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Haye F-54516 Vandoeuvre-les-Nancy, France; bInstitut Universitaire de France

(v3.5 released August 2008)

A class of switched non-quadratic Lyapunov functions is considered in this paper. The function is associated
with discrete-time switched systems subject to mode-dependent cone bounded nonlinearities and saturation
actuator. These Lyapunov functions depend on the switched nonlinearities and on the active mode, instead
of the time-invariant Lur’e-type function. The only assumption considered here is the mode-dependent sector
condition, without constraint related to the slope of the nonlinearities. The stability analysis and control design
problems lead to linear matrix inequalities (LMI) conditions. Optimization problems are provided to cope with
both issues in order to maximize the size of the basin of attraction estimate, which may be composed of
disconnected sets. Numerical examples illustrate via comparisons that we improve the results of the literature.
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1 Introduction

Switched systems are a subclass of hybrid systems characterized by a number of subsystems
and a switching strategy imposing the active mode at each time (Liberzon 2003). In a large
number of contributions, the switching modes are formulated as linear ones. This is, in general,
only an approximation for physical systems models to be valid in a limited domain. Nonetheless,
because of the actuators cannot provide unbounded magnitude signals, the resulting dynamics
could be nonlinear. Thus, it is reasonable to consider some nonlinearities dependent on the state
and the control input. These nonlinearities are naturally mode-dependent and should be taken
into account to refine the modelling step.

The saturation nonlinearity draw attention in the classical literature of control design. Two
representations of the saturation are mostly considered (Tarbouriech et al. 2011): as a polytope
and as a cone bounded nonlinearity. These models were also used to study switched systems
subject to saturation, (Benzaouia et al. 2004, Lu and Lin 2008, Jungers et al. 2009, 2010).
References (Jungers et al. 2009, 2010) deal with more general systems including, in addition,
mode-dependent cone-bounded nonlinearities, as investigated in this paper.

Stability of linear systems connected to a cone bounded nonlinearity has been widely studied,
so-called Lur’e problem (Khalil 2002). In continuous-time, a dedicated Lyapunov function has
been proposed, named Lur’e-type function, which is composed of a quadratic term with respect
to the state and an integral term of the nonlinearity. The integral is justified because it induces
the presence of the nonlinearity in the Lyapunov time-derivative. Stability conditions are, then,
achieved only by managing with the sector condition. In discrete-time, the idea of using the
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same function has also been considered (Haddad and Bernstein 1994, Kapila and Haddad 1996,
Gomes da Silva Jr. et al. 2001, Jury and Lee 1964a,b, Sharma and Singh 1981). Nevertheless,
additional assumptions about the nonlinearity slope are required to upper-bound the remaining
integral term in the Lyapunov difference. At last but not least, the Lur’e function requires time-
invariance of the nonlinearity. Extending such a tool to switched systems with mode-dependent
nonlinearities is difficult due to the time dependency.

In this paper, we tackle the problems of stability analysis and stabilization of discrete-time
switched systems including switched nonlinearities and input saturation. The same issue has
been investigated in (Gonzaga et al. 2011) in the simple case where the systems do not switch.
The main contribution here is to consider a switched Lyapunov function which depends on the
switched cone bounded nonlinearities without additional assumptions on their slope. Sufficient
conditions for stability analysis are provided as linear matrix inequalities (LMI). On the other
hand, the stabilization purpose is directly given by bilinear matrix inequalities (BMI) which are
relaxed through the Finsler’s Lemma obtaining sufficient conditions as LMIs.

The paper is organized as follows: Section 2 is devoted to the system description, some prelim-
inaries and a switched nonlinearity-dependent Lyapunov function is presented. The main results
related to the stability analysis problem are provided in Section 3 and a numerical example is
given. Section 4 is dedicated to the stabilization issue and the same example of Section 3 is
considered. Concluding remarks are given in Section 5.

Notation: Components of vector x ∈ R
n are denoted x(ℓ), ∀ ℓ = 1, ..., n. Vectors inequalities

are component-wise: x ≥ 0 means x(ℓ) ≥ 0 and x ≥ y means x(ℓ) − y(ℓ) ≥ 0. A(ℓ) (resp. Ai,(ℓ))
is the ℓ-th row of matrix A (resp. Ai). For two symmetric matrices A, B, A > B means that
A − B is positive definite. A′ is the transpose of A. In (resp. 0n) and 0m×n are the n-order
identity (null) matrix and the m × n-order null matrix, respectively. Operator diag[x] means a
diagonal matrix obtained from vector x. Symbol ⋆ stands for symmetric block in matrices. The
ellipsoidal set E(M,γ) associated with M > 0 is given by {x ∈ R

n; x′Mx ≤ γ} and the shortcut
E(M) = E(M, 1) is used. For a given matrix X ∈ R

n×n, He(X) = X + X ′.

2 System description and preliminaries

Consider the discrete-time switching system composed of N nonlinear modes (N ∈ N
∗)

xk+1 = Aσ(k)xk + Fσ(k)ϕσ(k)(yk) + Bσ(k)sat(uk), (1)

yk = Cσ(k)xk, (2)

where xk ∈ R
n, uk ∈ R

m, yk ∈ R
p and ϕσ(k)(·) ∈ R

p are respectively the state, input, output
and the active nonlinearity vector of the system (1)-(2) at the time instant k ∈ N. This system
will satisfy the following assumptions.

Assumption 2.1 The switching rule σ : N → N
∗ takes its values in the finite set IN = {1, · · · , N}

and is assumed to be not known a priori, but its current value σ(k) to be available in real-time.

The notation Mσ(k) means that at each time k, Mσ(k) takes its values in the set {M1, · · · , MN}
indexed by σ(k). The matrices Ai, Bi, Ci and Fi, ∀i ∈ IN , have appropriate dimensions.

Assumption 2.2 The N nonlinearities ϕi(·) : R
p → R

p associated with each mode i ∈ IN are
assumed to be decentralized and to satisfy their own cone bounded sector condition (Khalil
2002). These sector conditions will be mode-dependent.

This assumption, which writes ϕi(·) ∈ [0p, Ωi] with a conventional abuse of notations (Khalil
2002), means that ϕi(0) = 0 and there exist N diagonal positive definite matrices Ωi ∈ R

p×p

such that, ∀y ∈ R
p, ∀ i ∈ IN , ϕi,(ℓ)(y) [ϕi(y) − Ωiy](ℓ) ≤ 0, ∀ ℓ = 1, · · · , p. Hence, we have the
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following inequality:

SC(ϕi(·), y, Λi) = ϕ′
i(y)Λi[ϕi(y) − Ωiy] ≤ 0, (3)

where Λi
△
= diag{λq,i}q=1;··· ;p ∈ R

p×p are any positive definite diagonal matrices. Note that Ωi

is given by the designer and assumed to be known hereafter for each mode i ∈ IN .
It is simple to show that relation (3) is equivalent to [Ωiy]′(ℓ)[ϕi(y)−Ωiy](ℓ) ≤ 0, ∀ℓ = 1, · · · , p,

∀y ∈ R
p; ∀i ∈ IN , which implies, with Λi diagonal positive definite, that

0 ≤ ϕ′
i(y)Λiϕi(y) ≤ ϕ′

i(y)ΛiΩiy ≤ y′Ω′
iΛiΩiy, ∀y ∈ R

p. (4)

Assumption 2.3 The control input uk is subject to actuation limits, and the standard saturation
function is considered: sat(uk)(ℓ) = sign((uk)(ℓ)) min

(
ρ(ℓ),

∣∣(uk)(ℓ)
∣∣), ∀ℓ = 1, ...,m. The vector

0m < ρ ∈ R
m is assumed to be given.

Throughout this paper, the following class of control law is considered (Jungers et al. 2009):

uk = Kσ(k)xk + Γσ(k)ϕσ(k)(yk), (5)

where the m × n matrix Kσ(k) is a switching state feedback gain and the m × p matrix Γσ(k) is
a switching feedback gain associated with the active nonlinearity ϕσ(k)(·). If Γσ(k) 6= 0m×p, the
feedback control law requires the following assumption

Assumption 2.4 The value of the active nonlinearity ϕσ(k)(yk) is assumed to be known as a
signal (Arcak et al. 2003) at time k, either by model estimate or measuring.

The saturation is described as a dead-zone nonlinearity Ψ(uk) = uk − sat(uk). By replacing uk

defined in (5) and using Ψ(uk) into (1), the closed-loop model is given by

xk+1 = Acl,σ(k)xk + F cl,σ(k)ϕσ(k)(yk) − Bσ(k)Ψ(uk), (6)

where Acl,i = Ai + BiKi and F cl,i = Fi + BiΓi, ∀i ∈ IN .
The following set is used to characterize the dead-zone as belonging to a generalized sector

condition. For given matrices Hi ∈ R
m×(n+p), i ∈ IN , consider

S({Hi}i∈IN
, ρ) =

{
θ ∈ R

n+p;−ρ ≤ Hiθ ≤ ρ,∀i ∈ IN

}
. (7)

Lemma 2.5 Let m × (n + p)-matrices K̂σ = [Kσ Γσ] and Ĵσ = [J1,σ J2,σ], σ ∈ IN . If the

vector x̂k = [x′
k ϕ′

σ(yk)]
′ is an element of S({K̂σ − Ĵσ}σ∈IN

, ρ), the nonlinearity Ψ(uk) satisfies
the following sector condition

SCuk
= Ψ′(uk)U

−1
σ(k)

[
Ψ(uk) − J1,σ(k)xk − J2,σ(k)ϕσ(k)(yk)

]
≤ 0, ∀σ ∈ IN , (8)

with uk defined in (5), for any diagonal positive definite matrix Uσ ∈ R
m×m.

Proof The proof follows the same lines of (Tarbouriech et al. 2006, Lemma 1). �

After presenting the studied class of systems and the necessary background, the following
problems will be addressed in this paper.

Problem 2.6 (Local Stability Analysis) Given the switched gains Ki and Γi (i ∈ IN ) of the
control law (5), and under Assumptions 2.1-2.4, determine a region in the state space, as large
as possible, included in the basin of attraction B0 of the system (6), allowing to conclude the
local asymptotic stability for any switching rule.
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Problem 2.7 (Closed-loop Stabilization) Determine the control law (5) such that the closed-loop
system (6) is locally asymptotically stable for any switching rule, in a region as large as possible,
included in the basin of attraction B0.

Instead of using a switched quadratic Lyapunov function, as considered in (Jungers et al.
2009), to study both problems, we want to investigate a function which takes the cone bounded
nonlinearity ϕi(·) into account. However, the wide-spread Lur’e-type function (Khalil 2002) can-
not be employed due to the mode-dependent cone bounded nonlinearities. By taking advantage
of the class of Lyapunov functions presented in our recent work (Gonzaga et al. 2011), an exten-
sion to cover the time-varying nature of these nonlinearities is possible. Moreover it will allow
to improve the results of the literature considering switched quadratic Lyapunov functions and
to relaxe the bilinear nature of control design sufficient conditions.

2.1 Switched nonlinearity-dependent Lyapunov functions

The following class of non-quadratic switched Lyapunov candidate functions will be considered
as main tool in this paper. Let:

V :

{
IN × R

n × R
p −→ R,

(i, x, ϕ(Cix)) 7−→ x′Pix + 2ϕ′(Cix)∆iΩiCix,
(9)

where matrices Pi ∈ R
n×n are symmetric positive definite and ∆i ∈ R

p×p are diagonal positive
semi-definite (i ∈ IN ). It is noteworthy that, by setting ∆i = 0p (∀i ∈ IN ), the switched
quadratic Lyapunov function is recovered and, thus, it may be considered as a particular case
of (9).

From Inequalities (4), it is possible to define a lower and an upper bounds given by two
switched quadratic functions

x′Pix ≤ V (i;x;ϕi(Cix)) ≤ x′(Pi + 2C ′
iΩ

′
i∆iΩiCi)x, ∀i ∈ IN . (10)

The function V can be considered as a candidate, because it verifies the following properties:

• V (i; x;ϕi(Cix)) ≥ 0, ∀x ∈ R
n, ∀i ∈ IN , due to the left inequality in (10);

• V (i; x;ϕi(Cix)) = 0, if and only if x = 0, because Pi > 0n, ∀i ∈ IN ;

• V (i; x;ϕi(Cix)) is unbounded, i.e., V (i;x;ϕi(Cix)) → ∞ whenever ‖x‖ → ∞, ∀i ∈ IN .

The Lyapunov difference is defined as

δkV = V (σ(k + 1);xk+1; ϕσ(k+1)(Cσ(k+1)xk+1)) − V (σ(k);xk;ϕσ(k)(Cσ(k)xk)). (11)

The Level Set LV (γ) associated with V (i;x;ϕi(Cix)) and a γ > 0 is given by

LV (γ) = {x ∈ R
n;V (i;x; ϕi(Cix)) ≤ γ,∀i ∈ IN}

=
⋂

i∈IN

{x ∈ R
n;V (i;x; ϕi(Cix)) ≤ γ} , (12)

and is naturally related to the two ellipsoids intersections associated with the upper and lower-
bounding switched quadratic functions

⋂

i∈IN

E(Pi, γ) ⊇ LV (γ) ⊇
⋂

i∈IN

E(Pi + 2C ′
iΩ

′
i∆iΩiCi, γ). (13)

Inclusion (13) emphasizes an important property of function V (i; x;ϕi(Cix)): because of taking
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the nonlinearities ϕi(·) (i ∈ IN ) into account, the set LV (γ) may be non-convex and discon-
nected. Hence, the level set LV (1) of our function V (i;x;ϕi(Cix)) will be considered to study
Problems 2.6 and 2.7.

Remark 1 : The non-convexity and the disconnection of the level set are important properties,
justified by the fact that the transition between xk and xk+1 in the discrete-time domain is not
continuously done.

3 Local Stability Analysis

This section is dedicated to solve Problem 2.6. Consider the auxiliary matrices

M0,i,j =





Pj 0n 0n×p 0n×m 0n×p

⋆ −Pi C ′
iΩ̄i [Ti − ∆i] J ′

1,i 0n×p

⋆ ⋆ − 2Ti J ′
2,i 0p

⋆ ⋆ ⋆ − 2Ui 0m×p

⋆ ⋆ ⋆ ⋆ 2∆j




;M1,i,j =





In

−(Ai + BiKi)
′

−(Fi + BiΓi)
′

U ′
iB

′
i

0p×n




; (14)

M′
2,i,j =

[
0p×n −ΩjCj(Ai + BiKi) −ΩjCj(Fi + BiΓi) ΩjCjBiUi Ip

]
, (15)

NGj
=

[
−Gj ; 0n×(m+2p+n)

]
; NΘj

=
[
0p×(m+2n+p);−Θj

]
, where Θj = Wj + ∆j ,∀j ∈ IN , which

will be used in the next theorem

Theorem 3.1 For given matrices Ki ∈ R
m×n, Γi ∈ R

m×p and fixed positive diagonal matrices
Ui ∈ R

m×m (i ∈ IN ), consider matrices Gi ∈ R
n×n, J1,i ∈ R

m×n, J2,i ∈ R
m×p, symmetric

positive definite matrices Pi ∈ R
n×n and positive semi-definite diagonal matrices ∆i ∈ R

p×p

and positive definite diagonal matrices Ri, Qi, Ti,Θi ∈ R
p×p, and a scalar µ in the optimization

problem

min
µ, Gi, Pi, J1,i, J2,i, Qi, Ri, Ti, Θi, ∆i

µ

subject to LMIs:

[
µIn − Pi −C ′

iΩ̄i [Ri + ∆i]
⋆ 2Ri

]
> 0(n+p), ∀i ∈ IN , (16)




Pi C ′

iΩ̄i [∆i − Qi] (Ki − J1,i)
′
(ℓ)

⋆ 2Qi (Γi − J2,i)
′
(ℓ)

⋆ ⋆ ρ2
(ℓ)



 > 0(n+p+1), ∀i ∈ IN ; ∀ℓ = 1, · · · , m; (17)

M0,i,j + He
(
M1,i,jNGi

+ M2,i,jNΘj

)
< 0(2n+2p+m),∀(i, j) ∈ I2

N . (18)

Then, Problem 2.6 is solved with an estimate of B0 of system (6) given by the set LV (1),
induced by the Lyapunov function (9).

Proof By noting the block matrices as defined in (14)-(15), Inequality (18) is the same as the
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following one





Pj − Gj − G′
j G′

j(Ai + BiKi) G′
j(Fi + BiΓi) −G′

jBiUi 0n×p

⋆ −Pi C ′
iΩ̄i [Ti − ∆i] J ′

1,i (Ai + BiKi)
′C ′

jΩ̄jΘj

⋆ ⋆ − 2Ti J ′
2,i (Fi + BiΓi)

′C ′
jΩ̄jΘj

⋆ ⋆ ⋆ − 2Ui −UiB
′
iC

′
jΩ̄jΘj

⋆ ⋆ ⋆ ⋆ −2 [Θj − ∆j ]




< 0(2n+2p+m).

(19)
Hence, if Inequality (18) holds, one has Θj−∆j > 0p, which combined with ∆j ≥ 0p, implies Θj >
0p, and so Wj > 0p (∀j ∈ IN ). In addition, it means Pj −G′

j −Gj < 0n and Pi > 0n. Thus, Gj is

of full rank and −G′
jP

−1
j Gj ≤ Pj −G′

j −Gj (see (Daafouz and Bernussou 2001)). This implies,

combined with the change of basis diag[G−1
j ; In+p;U

−1
i , Ip], and a Schur complement (Boyd et al.

1994)





A′
cl,i

F ′
cl,i

−B′
i

0p×n



Pj





A′
cl,i

F ′
cl,i

−B′
i

0p×n





′

+





−Pi C ′
iΩi [Ti − ∆i] J ′

1,iU
−1
i A′

cl,iC
′
jΩj [Wj + ∆j ]

⋆ − 2Ti J ′
2,iU

−1
i F ′

cl,iC
′
jΩj [Wj + ∆j ]

⋆ ⋆ − 2U−1
i −B′

iC
′
jΩj [Wj + ∆j ]

⋆ ⋆ ⋆ −2Wj



 < 0(2n+2p+m). (20)

By multiplying Inequality (20) on the right by [x′
k ϕ′

i(yk) Ψ′(uk) ϕ′
j(yk+1)]

′ and on the left by
its transpose, with i = σ(k) and j = σ(k + 1), it leads to

δkV − 2SCuk
− 2SC(ϕσ(k+1)(·), yk+1, Wσ(k+1)) − 2SC(ϕσ(k)(·), yk, Tσ(k)) ≤ 0. (21)

By applying a Schur complement on Inequality (17), one has

[
Pi C ′

iΩi [∆i − Qi]
⋆ 2Qi

]
−

1

ρ2
(ℓ)

(K̂i − Ĵi)
′
(ℓ)(K̂i − Ĵi)(ℓ) > 0(n+p), (22)

with K̂i and Ĵi as defined in Lemma 2.5. By multiplying on the right by x̂k = [x′
k ϕ′

i(yk) ]′ and
on the left by its transpose, with i = σ(k), it leads to

V (σ(k);xk;ϕσ(k)(yk)) + 2SC(ϕσ(k)(·), yk, Qσ(k)) ≥
1

ρ2
(ℓ)

∥∥∥(K̂σ(k) − Ĵσ(k))(ℓ)x̂k

∥∥∥
2
. (23)

Because the ϕσ(k)(·) verifies the sector condition, one has

V (σ(k);xk;ϕσ(k)(yk)) ≥
1

ρ2
(ℓ)

∥∥∥(K̂σ(k) − Ĵσ(k))(ℓ)x̂k

∥∥∥
2
, (24)

which induces the inclusion

LV (1) ⊂ S

({
(K̂σ − Ĵσ)

}

σ∈IN

, ρ

)
, (25)

that is, in the set LV (1), the dead-zone sector condition (8) is verified.
By multiplying Inequality (16) on the right by x̂0 = [x′

0 ϕ′
i(Cix0) ]′ and on the left by its

transpose, with i = σ(0), one has

µx′
0x0 + 2SC(ϕσ(0)(·), Cσ(0)x0, Rσ(0)) ≥ V (σ;x0;ϕσ(0)(Cσ(0)x0)). (26)



November 3, 2011 10:42 International Journal of Control IJC˙Carlos˙2011˙v9

International Journal of Control 7

The nonlinearity ϕσ(0)(·) verifying the sector condition (3), ∀σ ∈ IN , we have

E(µIn) ⊂ LV (1). (27)

By having the sector condition SCuk
≤ 0 verified inside LV (1), Inequality (21) implies δkV < 0

(∀x 6= 0), proving asymptotic stability in the set LV (1). Finally, by minimizing µ, one has the
maximization of the radius of the ball E(µIn) included in LV (1). �

Remark 2 : Due to the fact that the control gains Ki, Γi and the weighting matrices Ui in SCuk

are fixed, ∀i ∈ IN , the Inequality (18) is a LMI, ∀(i, j) ∈ I2
N . Matrices Ui can be set to the

values obtained by the control design algorithm, like in (Jungers et al. 2009). The optimization
problem of Theorem 3.1 can be considered to solve Problem 2.7, though the control gains must
be also determined and (18) becomes a BMI, which means loss of convexity.

An example is presented to show that Theorem 3.1 is able to estimate the basin of attraction,
for a fixed control law, solving the Problem 2.6. The control gains are the ones associated with
the optimal solution of the framework proposed in (Jungers et al. 2009).

Example 1: Consider a switching system with N = n = 2; p = m = 1; ρ = 1.5, Ω1 = 0.7;
Ω2 = 1.3; C1 =

[
0.9 0.5

]
; C2 =

[
1 −0.7

]
;

A1 =

[
0.4 0.4
0.2 1

]
;A2 =

[
1.1 0.6
0.3 0.4

]
;B1 =

[
0.5
0.5

]
;

B2 =

[
0.7
0.5

]
; F1 =

[
1

1.2

]
;F2 =

[
1.2
1

]
.

The modal nonlinearities are ϕ1(y) = 0.5Ω1y(1 − exp(−0.2y2); ϕ2(y) = 0.5Ω2y(1 + cos(100y
3 )).

The control synthesis algorithm in (Jungers et al. 2009), based on a switched quadratic Lyapunov
function, provides µ = 2.7140 with the control gains Γ1 = −1.1411; K1 =

[
−0.9266 −0.9892

]
;

K2 =
[
−1.7245 −0.5038

]
; Γ2 = −1.1890. We wish to estimate the basin of attraction of this

system. Hence, by applying Theorem 3.1, with matrices Ui ∈ R
m×m set to the values given by

in (Jungers et al. 2009), ∀i ∈ IN , one gets µ = 2.3789.
Both estimates are shown in Fig. 1. The largest ball E(µIn) solution of our optimization

problem is also depicted (dashed line). It is possible to see that, for this example, the intersection
of ellipsoids given by (Jungers et al. 2009) (dot-dashed line) is included in the LV (1) (solid line).
By calculating the area of both regions ALV (1) = 2.6135 and AE = 1.8957 of (Jungers et al.
2009). One can conclude that the area has been increased by 37.87%.

4 Closed-loop Stabilization

This section is devoted to tackle Problem 2.7 based on the function (9). According to Remark 2,
this task is naturally described as BMIs, which could be then sub-optimally solved by considering
an iterative algorithm (Tarbouriech et al. 2011). However, it is known that a solution provided
by this approach is highly sensitive to the initial values of the algorithm. Hence, a relaxation is
proposed by means of the Finsler’s Lemma (de Oliveira and Skelton 2001) leading to sufficient
conditions given by LMIs which are considered in the following statement.

Theorem 4.1 If there exists, ∀i ∈ IN , matrices FG,i, XG,i ∈ R
n×n, Ki, J1,i ∈ R

m×n, Γi, J2,i ∈
R

m×p, symmetric positive definite matrices Pi ∈ R
n×n and positive semi-definite diagonal matri-

ces ∆i ∈ R
p×p and positive definite diagonal matrices XΘ,i,FΘ,i, Ri, Qi, Ti ∈ R

p×p, Ui ∈ R
m×m

and a scalar µ solutions of the convex optimization problem

min
µ, FG,i, XG,i, Pi, Ki, J1,i,Γi, J2,i, Qi, Ri, Ti, Ui, FΘ,i, XΘ,i, ∆i

µ
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Figure 1. Level set LV (1) of Theorem 4.1 (solid line). Ellipsoids intersection of (Jungers et al. 2009) (dot-dashed line) and
largest sphere E(µIn) ⊂ LV (1) given by Theorem 4.1 (dashed line).

subject to LMIs: (16), (17), and




M0,i,j − He

(
diag[XG,j ; 0(n+p+m); XΘ,j ]

)
⋆ ⋆

M′
1,i,j − (XG,j + F ′

G,j)
[
In 0n×(n+2p+m)

]
−He (FG,j) ⋆

M′
2,i,j − (XΘ,j + F ′

Θ,j)
[
0(2n+2p+m)×p Ip

]
0p×n −He (FΘ,j)



 < 0(3n+3p+m), (28)

∀(i, j) ∈ I2
N . Then, with

Gi = XG,iF
−1
G,i; Θi = XΘ,iF

−1
Θ,i,∀i ∈ IN , (29)

Problem 2.7 is fulfilled with an estimate of B0 given by the set LV (1) .

Proof The Inequalities (16)-(17) remain as stated in Theorem 3.1, implying the Inclusions (25)
and (27). Moreover, if Inequality (28) holds, it means that there exists a multiplier

Fi,j =





FG,j 0(2n+p+m)×p

0(n+2p+m)×n FΘ,j

FG,j 0n×p

0p×n FΘ,j



 , (30)

with FG,j ∈ R
n×n of full rank and FΘ,j ∈ R

p×p diagonal positive definite, verifying




M0,i,j M1,i,j M2,i,j

M′
1,i,j 0n 0n×p

M′
2,i,j 0p×n 0p



 + He

(
Fi,j

[
NGj

−In 0n×p

NΘj
0p×n −Ip

])
< 0(3n+3p+m), (31)
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where NGj
and NΘi

are as previously defined. By the Finsler’s Lemma, this is equivalent to have




I2n+2p+m

NGj

NΘj




′ 


M0,i,j M1,i,j M2,i,j

M′
1,i,j 0n 0n×p

M′
2,i,j 0p×n 0p








I2n+2p+m

NGj

NΘj



 < 0(2n+2p+m) (32)

verified, and which is, in fact, the Inequality (18). Hence, one can conclude that Theorem 4.1
allows to exhibit a solution for Problem 2.7 by considering the proof of Theorem 3.1. �

Let us reconsider the Example 1 to perform the control synthesis by applying Theorem 4.1. It
will illustrate some special features of this novel Lyapunov function.

Control synthesis for Example 1: The optimization problem of Theorem 4.1 pro-
vides µ = 2.5563 with the control gains given by K1 =

[
−0.7168 −1.0136

]
; Γ1 = −1.2923;

K2 =
[
−1.2581 −0.7326

]
; Γ2 = −1.4650. The estimate LV (1) is depicted (solid line) in Fig. 2

with largest sphere E(µIn) ⊂ LV (1) (dashed line) and the estimate set given by Theorem 3.1
(dotted line).

It is possible to see that our estimate presents disconnected sets and also contains the ellipsoids
intersection of (Jungers et al. 2009) (dot-dashed line). By calculating the area, one has ALV (1) =
3.2471, corresponding an improvement of 61% of with respect to the one of (Jungers et al. 2009)
and 24% regarding the area related to the estimate of Theorem 3.1 given in Section 3.

!! !"#$ " "#$ !

!!

!"#$

"

"#$

!

%
&!'

%
&(
'

Figure 2. Set LV (1) obtained by Theorem 4.1 (solid line) and Theorem 3.1 (dotted line). Ellipsoids intersection of (Jungers
et al. 2009) (dot-dashed line). Two stable trajectories under two realizations of arbitrary switching rules.

Two trajectories of the closed-loop system (6) with the control gains calculated by our frame-
work and two different realizations of arbitrary switching rules are also depicted in Fig. 2. The
initial conditions are settled in different disconnected sets of our estimate. It is noteworthy that,
the trajectories converge asymptotically to the origin.

Because Theorem 4.1 provides sufficient stability conditions, a question about the gap between
the basin of attraction B0 and the disconnected estimate set LV (1) may arise. Hence, we have
analysed the trajectories for initial conditions located in the following region in the phase por-
trait: −2 ≤ x0,(1) ≤ 2 and −2 ≤ x0,(2) ≤ 2 (including the set LV (1)). Four switching rules were
considered:
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• σa: σa(k) = 1; ∀k ∈ N;

• σb: σb(k) = 2; ∀k ∈ N;

• σc: σc(2k) = 1; σc(2k + 1) = 2; ∀k ∈ N;

• σd: σd(2k) = 2; σd(2k + 1) = 1; ∀k ∈ N.
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Figure 3. Set LV (1) (solid line) and initial conditions x0 = [x0,(1); x0,(2)]
′ leading to unstable trajectories. For the switching

rules σa (in blue), σb (in green), σc and σd (in red).
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Figure 4. Zoom of Fig. 3: Set LV (1) (solid line) obtained by Theorem 4.1. Ellipsoids intersection of (Jungers et al. 2009)
(dot-dashed line). Unstable trajectories between the disconnected LV (1).

It can be seen in Fig. 3 numerous points (shadow region) x0 /∈ LV (1) for which system (6)
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is unstable under one of the considered switching rules. In fact, these several points filling up
the region between the disconnected sets, in Fig. 4, point out the suitability of the set LV (1) in
estimating the basin of attraction. Thus, one has highlighted a remarkable characteristic of our
Lyapunov function which is a less conservative estimate of B0 of the system (6).

5 Conclusion

The class of discrete-time switched systems with mode-dependent cone bounded nonlinearities
subject to input saturation was addressed in this paper. As main contribution, a new switched
Lyapunov function is considered in order to take the switched nonlinearities into account. The
great feature of this function, in respect to the Lur’e-type one, is the possibility of covering mode-
dependent nonlinearities and requiring only the mode-dependent sector condition assumption.
Local stability analysis and control design were tackled by optimization problems aiming to
enlarge the size of the basin of attraction estimate. This estimate is induced by the Lyapunov
function level set and it may be composed of disconnected sets. Stability analysis is given as
LMIs conditions which were used in convex programming. For the stabilization purposes, the
Finsler’s Lemma was applied with a particular structure of multipliers such that sufficient LMI
conditions were achieved. Numerical examples illustrate the relevance of our Lyapunov function
regarding the switched quadratic function.
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