
ej2πn

′F (τ ′−τ)dν dτ ′dτ

+

∣
∣
∣
∣

∫

τ
h̄H(τ, k

′T )A∗
γ,g

(
τ + (k′ − k)T, (n′ − n)F

)
e−j2πn′Fτdτ

∣
∣
∣
∣

2

, (53)

where (a) follows from (50) and (9). For (51) and (53) alike, in (b) we assume that̄hH(τ, t) is approxi-

mately constant over some period of time. We here consider that h̄H(τ, t) does not fluctuate much over

the duration that corresponds to the maximal time difference between two interfering OFDM symbols,i.e.,

h̄H(τ, kT ) ≈ h̄H(τ, k
′T ), ∀ (k, k′) ∈

{

(k, k′)
∣
∣E

{∣
∣
∣

[
H(k,k′)

]

n,n′

∣
∣
∣

2
}

6= 0

}

. Once again, this assumption

is not restricting since for most OFDM systems the duration(k′ − k)T only represents a few tens or

hundreds of milliseconds in worst case scenarios. In the case where the scatterers are assumed to be
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uncorrelated, (53) simplifies to

E

{∣
∣
∣
∣

[

H(k,k′)
]

n,n′

∣
∣
∣
∣

2
}

=

∫

τ

∫

ν
S̃H(τ, ν)

∣
∣Aγ,g

(
τ + (k′ − k)T, ν + (n′ − n)F

)∣
∣2 dν dτ

+

∣
∣
∣
∣

∫

τ
h̄H(τ, k

′T )A∗
γ,g

(
τ + (k′ − k)T, (n′ − n)F

)
e−j2πn′Fτdτ

∣
∣
∣
∣

2

. (54)

APPENDIX C

PROOF OFTHEOREM 1

A lower bound onC can be obtained by evaluating the mutual informationI(y;x) for a specific input

distribution. Specifically,x is chosen such thatx ∼ CN
(
0, PT

N I
)
. The proof of Theorem 1 next relies

on the following information theoretic inequality [29], [33]:

I(y;x) ≥ I(y;x|H) − I(y;H|x). (55)

A. Computation of I(y;x|H)

The computation ofI(y;x|H) = hE(y|H) − hE(y|x,H) is straightforward since

• conditional onH, y is distributed according to a complex Gaussian distribution with a covariance

matrix equal toPT
N HH† + E

{
ww†},

• conditional onx andH, y is complex Gaussian with a covariance matrix equal toE
{
ww†}.

The entries of theNK ×NK noise covariance matrixE
{
ww†} are given by

[

E

{

ww†
}(k,k′)

]

n,n′

∆
= E

{
wk,nw

∗
k′,n′

}

=

∫

τ
Rw(τ)e

−j2πnFτA∗
γ,γ

(
τ + (k′ − k)T, (n′ − n)F

)
ej2πkTF (n′−n)dτ

(a)
≈

∫

τ
Rw(τ)e

−j2πnFτA∗
γ,γ

(
(k′ − k)T, (n′ − n)F

)
ej2πkTF (n′−n)dτ

(b)
=

∫

τ
Rw(τ)e

−j2πnFτdτ × δ(k − k′)δ(n − n′)

(c)
= W (nF )× δ(k − k′)δ(n − n′). (56)

Here, (a) is based on Appendix A where it is shown thatRw(τ) can be well approximated by a function

that decays very fast compared to common pulse durations (i.e.,Rw(τ) = βe−5.103|τ |e−j2πfcτ ). (b) follows

from the orthogonality of the receive pulse and (c) from (8).Consequently,

I(y;x|H) = EH

{

log det

(

I+
PT

N
HH†

E

{

ww†
}−1

)}

= EH

{

log det

(

I+
PT

N
HH†diag (rw)

−1

)}

, (57)
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where the entries of theNK × 1 vectorrw are defined as

rw(n+ kK)
∆
= W (nF ), n ∈ [0, N − 1], k ∈ [0,K − 1]. (58)

B. Computation of I(y;H|x)

The off-diagonal elements ofH being generally non-null in highly dispersive environments, the

derivation ofI(y;H|x) is not as easy. Influenced by [21], we next seek an upper-boundon the penalty

term I(y;H|x) by splitting y into an interference-free part and an interference-only part, so that

y = Hx+w

= h⊙ x+ Zx+w

= h⊙ x+w1
︸ ︷︷ ︸

∆

=y1

+Zx+w2
︸ ︷︷ ︸

∆

=y2

, (59)

where w1 are two independent random vectors such thatw1 ∼ CN (0, α × diag (rw)) and w2 ∼
CN (0, (1 − α)× diag (rw)), with 0 < α < 1.

Let us note that

I(y;H|x)
(a)

≤ I(y1,y2;H|x)
(b)

≤ I(y1,y2;h,Z|x)
(c)
= I(y1;h,Z|x) + I(y2;h,Z|x,y1)

(d)
= I(y1;h|x) + I(y2;h,Z|x,y1)

(e)
= I(y1;h|x) + hE(y2|x,y1)− hE(y2|x,y1,h,Z)

(f)
= I(y1;h|x) + hE(y2|x,y1)− hE(y2|x,Z)
(g)

≤ I(y1;h|x) + hE(y2|x)− hE(y2|x,Z)

= I(y1;h|x) + I(y2;Z|x). (60)

In (a) and (b) we used the data processing inequality, (c) follows from the chain rule, (d) holds because

y1 andZ are conditionally independent givenh, in (e) we expressed mutual information as a function of

entropy, (f) holds becausey2 andy1 are conditionally independent givenx andh, and also becausey2

andh are conditionally independent givenx andZ. Finally, the fact that conditioning reduces entropy

leads to (g).
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Using thaty1 is Gaussian givenh andx, and as a consequence of Jensen’s inequality,I(y1;h|x) can

be upper-bounded as

I(y1;h|x) = Ex

{

log det

(

I+
diag (x) diag

(
x†)

α
Rhdiag (rw)

−1

)}

≤ log det

(

I+
PT

Nα
Rhdiag (rw)

−1

)

, (61)

whereRh denotes the covariance matrix of the direct channel vectorh. From (50), we can express the

entries ofRh as
[

R
(k,k′)
h

]

n,n′

=

∫

τ

∫

τ ′

∫

ν
S̃H(τ, τ

′, ν)A∗
γ,g(τ, ν)Aγ,g(τ

′, ν)ej2πνT (k−k′)ej2πF (n′τ ′−nτ)dν dτ ′dτ.(62)

We next seek an upper bound onI(y2;Z|x). Let Q(x) = EZ

{

(Zx− EZ {Zx}) (Zx− EZ {Zx})†
}

be the conditional covariance matrix of the vectorZx given x. Zx being Gaussian givenx, using

Hadamard’s and Jensen’s inequality,I(y2;Z|x) is then upper-bounded as follows

I(y2;Z|x) = Ex

{

log det

(

I+
1

1− α
Q(x)diag (rw)

−1

)}

≤
K−1∑

k=0

N−1∑

n=0

Ex

{

log

(

1 +
1

(1− α)rw(n+ kK)

[

Q(x)(k,k)
]

n,n

)}

≤
K−1∑

k=0

N−1∑

n=0

log

(

1 +
1

(1− α)rw(n+ kK)
Ex

{[

Q(x)(k,k)
]

n,n

})

.

=

K−1∑

k=0

N−1∑

n=0

log

(

1 +
PT

N(1− α)rw(n + kK)
σ̃2
In

)

,

(63)

where the last equality holds because the input symbols are i.i.d. with zero mean, so that

Ex

{[

Q(x)(k,k)
]

n,n

}

=
PT

N

[

E

{

(Z− E {Z}) (Z− E {Z})†
}(k,k)

]

n,n

=
PT

N
σ̃2
In , (64)

with σ̃2
In

the interference power due to the random part of the channel as defined in (30). (63) can be

further simplified by noticing thatrw(n+ kK) and σ̃2
In

do not depend onk, therefore

I(y2;Z|x) ≤ K

N−1∑

n=0

log

(

1 +
PT

N(1− α)rw(n)
σ̃2
In

)

. (65)
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From (55), (57), (61) and (65), and for all0 < α < 1, I(y;x) can be lower-bounded as follows

I(y;x) ≥EH

{

log det

(

I+
PT

N
HH†diag (rw)

−1

)}

−
[

log det

(

I+
PT

Nα
Rhdiag (rw)

−1

)

+K

N−1∑

n=0

log

(

1 +
PT

N(1− α)rw(n)
σ̃2
In

)]

.

(66)

The bound is then tightened by choosingα that minimizes the penalty term, which concludes the

proof.

APPENDIX D

PROOF OFCOROLLARY 1

A. White noise assumption

Under the white noise assumption, the noise PSD is flat over the entire bandwidth so thatW (f) = W0,

whereW0 is a constant. In that case, the entries of vectorrw are all equal toW0 and the SNRρ satisfies

ρ = P/(BW0). Given thatB = NF , from Theorem 1 we have that,

C ≥ lim
K→∞

1

KT
EH

{

log det
(

I+ ρTFHH†
)}

− inf
0<α<1

1

KT

[

log det

(

I+
ρTF

α
Rh

)

+K

N−1∑

n=0

log

(

1 +
ρTF

1− α
σ̃2
In

)]

.

(67)

B. Uncorrelated scattering assumption

In the case where the scatterers can be assumed as uncorrelated, the lower bound on the information

rate can be further simplified.

First, the channel scattering function is reduced from three to two dimensions, so that̃σ2
In

does not

depend onn anymore and is expressed as

σ̃2
In =

K−1∑

k′=1−K

N−1∑

n′=1−N
(k′,n′)6=(0,0)

∫

τ

∫

ν
S̃H(τ, ν)|A∗

γ,g

(
τ + k′T, ν + n′F

)
|2dν dτ

∆
= σ̃2

I . (68)

Second, the covariance matrixRh becoming block-Toeplitz, the extension of Szegö’s theorem to two-

level Toeplitz matrices can be applied, that is [34, Th. 3]

lim
K→∞

1

KT
log det

(

I+
ρTF

α
Rh

)

=
1

T

∫ 1/2

−1/2
log det

(

I+
ρTF

α
S̃(θ)

)

dθ, (69)
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whereS̃(θ) is the power spectral density of the zero-mean multivariaterandom process{hk − E {hk}},

with hk
∆
= [hk,0 hk,1 · · · hk,N−1]

T , i.e.,

S̃(θ)
∆
=

∞∑

k=−∞
E

{

(hk − E {hk}) (hk − E {hk})†
}

e−j2πkθ. (70)

By noticing that the entries on the main diagonal ofS̃(θ) are all equal and by applying Hadamard’s

inequality, we have that

1

T

∫ 1/2

−1/2
log det

(

I+
ρTF

α
S̃(θ)

)

dθ ≤ N

T

∫ 1/2

−1/2
log

(

1 +
ρTF

α
s̃(θ)

)

dθ, (71)

wheres̃(θ) is the PSD of the zero-mean stationary channel process{hk,n −E {hk,n}}k and is expressed

as

s̃(θ) =

∞∑

k=−∞

∫

τ

∫

ν
S̃H(τ, ν) |Aγ,g(τ, ν)|2 ej2πνkTdν dτe−j2πkθ. (72)

Corollary 1 is then obtained by noticing thatN/T = B/(TF ).
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Fig. 1. Lower bound (38) as a function of the channel spreading factor for a Rayleigh fading channel with a brick-shaped

scattering function and white Gaussian Noise.ρ = 15 dB andB = 5 kHz.

TABLE I

SUMMARY OF AT SEA EXPERIMENTS

Channel Center frequency (kHz) Bandwidth (kHz) Distance (m) Water depth (m) τmax (ms) νmax (Hz) κ (dB)

(a) 17.5 2.9 1000 10-40 2.1 1.5 15.5

(b) 6 1 2500 60-120 35 2.7 4.9

(c) 6 1 5000 60-120 47 3.2 1.6
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Fig. 2. Time evolution of the power delay profiles of the channels depicted in Table I.

April 20, 2012 DRAFT



29

1 1.1 1.2 1.3 1.4 1.5 1.6 1.7 1.8 1.9 2
5

10

15

20

25

30

35

40

TF

S
IR

 (
dB

)

 

 

channel (a)
channel (b)
channel (c)

Fig. 3. Average signal-to-interference ratio as a functionof TF .
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Fig. 4. Lower boundCL1 as a function ofTF and the SNRρ for the three channels depicted in Table I.
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that there is no ISI.
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