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Abstract

This article is composed of two parts. The first part is aimed at providing an overview on the kinetic description

of random nonlinear waves considering the one-dimensional nonlinear Schrödinger (NLS) equation as a represen-

tative model of optical wave propagation. We expose in particular the key problem of achieving a closure of the

infinite hierarchy of moment equations for the random field. The hierarchy is closed at the first order when the

statistics of the random wave is non-stationary or when the response time of the nonlinearity is non-instantaneous,

which respectively leads to the Vlasov kinetic equation and the weak-Langmuir turbulence equation. When the

amount of non-stationary statistics is comparable to the amount of non-instantaneous nonlinearity, we derive a

generalized Vlasov-Langmuir equation that provides a unified formulation of the Vlasov and Langmuir approaches.

On the other hand, when the statistics of the random wave is stationary and the nonlinear response instantaneous,

the closure of the hierarchy of moment equations requires a second-order perturbation expansion procedure, which

leads to the Hasselmann (or wave turbulence) kinetic equation. Contrarily to the Vlasov and Langmuir equations,

the Hasselmann equation is irreversible, a feature which is expressed by a H−theorem of entropy growth that

describes wave thermalization toward the thermodynamic equilibrium distribution, i.e. the Rayleigh-Jeans (RJ)

spectrum. In the second part of the paper we discuss a process of anomalous thermalization by considering the

example of the scalar NLS equation whose integrability is broken by the presence of third-order dispersion. The

anomalous thermalization is characterized by an irreversible evolution of the wave toward an equilibrium state of

a fundamental different nature than the conventional RJ equilibrium state. The wave turbulence kinetic equation

reveals that the anomalous thermalization is due to the existence of a local invariant in frequency space Jω, which

originates in degenerate resonances of the system. In contrast to integral invariants that lead to a generalized RJ

distribution, here, it is the local nature of the invariant Jω that makes the new equilibrium states fundamentally

different than the usual RJ equilibrium states. We study in detail the anomalous thermalization by means of

numerical simulations of the NLS equation and of the wave turbulence equation by using an improved criterion

of applicability of the kinetic theory. The spectrum of the field is shown to exhibit an intriguing asymmetric

deformation, which is characterized by the unexpected emergence of a constant spectral pedestal in the long term

evolution of the field. It turns out that the local invariant Jω explains all the essential properties of the anomalous

thermalization of the wave.

PACS numbers: 74A25,76Fxx,78A10
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I. INTRODUCTION

The description of random nonlinear waves is a fundamental question related to the vast issue of fully

developed turbulence, which still constitutes a longstanding unsolved problem. In the particular context of

optics, a ‘random wave’ usually refers to ‘natural light’, i.e. ‘non-laser light’ [1]. The study of the coherence,

i.e. the statistical properties of random optical waves propagating in a nonlinear medium have been

analyzed since the advent of nonlinear optics in the 1960s, because of the natural poor degree of coherence

of laser sources available at that time. However, it is only recently that the dynamics of incoherent

nonlinear optical waves received a renewed interest. The main motive for this renewal of interest is

essentially due to the first experimental demonstration of incoherent solitons in photorefractive crystals [2,

3]. The incoherent soliton consists of a phenomenon of self-trapping of incoherent light in a medium

characterized by a noninstantaneous [4–15] or instantaneous [16–23] nonlinear response. The remarkable

simplicity of experiments performed in photorefractive media has allowed for a fruitful investigation of

the dynamics of incoherent nonlinear waves [11], as witnessed by several important achievements, such

as, e.g., the modulational instability of incoherent optical waves [12, 13, 23]. A notable progress has

been also accomplished by exploiting the analogy with nonlinear plasma phenomena, such as, e.g., the

Landau damping [14] or the bump-on-tail instability [15]. Actually, it is in the context of plasma physics

that random phase solitons and incoherent modulational instability were identified in the framework of

pioneering studies of Vlasov-like kinetic equations [24–28].

Several theoretical approaches have been developed to provide a description of incoherent optical soli-

tons [11]. The most established methods are the mutual coherence function approach [8], the self-consistent

multimode theory [9], the coherent density method [10], and the Wigner transform approach [14]. It was

shown that these four methods are in fact equivalent [29, 30] and the choice of the most suitable represen-

tation rather depends on the nature of the physical problem to be investigated. It should be underlined

that these theoretical approaches find their origins in Vlasov-like kinetic equations, whose self-consistent

mathematical structure is the key property underlying the existence of incoherent soliton solutions [14, 24–

26].

More recently, an incoherent optical soliton of a fundamentally different nature has been identified

by exploiting the Raman effect of conventional optical fibers [31, 32]. The relevant property underlying

the existence of these incoherent solitons is in this case the noninstantaneous character of the nonlinear

Raman effect. This incoherent structure has been called ‘spectral incoherent soliton’ because the optical

field does not exhibit a confinement in the spatio-temporal domain, but exclusively in the frequency (i.e.

Fourier) domain. More specifically, the optical field exhibits a stationary statistics (i.e., the field exhibits

random fluctuations that are statistically stationary in time), and the soliton behavior only manifests in
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the spectral domain. The analysis has revealed that the kinetic equation that describes spectral incoherent

solitons has a rather simple structure, which was considered in plasma physics to study weak Langmuir

turbulence or stimulated Compton scattering [33–41].

In the following we present a unified kinetic formulation that combines the Vlasov and Langmuir

approaches within a general framework. Indeed, when the amount of non-stationary statistics is comparable

to the amount of non-instantaneous nonlinearity, a generalized Vlasov-Langmuir equation is obtained,

which describes the propagation of a random wave that exhibits a quasi-stationary statistics in the presence

of a delayed nonlinear response. The analysis is based on a separation of scales technique which is valid

when the characteristic time of the random fluctuations of the field is much smaller than the characteristic

time of variations of the averaged field intensity.

An important property of the weak turbulence Vlasov-Langmuir kinetic equation is its formal reversibil-

ity, a feature which is consistent with the fact that it conserves the nonequilibrium entropy. Accordingly,

this kinetic equation does not describe the process of irreversible evolution toward thermodynamic equi-

librium. As a matter of fact, the process of optical wave thermalization [32, 42–58] is usually described in

the theoretical framework of the wave turbulence theory [59], whose kinetic equation was originally derived

by Hasselmann [60, 61]. This theory implicitly assumes that the random field exhibits a stationary or ho-

mogeneous statistics. It turns out that the causality condition inherent to the delayed nonlinear response

and, on the other hand the nonstationary statistics of the field, both prevent the process of optical wave

thermalization from taking place.

The wave-turbulence theory has been the subject of a detailed investigation in the context of plasma

physics [62, 63], in which it is often referred to the so-called ‘random phase-approximation’ approach [59–

65]. This approach may be considered as a convenient way of interpreting the results of the more rigorous

technique based on a multi-scale analysis of the cumulants of the nonlinear field, as originally formulated

in Refs. [66–71]. This technique has been recently reviewed in Ref. [68], and studied in more details

through the analysis of the probability distribution function of the random field in Refs. [69–71]. In a loose

sense, the random phase approximation may be considered as justified when phase information becomes

irrelevant to the wave interaction due to the strong tendency of the waves to decohere. The random phases

can thus be averaged out to obtain a weak turbulence description of the incoherent wave interaction, which

is formally based on irreversible kinetic equations [59]. It results that, in spite of the formal reversibility

of the equation governing wave propagation, the kinetic equation describes an irreversible evolution of the

field to thermodynamic equilibrium. This equilibrium state corresponds to the fundamental Rayleigh-Jeans

(RJ) spectrum, whose tails are characterized by an equipartition of energy among the Fourier modes.

In a recent work we identified a process of anomalous thermalization [72, 73], which is characterized

by an irreversible evolution of the wave towards a ‘local equilibrium state’ of a fundamentally different
4



nature than the usual thermodynamic RJ equilibrium state. In this article we shall pursue the study

of this anomalous thermalization process through the analysis of a simple system. We consider the one-

dimensional scalar NonLinear Schrödinger (NLS) equation, whose integrability is broken by the presence

of a third derivative, i.e. the presence of third-order dispersion effects. This generalized NLS equation is

known to describe the nonlinear propagation of an optical wave whose carrier frequency is in the neigh-

borhood of the zero dispersion frequency [11]. In spite of its importance, the evolution of the coherence

properties of a random wave ruled by this generalized NLS equation has not been studied in the liter-

ature. We show that the spectrum of the field exhibits an unexpected asymmetric deformation which

is characterized by two remarkable properties: (i) the formation of a lateral spectral shoulder, and (ii)

the emergence of a constant spectral pedestal in the long term evolution of the field. As a result, the

field relaxes toward an equilibrium state of a different nature than the usual RJ equilibrium state. This

anomalous thermalization is described in detail by the wave turbulence theory: the kinetic equation that

we obtain is found in quantitative agreement with the numerical simulations of the NonLinear Schrödinger

(NLS) equation. More specifically, the kinetic wave theory reveals that the anomalous thermalization is

due to the existence of a local invariant in frequency space Jω, which originates in degenerate resonances

of the system. In contrast to integral invariants that lead to a generalized RJ distribution, here, it is the

local nature of the invariant Jω that makes the new equilibrium states fundamentally different than the

usual RJ equilibrium states. It turns out that the local invariant Jω explains all the essential properties

of the complex evolution of the wave spectrum.

Let us briefly comment the organization of the manuscript by clarifying some useful aspects underlying

the derivation of the kinetic equations. In the first part of the paper we present the fundamental kinetic

wave equations that describe the evolution of random nonlinear waves (Sec. II). We expose in particular

the key problem of achieving a closure of the infinite hierarchy of moment equations for the random

field. The hierarchy is closed at the first order when the statistics of the random wave is non-stationary

or when the response of the nonlinearity is non-instantaneous, which respectively leads to the Vlasov

equation, and the weak-Langmuir turbulence equation. A unified derivation of these kinetic equations

is presented in Sec. II B: a Vlasov-Langmuir equation is obtained when the amount of non-stationary

statistics is comparable to the amount of non-instantaneous nonlinearity. Conversely, when the statistics

of the random wave is stationary and the nonlinear response instantaneous, one obtains a vanishing result

into the first order approximation: The closure of the hierarchy requires a second-order perturbation

expansion procedure (Sec. IIC), which leads to the Hasselmann (or wave turbulence) kinetic equation.
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FIG. 1: Schematic illustration of the domains of validity of the fundamental kinetic equations discussed in this

paper: fR represents the amount of non-instantaneous nonlinearity, ε represents the amount of non-stationary

statistics in the wave [see Eq.(1)]. The weak-Langmuir turbulence equation describes, e.g. spectral incoherent

soltions; the Vlasov kinetic wave equation describes the incoherent modulational instability or the incoherent

solitons (see Sec.II B); while the Hasselmann equation describes the irreversible process of thermalization to the

Rayleigh-Jeans equilibrium distribution (see Sec.II C).

Contrarily to the Vlasov and Langmuir equations, the Hasselmann equation is irreversible and describes

the process of wave thermalization to equilibrium. The domains of validity of these kinetic wave equations

are summarized schematically in Figure 1. In the second part of the paper (Sec. III), we report recent

results obtained in the study of the process of anomalous thermalization. In particular, we shall discuss

the differences between the local nature of the invariant Jω and the integral invariants investigated in

line with the problem of integrability [74–77]. Finally in Sec. IIIC we report numerical simulations of

the anomalous thermalization process. The simulations of the wave turbulence kinetic equation will be

compared directly with the simulations of the NLS equation and the (dis)agreement between them is

discussed in the framework of an improved criterion of applicability of the wave turbulence theory.

We would like to mention that the statistical properties of the wave may evolve during its propagation, so

that the terminology used above, such as, e.g. ‘stationary statistics,’ may appear ambiguous. For instance,

one may assume the initial statistics of the wave to be stationary and the nonlinearity instantaneous, so that

the Hasselmann equation is expected to be the relevant kinetic equation. However, if the nonlinearity is

‘focusing,’ the statistics of the wave may become non-stationary as a result of the incoherent modulational

instability described by the Vlasov kinetic equation (see Sec. II B 1), which thus makes the Hasselmann

equation irrelevant. In this respect the kinetic description of random nonlinear waves may be considered

as ‘empirical’ rather than rigorous. We underline however, that the dynamics described by the kinetic
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equations is supported by the numerical simulations of the corresponding wave equations (e.g., NLS-like

equations). For instance, we shall see in Sec. IIIC that a remarkable quantitative agreement between the

Hasselmann kinetic equation and the NLS equation may be obtained without using adjustable parameters.

II. KINETIC WAVE EQUATIONS

A. Model equation

To provide an overview into the kinetic wave theory, we shall consider the concrete example of the

propagation of a partially coherent optical field in a medium characterized by a cubic nonlinearity (e.g.,

Kerr medium). Although we focus our presentation into the context of nonlinear optics, the methodology

exposed here is rather general and can easily be transposed to other systems of nonlinear waves. In the

framework of the slowly-varying envelope approximation, the evolution of the optical field envelope ψ(z, t)

of carrier frequency ω0 is known to be governed by the following generalized NLS equation [11, 78]

i∂zψ = −β ∂ttψ + γ ψ

∫ +∞

−∞
χ(θ) |ψ|2(z, t− θ) dθ. (1)

The function χ(t) characterizes the response function of the nonlinearity. As usual in optics, the distance

z of propagation in the nonlinear medium plays the role of an evolution variable for the NLS Eq. (1), while

t measures the time in a reference frame moving at the group-velocity of the field [11, 78]. In practice,

for a given initial condition of the optical field at the entry of the nonlinear medium ψ(z = 0, t), Eq.(1) is

solved to get the temporal profile of the field amplitude at the output of the medium, ψ(z = L, t). The

parameter γ in Eq.(1) denotes the nonlinear Kerr coefficient, the parameter β = β2/2 is related to the

dispersion coefficient β2 = ∂2k/∂ω2 where k is the wave vector modulus [11, 78]. The linear dispersion

relation of the field reads k(ω) = βω2.

For the sake of generality, we consider in the following a response function that can be decomposed into

the sum of an instantaneous and a delayed contribution,

χ(t) = (1 − fR)δ(t) + fRR(t). (2)

The coefficient fR ∈ [0, 1] expresses the ratio between the two contributions. The function R(t) is nor-

malized in such a way that
∫
R(t)dt = 1 (so that we have

∫
χ(t)dt = 1 whatever fR is) and the causality

condition imposes R(t) = 0 for t < 0. According to the linear response theory, the causality condition

imposes restrictions on the Fourier transform of the response function R̃(ω) =
∫
R(t) exp(−iωt)dt. Be-

cause of the causality of R(t), the function R̃(ω) is analytic in the lower half-plane Im(ω) < 0, so that

the real and imaginary parts of R̃(ω) = R̃r(ω) + iR̃i(ω) turn out to be related by the Kramers-Krönig
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relations, R̃r(ω) = − 1
π
P

∫ R̃i(ω
′)

ω′−ω
dω′, and R̃i(ω) = 1

π
P

∫ R̃r(ω′)
ω′−ω

dω′, where P denotes the principal Cauchy

value [78, 79]. We recall that R̃r(ω) is an even function, while R̃i(ω) is an odd function. We note that the

decomposition (2) finds a direct application in optical fiber systems, which are known to exhibit both an

instantaneous electronic contribution and a noninstantaneous molecular Raman contribution [11].

We remark that the NLS Eq. (1) for fR > 0 only conserves the total power of the field

N =

∫
|ψ|2 dt, (3)

while in the limit fR = 0 Eq. (1) recovers the integrable NLS equation.

The evolution of the random field is characterized by two characteristic lengths, the nonlinear length

Lnl = 1/(γP ), and the linear dispersion length Ld = t2c/β, where tc is the coherence time of the field and

P is related to the characteristic power of the field. In the following we consider the weakly nonlinear (or

highly incoherent) regime of interaction, ρ = Ld/Lnl � 1, where the rapid temporal fluctuations of the

field make linear effects dominant with respect to nonlinear effects.

In simple terms, the kinetic equation consists of an equation describing the evolution of the ‘averaged

spectrum’ of the field during its propagation in the nonlinear medium. The structure of the kinetic equation

depends on the nature of the statistics of the optical field. The statistics is said to be stationary, if the

correlation function C(z, t1, t2) = 〈ψ(z, t1)ψ
∗(z, t2)〉 only depends on the time delay |t1 − t2|. The brackets

< . > denote here an averaging over the realizations of the initial noise of the field ψ(z = 0, t), i.e. the

noise that characterizes the optical field injected into the nonlinear medium. We note in this respect that

the partial differential equation (1) is deterministic, so that the noise to which we refer to only concerns

the initial condition, ψ(z = 0, t).

B. Vlasov-Langmuir weak turbulence equation

We follow the usual procedure to derive an equation describing the evolution of the autocorrelation

function C(z, t1, t2) [1],

i∂zC = β(∂2
t2
− ∂2

t1
)C + γ

∫
χ(θ) (〈ψ(t1)ψ

∗(t2)ψ(t1 − θ)ψ∗(t1 − θ)〉 − 〈ψ(t1)ψ
∗(t2)ψ(t2 − θ)ψ∗(t2 − θ)〉) ,

(4)

where ‘ψ(tj)’ stands for ψ(z, tj) in the integrand. Because of the nonlinear character of the NLS equation,

the evolution of the second-order moment of the field depends on the fourth-order moment. In the same

way, the equation for the fourth-order moment depends on the sixth-order moment, and so on. Accordingly,

one obtains an infinite hierarchy of moment equations, in which the n−th order moment depends on the

(n + 2)−th order moment of the field. This makes the equations impossible to solve unless some way
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can be found to truncate the hierarchy. This refers to the fundamental problem of achieving a closure of

the infinite hierarchy of the moment equations [59–68]. A simple way to achieve a closure of the infinite

hierarchy of moment equations is to assume that the field has Gaussian statistics. This approximation

is justified in the weakly nonlinear regime, ρ = Ld/Lnl � 1. Under these conditions, one can exploit

the property of factorizability of moments of Gaussian fields, e.g., 〈ψ(t1)ψ
∗(t2)ψ(t1 − θ)ψ∗(t1 − θ)〉 =

C(t1, t2)C(t1 − θ, t1 − θ) + C(t1, t1 − θ)C(t1 − θ, t2).

Introducing the change of variables t = (t1 + t2)/2 and τ = t1 − t2, we obtain a closed equation for the

evolution of the second-order moment

B(z, t, τ) = C(z, t+ τ/2, t− τ/2) = 〈ψ(z, t+ τ/2)ψ∗(z, t− τ/2)〉

that has the form

i∂zB(t, τ) = −2β∂2
tτB(t, τ) + γP (t, τ) + γQ(t, τ), (5)

where we have omitted the z-label and we have denoted

P (t, τ) = B(t, τ)

∫
χ(θ)

[
Ñ(t− θ + τ/2) − Ñ(t− θ − τ/2)

]
dθ, (6)

Q(t, τ) =

∫
χ(θ)

[
B(t− θ/2 + τ/2, θ)B(t− θ/2, τ − θ) −B(t− θ/2, τ + θ)B(t− θ/2 − τ/2,−θ)

]
dθ,(7)

and

Ñ(z, t) ≡ B(z, t, 0) =
〈
|ψ(z, t)|2

〉
(8)

denotes the averaged power of the field, which depends on time t because the statistics of the field is a

priori nonstationary.

1. Instantaneous response: Vlasov limit

We can remark that in the limit of an instantaneous response, i.e. fR = 0, we have P = Q and Eq. (5-7)

recovers the well-known equation for the mutual coherence function [8]:

i∂zB(t, τ) = −2β∂2
tτB(t, τ) + 2γB(t, τ)

[
Ñ(t+ τ/2) − Ñ(t− τ/2)

]
. (9)

Next one may assume that the field exhibits a quasi-stationary statistics, Ñ(t+τ/2)−Ñ(t−τ/2) ' τ∂tÑ(t).

Then it proves convenient to write the kinetic equation for the local spectrum of the field, defined as a

Fourier (Wigner-like) transform of the autocorrelation function

nω(z, t) =

∫ +∞

−∞
B(z, t, τ) exp(−iωτ) dτ.
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Applying this transformation to Eq. (9), one obtains the Vlasov-like kinetic equation,

∂znω(z, t) + ∂ωκω(z, t) ∂tnω(z, t) − ∂tκω(z, t) ∂ωnω(z, t) = 0 (10)

where κω(z, t) refers to a generalized dispersion relation

κω(t) = k(ω) + 2γÑ(z, t), (11)

and we recall that Ñ(z, t) = 1
2π

∫
nω(z, t) dω.

In complete analogy with the Vlasov equation in plasma physics, Eq.(10) exhibits a self-consistent

Hamiltonian structure. Indeed, Eq.(10) may be written in a form analogous to the Liouville equation,

dznω(z, t) ≡ ∂zn+ ṫ ∂tn + ω̇ ∂ωn = 0, (12)

where the variables t and ω appear as canonical conjugate variables,

ṫ = ∂zt = ∂ωκ = ∂ωk(ω) (13)

ω̇ = ∂zω = −∂tκ = −2γ∂tÑ(z, t), (14)

with the effective Hamiltonian κω(t) given in (11). Note that the Vlasov Eq.(10) conserves the total power

of the field N =
∫
Ñ(z, t) dt. This property naturally results from the Liouville’s equation (12), which

implies conservation of the area N =
∫∫

dt dω nω(z, t) occupied by the quasi-particle distribution nω(z, t)

in the phase-space (t, ω). More generally, the Vlasov Eq.(10) exhibits the important property of conserving

any functional of the form
∫∫

dt dω F [n], where F [n] is an arbitrary function. These functional are called

Casimirs.

The Vlasov equation exhibits soliton solutions [24–26], a feature that can be shown by exploiting the

following property: In the ‘stationary’ (i.e., z independent) limit, the Hamiltonian κω(t) (11) becomes a

conserved quantity of the stationary Vlasov Eq.(10), ∂ωκω(z, t) ∂tnω(z, t)− ∂tκω(z, t) ∂ωnω(z, t) = 0. This

stationary Vlasov equation then admits the following class of solutions, nω(t) = G(κ), where G(κ) is an

arbitrary function of the conserved Hamiltonian κω(t) (11). Another important phenomenon described by

the Vlasov Eq.(10) is the modulational instability of partially coherent waves. Incoherent modulational

instability has been the subject of a recent detailed investigation in the context of optical waves, from

both the theoretical and experimental point of views [11–13, 23]. In the temporal domain, an incoherent

field that exhibits a stationary statistics can become modulationally unstable in the presence of a focus-

ing nonlinearity (γ > 0) and an anomalous dispersion (β < 0). We also recall that, contrarily to the

usual modulational instability induced by a coherent field, wave incoherence can suppress modulational

instability [11–13, 23, 27].
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2. Stationary statistics: Langmuir weak turbulence limit

On the other hand, in the limit of a stationary statistics, the instantaneous contribution of the nonlinear

response no longer contributes to the kinetic equation (P = 0), and Eq. (5-7) can be reduced to

i∂zB(τ) = γfR

∫
R(θ)[B(θ)B(τ − θ) − B∗(θ)B(τ + θ)]dθ, (15)

where the autocorrelation function B only depends on the time lag τ . A Fourier transform of Eq. (15)

readily gives the following weak Langmuir turbulence kinetic equation

∂znω(z) =
γfR

π
nω(z)

∫
R̃i(ω − ω′)nω′(z) dω′. (16)

Several simplified forms of this kinetic equation have been the subject of a detailed study in the literature. A

differential (‘hydrodynamic’) approximation of the integrodifferential Eq.(16) was derived for the first time

by Kompaneets [80]. This Compton Fokker-Planck equation has been subsequently analyzed by several

authors [81, 82]. The complete integral kinetic Eq.(16) may be derived from the Zakharov equations [83],

it can also be derived from the quantum version of the Boltzmann-like kinetic equation describing the

nonlinear induced Compton scattering [84].

A peculiar property of the weak Langmuir turbulence Eq.(16) is that it admits solitary wave solu-

tions [33–38]. This fact can be anticipated by remarking that, as a result of the convolution product in

Eq. (16), the spectral gain curve R̃i(ω) amplifies the front of the spectrum at the expense of its trailing

edge, thus leading to a global red-shift of nω(z). The numerical simulations of the NLS Eq. (1) and of

the Langmuir-like Eq. (16) reveal that, after a transient regime, the averaged spectrum of the field self-

organizes in the form of a solitary wave, which propagates without distortion in the frequency domain

towards the low-frequency components [31, 33–38]. This phenomenon has been called ‘spectral incoherent

soliton’ because the statistics of the field is stationary and thus the soliton behavior manifests itself in the

spectral domain, but not in the temporal domain.

3. Generalization for non-stationary statistics and non-instantaneous nonlinear response

When the influences of the non-stationary statistics and of the non-instantaneous response are com-

parable, the Vlasov and Langmuir limits discussed above need to be generalized into a unique kinetic

equation [85]. For this purpose, we shall assume that the optical field exhibits initially a quasi-stationary

statistics. We introduce the small parameter ε which is the ratio between the coherence time of the initial

field (i.e. the time scale of the random fluctuations) and the time scale of variation of the power of the

field (i.e. the duration of the incoherent optical pulse), ε = tc/tp. The autocorrelation function at z = 0
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can then be written in the form:

B(z = 0, t, τ) = B(0)
(
z = 0, εt, τ

)

and we look for the solution of Eq. (5) in the form

B(z, t, τ) = B(0)
(
εz, εt, τ

)
+ εB(1)

(
εz, εt, τ

)
+ · · · (17)

The fact that evolution variable is scaled as εz follows from the forthcoming analysis, in which it is shown

that effects of order one can be observed for propagation distances z of the order of ε−1. It turns out that

different regimes can be obtained, depending on the ratio fR between the delayed and the instantaneous

contributions to the nonlinear response function χ(t). The most interesting regime happens when fR is of

the order of ε, since then the two contributions are of the same order in the kinetic equation. We therefore

denote:

fR = εfR0. (18)

We substitute the ansatz (17) into (5) and collect the terms with the same powers in ε. One can then

show that the local spectrum n
(0)
ω (Z, T ) =

∫
B(0)(Z, T, τ) exp(−iωτ) dτ (Z = εz, T = εt), is ruled by the

following weak-turbulence Vlasov-Langmuir-like kinetic equation [85]

∂Zn
(0)
ω (Z, T )+∂ωκ

(0)
ω (Z, T ) ∂Tn

(0)
ω (Z, T )−∂Tκ

(0)
ω (Z, T ) ∂ωn

(0)
ω (Z, T ) =

γfR0

π
n(0)

ω (Z, T )

∫
R̃i(ω−ω

′)n
(0)
ω′ (Z, T )dω′.

(19)

The generalized dispersion relation reads

κ(0)
ω (Z, T ) = k(ω) + V (0)(Z, T ), (20)

with the effective potential

V (0)(Z, T ) =
γ

π

∫
n

(0)
ω′ (Z, T )dω′. (21)

Let us briefly address the degenerate cases in which fR is not of the form (18):

If fR is smaller than (18), i.e. fR = εpfR0 with p > 1, then the collision term of the right side of Eq. (19)

vanishes and we recover the Vlasov limit. This means that, in the first-order approximation in ε, the

non-instantaneous character of the nonlinearity does not affect the evolution of the incoherent wave.

If fR is larger than (18), i.e. fR = εpfR0 with p < 1, then the collision term of the right side is dominant

and we recover the weak Langmuir turbulence kinetic equation, i.e. the nonstationary statistics does not

affect the dynamics of the incoherent field.

In the particular case (18), if we push the expansion to second order in ε and consider

n(ε)
ω (Z, T ) =

∫ [
B(0)(Z, T, τ) + εB(1)(Z, T, τ)

]
exp(−iωτ)dτ,
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we obtain the following generalized Vlasov-Langmuir-like kinetic equation for n
(ε)
ω (Z, T ):

∂Zn
(ε)
ω (Z, T )+∂ωκ

(ε)
ω (Z, T ) ∂Tn

(ε)
ω (Z, T )−∂Tκ

(ε)
ω (Z, T ) ∂ωn

(ε)
ω (Z, T ) =

γfR0

π
n(ε)

ω (Z, T )

∫
R̃i(ω−ω

′)n
(ε)
ω′ (Z, T )dω′

(22)

with the effective dispersion relation and the effective potential

κ(ε)
ω (Z, T ) = k(ω) + V (ε)

ω (Z, T ), (23)

V (ε)
ω (Z, T ) =

γ(2 − fR0ε)

2π

∫
n

(ε)
ω′ (Z, T )dω′ +

εγfR0

2π

∫
R̃r(ω − ω′)n

(ε)
ω′ (Z, T )dω′. (24)

Let us remark that the effective potential V
(ε)
ω (Z, T ) now involves a convolution with the real part of the

Fourier transform of the response function, R̃r(ω), so that V
(ε)
ω (Z, T ) now depends on the frequency ω.

Then contrarily to the conventional Vlasov-like equation [see Eqs. (19-21)], the effective dispersion relation

κ
(ε)
ω (Z, T ) no longer splits into the sum of a t−dependent and a ω−dependent contributions. Note that

the kinetic equations (19) and (22) derived above have the same structure as the inhomogeneous weak

Langmuir turbulence kinetic equation discussed in Refs.[27, 33]. Let us remark, however, that the mean

field potential Vω(z, t) involved in the dispersion relation considered in Refs.[27, 33] differs substantially

from the mean field potentials obtained here.

The Vlasov-like equation and the weak Langmuir turbulence equation both conserve the total power

(quasi-particle number) of the optical field, N = (2π)−1
∫∫

nω(z, t)dωdt. These equations are also known

to conserve the nonequilibrium entropy,

S(z) =
1

2π

∫∫
log[nω(z, t)]dωdt. (25)

Let us show that the Vlasov-Langmuir-like kinetic Eq. (19) or (22) also conserves S. This is obvious for

(19) since the dispersion relation (20) for κ
(0)
ω (t) splits into the sum of a t−dependent and a ω−dependent

contributions, as it occurs for the Vlasov equation. However, this is not the case of the generalized

dispersion relation κ
(ε)
ω (t) [Eq. (23)] associated to the Vlasov-Langmuir Eq.(22). To show that Eq. (22)

conserves S, one can simply write ∂zS = 1
2π

∫∫
∂tκ ∂ω log(n) dω dt − 1

2π

∫∫
∂ωκ ∂t log(n) dω dt. Integrating

by parts the first (second) term with respect to t (ω), the two terms cancel each other and ∂zS = 0.

The conservation of the nonequilibrium entropy (25) is consistent with the fact that the Vlasov-Langmuir

kinetic Eq. (19) or (22) are formally reversible, i.e. they are invariant under the transformation (z, ω, t) →

(−z,−ω, t). Note that the requirement of the sign inversion in ω can be understood by analogy with kinetic

gas theory, where time reversal needs the inversion of the velocities of the particles, (t,k,x) → (−t,−k,x).

Accordingly, the Vlasov-Langmuir kinetic equation Eq. (19) or Eq. (22) does not describe an irreversible

evolution of the optical field to thermodynamic equilibrium. The process of thermal wave relaxation to

equilibrium is the subject of the next Subsection. We finally note that, although the kinetic equation has
13



been derived in one-dimension and in the temporal domain, it can easily be generalized to the spatio-

temporal evolution of the field [86, 87].

C. Stationary statistics and instantaneous response: Wave turbulence equation

Let us remark that the relationship between formal reversibility and actual dynamics can be rather

complex for infinite dimensional Hamiltonian systems like classical optical waves. In integrable systems,

such as the one-dimensional (NLS) equation, the dynamics may be expected to be essentially periodic in

time, reflecting the underlying regular phase-space structure of nested tori. This recurrent behavior is

broken in nonintegrable systems, where the dynamics is in general governed by an irreversible process of

diffusion in phase space [88, 89]. The essential properties of this irreversible evolution to equilibrium are

described by the wave turbulence theory. Let us remark that besides this nonequilibrium kinetic approach,

the equilibrium properties of a random nonlinear wave may be studied on the basis of equilibrium statistical

mechanics by computing appropriate partition functions [90–95].

In the following we shall briefly outline the derivation of the Hasselmann (or wave turbulence) kinetic

equation for a random wave characterized by a stationary statistics that propagates in a nonlinear medium

with an instantaneous response time. In particular, we shall highlight the differences with respect to the

derivation of the Vlasov-Langmuir equation, while we refer the reader to Refs.[59, 68] for a rigorous

derivation of the wave turbulence equation. In the limit of an instantaneous response, fR = 0, Eq.(1)

recovers the integrable NLS equation. In this limit, the wave turbulence kinetic equation is not relevant.

In order to break the integrability of the NLS equation, we shall introduce higher-order dispersion effects

in the NLS equation,

i
∂ψ

∂z
=

m∑

j>2

(−i)jβj

j!

∂jψ

∂tj
+ γ|ψ|2ψ. (26)

The inclusion of higher-order dispersion effects is extremely important for the description of the propagation

of a broadband optical wave in an optical fiber [96]. More precisely, the higher-order time derivatives

originate in a Taylor expansion series of the dispersion curve of the optical fiber around the carrier frequency

ω0 [96, 97]. This becomes apparent by looking at the linear dispersion relation of Eq.(26),

k(ω) =
m∑

j≥2

βjω
j

j!
. (27)

Equation (26) conserves three important quantities, the power of the field N =
∫
|ψ|2 dt, the momentum

P = Im
∫
ψ∗ ∂tψ dt and the Hamiltonian H = E + U , which has a linear (kinetic) contribution E and a

nonlinear contribution U = γ
2

∫
|ψ|4 dt. It proves convenient to write the Hamiltonian in Fourier’s space,

H =

∫
k(ω)|ψ̃ω|

2dω +
γ

4π

∫
ψ̃ωψ̃ω1

ψ̃∗
ω2
ψ̃∗

ω3
δω+ω1−ω2−ω3

dωdω1dω2dω3, (28)
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where δω+ω1−ω2−ω3
≡ δ(ω+ω1−ω2 −ω3) denotes the one dimensional Dirac’s δ−function. In Eq.(28), ‘ψ̃ω’

stands for the Fourier transform of the field amplitude defined by ψ̃(z, ω) = 1√
2π

∫
ψ(z, t) exp(−iωt) dt.

As discussed in Sec. II, the derivation of the wave turbulence kinetic equation is based on a perturbation

expansion theory in which linear dispersive effects dominate nonlinear effects, |U/E| � 1. Accordingly,

an effective large separation of the linear and the nonlinear lengths scales takes place [66–68]. In this way

the statistics of the field may be assumed to be Gaussian, which allows one to achieve the closure of the

hierarchy of moment equations. Note that the statistics does not need to be Gaussian initially. Because

linear effects dominate nonlinear effects, it is the linear behavior which brings the system close to a state

of Gaussian statistics.

The wave turbulence equation assumes a priori that the statistics of the wave is stationary, i.e., it is

stationary initially at z = 0, and we assume that it remains stationary at any z (see the comment at the

end of Sec. I). Then it proves convenient to derive the kinetic equation in Fourier’s space. In this respect

we remark that, because the statistics is stationary, the spectrum of the field no longer depend on the time

variable, t. More precisely, the spectrum of a field characterized by a stationary statistics is δ−correlated,
〈
ψ̃(z, ω1) ψ̃

∗(z, ω2)
〉

= nω1
(z) δω1−ω2

. By means of a Fourier’s expansion of the NLS Eq. (26), one may

readily derive the following equation for the evolution of the averaged spectrum of the field

i∂znω0
δω4−ω0

=
γ

2π

∫ (
J2,4

1,3 δω0−ω1+ω2−ω3
− J̄ 1,3

2,0 δω4−ω1+ω2−ω3

)
dω1dω2dω3 (29)

where Jk,l
i,j =

〈
ψ̃(z, ωi) ψ̃(z, ωj) ψ̃

∗(z, ωk) ψ̃
∗(z, ωl)

〉
refers to the fourth-order moment of the field, J̄ ≡ J∗

being the complex conjugate of J . We note again from Eq.(29) that the second-order moment of the

field depends on the fourth-order moment. If one assumes that the field obeys a Gaussian statistics, the

right-hand side of Eq.(29) vanishes exactly, simply because the statistics of the field has been assumed

to be stationary, which corroborates the results of the previous Section. Accordingly, in contrast with

the problem of non-stationary statistics and non-instantaneous nonlinearity, the closure of the moment

equations now requires a second order perturbation theory in ε = |E/U | � 1.

The details of the derivation of the kinetic equation can be found in Ref. [59]. Following the random

phase approximation approach, one derives an equation for the fourth-order moment J that depends on

the six-order moment of the field. Owing to the factorizability property of Gaussian fields, the six-order

moment is expanded in terms of products of second-order moments, which gives the following Hasselmann

(or wave turbulence) kinetic equation describing the evolution of the spectrum nω(z) of the optical field

∂zn(z, ω) = Coll[n], (30)

with the collision term

Coll[n] =

∫
n(ω)n(ω1)n(ω2)n(ω3) [n−1(ω) + n−1(ω1) − n−1(ω2) − n−1(ω3)] W dω1 dω2 dω3, (31)
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where ‘n(ω)’ stands for ‘n(z, ω)’ in Eq.(31). This collision term provides a kinetic description of the

four-wave interaction process underlying the cubic nonlinearity of the NLS equation. The corresponding

space-time resonant conditions of energy and momentum conservation are expressed by the presence of

the Dirac δ−functions in W = γ2

π
δ(ω+ ω1 − ω2 − ω3) δ[k(ω) + k(ω1)− k(ω2)− k(ω3)], where k(ω) is given

by the linear dispersion relation (27).

The kinetic Eq.(30) exhibits a structure analogous to the Boltzmann’s kinetic equation that describes the

nonequilibrium evolution of a dilute classical gas [79]. It thus exhibits similar properties. It conserves the in-

tensity (density of power)N/T0 = 1
2π

∫
n(z, ω) dω, the density of kinetic energy E/T0 = 1

2π

∫
k(ω)n(z, ω) dω

and the density of momentum M/T0 = 1
2π

∫
ω n(z, ω) dω, where T0 refers to the considered numerical time

window. The irreversible character of the kinetic Eq.(30) is expressed by a H-theorem of entropy growth,

∂zS > 0, where the nonequilibrium entropy reads S(z)/T0 = 1
2π

∫
Log[n(z, ω)] dω. The thermodynamic

equilibrium state nRJ (ω) corresponds to the spectrum that realizes the maximum of nonequilibrium entropy

S[n], given the constraints of conservation of E, P and N . By introducing the corresponding Lagrange’s

multipliers, 1/T, λ/T and −µ/T , one readily obtains the Rayleigh-Jeans equilibrium distribution

nRJ(ω) =
T

k(ω) + λω − µ
. (32)

This equilibrium spectrum nRJ (ω) is a stationary solution of the kinetic Eq.(30). This simply means that,

once the field has reached the equilibrium state (32), its spectrum no longer evolve during the propagation,

because such spectrum refers to the ‘most disordered’ equilibrium state.

Let us note that, as occurs in standard thermodynamics, the equilibrium state (32) is characterized by

a set of ‘macroscopic’ parameters, i.e., (T, µ, λ). Actually, these three parameters are calculated from the

conserved quantities (E,N,M) by substituting the equilibrium spectrum (32) into the definitions of E, N

and M . One thus obtains an algebraic system of three equations for three unknown parameters, which

can be solved numerically. This was done in Refs. [32, 57], where a quantitative agreement was obtained

between the RJ spectrum (32) and the numerical simulations of the NLS Eq.(26), without using adjustable

parameters. More precisely, we always found a unique triplet solution (T, µ, λ) for a given set (E,N,M),

a feature which is consistent with the fact that a ‘closed’ (conservative and Hamiltonian) system should

exhibit a unique thermodynamic equilibrium state [79].

The parameters T and µ are called, by analogy with thermodynamics, the temperature and the chemical

potential of the optical field at equilibrium. On the other hand, the meaning of the parameter λmay become

apparent through the analysis of the group-velocity vg of the optical field [k′(ω) ≡ ∂k/∂ω = 1/vg(ω)].

Indeed, recalling the definition of an average in kinetic theory, 〈A〉eq =
∫
A nRJ(ω) dω/

∫
nRJ (ω) dω [79]

and making use of the equilibrium spectrum (32), one readily obtains

〈k′(ω)〉eq = −λ. (33)
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We remark that this result is valid for an even highest order dispersion in k(ω) [m even in Eq.(27)],

a feature which also guarantees nRJ (ω) to be well defined. According to relation (33), the parameter λ

has a simple physical meaning, it denotes the average of the inverse of the group-velocity of the optical

field at equilibrium. This observation is important in order to provide a simple interpretation of the

‘velocity-locking’ effect of incoherent wave-packets discussed in Refs.[54, 55, 57], in analogy with statistical

equilibrium thermodynamics. Note that the average 〈.〉eq in (33) is quite different from the average over

the realizations (〈.〉) considered above to derive the kinetic equations. The average 〈.〉eq may be regarded

as a simple ‘arithmetic average’ over the equilibrium distribution nRJ (ω).

The derivation of the wave turbulence Eq.(30) may easily be extended to several spatial dimensions,

which is relevant, e.g., for the description of the multi-dimensional NLS equation. A peculiar property

of the corresponding RJ distribution is that it exhibits a condensation-like process: there exists a critical

value of the energy, Hc, below which the fundamental mode (homogeneous wave) becomes macroscopically

populated to the detriment of the other modes [64, 99, 100, 102]. In other terms, the condensation process

is characterized by the spontaneous formation of a homogeneous plane wave starting from an initial random

field. This ‘self-organization process’ results from the natural thermalization of the nonlinear wave towards

the state of maximum entropy. The thermodynamic properties of wave condensation are analogous to those

of the genuine Bose-Einstein condensation, despite the fact that the considered optical field is completely

classical [100, 102].

III. ANOMALOUS THERMALIZATION

In the second part of the article we shall illustrate the wave turbulence kinetic equation (30,31) through

the analysis of a process of anomalous thermalization [72, 73]. The anomalous thermalization is charac-

terized by an irreversible evolution of the random wave toward a ‘local’ equilibrium state of a fundamental

different nature than the expected RJ equilibrium state (32). In the recent work [72, 73] we focused our

analysis into the vector NLS equation, which is known to describe nonlinear polarization effects of the op-

tical beam. In this way, we provided an experimental signature of the transient process of the anomalous

thermalization. In this Section we shall consider another example of NLS equation in which the anomalous

thermalization process is characterized by unexpected properties.
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A. Model equation: Third-order dispersion

We consider the NLS equation (26) discussed in Sec.IIC, in which the dispersion relation k(ω) [Eq.(27)]

is truncated up to the third-order, m = 3,

i∂zψ = −σ∂2
t ψ + iα∂3

t ψ + |ψ|2ψ. (34)

For convenience, we normalized the problem with respect to the nonlinear length Lnl = 1/γe20 and time

τ0 = (|β2|Lnl/2)1/2, where e20 denotes the average power of the wave, γ the nonlinear coefficient, and β2

the second-order dispersion coefficient. The variables can be recovered in real units through the trans-

formations t → tτ0; z → zLnl and ψj → ψje0. In these units, the normalized third-order dispersion

(TOD) parameter reads α = β3/
(
6L

1/2
nl (|β2|/2)3/2

)
, where β2 and β3 refer respectively to the second- and

third-order dispersion coefficients, while σ = sign(β2) denotes the sign of β2. The dispersion relation thus

reads

k(ω) = σω2 + αω3. (35)

k(ω) exhibits an inflection point at the frequency ω∗ = −σ/(3α). This frequency plays an important role

in the theory presented below and it is usually referred to the ‘zero-dispersion frequency’ in the nonlinear

optics community. We note in particular that the frequency components of the wave exhibit different

dispersion properties. For instance, assuming α > 0, the wave evolves in the so-called normal dispersion

regime [∂2k(ω)/∂ω2 > 0] for those frequencies verifying ω > ω∗, whereas for ω < ω∗ the wave evolves in

the anomalous dispersion regime [∂2k(ω)/∂ω2 < 0]. Without loss of generality, we shall assume in the

following that α > 0. It is important to note that we shall not consider the limit α → 0, because in

this limit (34) is completely integrable and the kinetic equation becomes irrelevant. We note that the

NLS model (34) has been recently considered to study an analogous of rogue wave-like phenomena in the

context of optical waves [103, 104].

B. Wave turbulence kinetic theory

1. Local equilibrium spectrum

The kinetic equation that governs the evolution of the averaged spectrum of the field ψ is given by

Eq.(30,31), with the dispersion relation (35). Two integrals in the kinetic equation may be computed

exactly owing to the δ−functions in W . Making use of the property [98], we obtain

∂zn(ω, z) =
1

3π|α|

∫
nωnq−ωnω1

nq−ω1

|ω − ω1| |ω + ω1 − q|

(
1

nω

+
1

nq−ω

−
1

nω1

−
1

nq−ω1

)
dω1. (36)
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where q = −2σ/3α = 2ω∗. The integrand of this equation exhibits a remarkable property: It is invariant

under the substitution ω → ω̄ = q − ω. This peculiar property implies ∂zn(ω, z) = ∂zn(ω̄, z), which thus

reveals the existence of the following ‘local’ invariant

J(ω) = n(ω, z) − n(q − ω, z). (37)

This invariant is ‘local’ in the sense that it is verified for each frequency ω individually, ∂zJ(ω) = 0.

It means that the subtraction of the spectrum by the reverse of itself translated by q = 2ω∗, remains

invariant during the whole evolution of the wave. The invariant (37) finds its origin in the following

degenerate resonance of the phase-matching conditions: a pair of frequencies (ω, q−ω) may resonate with

any pair of frequencies (ω′, q−ω′), because k(ω)+k(q−ω) = σq2/3 does not depend on ω. The invariant Jω

may thus be used to derive the following kinetic equation governing the evolution of the averaged spectrum

n(ω, z)

∂zn(ω, z) =
1

3π|α|

∫
nω(nω − Jω)nω1

(nω1
− Jω1

)

|ω − ω1| |ω + ω1 − q|

(
1

nω
+

1

nω − Jω
−

1

nω1

−
1

nω1
− Jω1

)
dω1. (38)

The kinetic Eq.(38) is characterized by a H−theorem of entropy growth, ∂zS ≥ 0, where the nonequi-

librium entropy reads S(z)/T0 = 1
2π

∫
log[nω(z)] dω. One may also verify that the kinetic Eq.(38) conserves

the power N , the energy E and the momentum M . As outlined above in Sec. IIC, the equilibrium spec-

trum is obtained by looking at the extremum of S[nω] given the constraints of conservation of E, M and

N . Introducing the corresponding Lagrange multipliers λj (j = E,M,N) and making use of the variable

change ω → q−ω, the extremum condition reads 1/nloc
ω +1/(nloc

ω −Jω) = λ, where λ = λEq
2/3+λMq+2λN .

The important point to underline is that, because of the existence of the local invariant Jω, the condition

of extremum entropy does not involve the frequency, i.e. λ does not depend on ω. This simply means that

the conservations of the energy E and of the momentum M are implicitly verified as a consequence of the

invariant Jω. The corresponding local equilibrium spectrum thus reads

nloc(ω) =
Jω

2
+

1

λ


1 +

√

1 +

(
λJω

2

)2

 , (39)

where we chose the positive sign indetermination in front of the square-root because of the condition of

positivity of the spectrum, nloc
ω (z) ≥ 0. The parameter λ is determined from the initial condition through

the conservation of the power, N/T0 = 1
2π

∫
nloc(ω) dω = 1

2π

∫
n(ω, z = 0) dω. Note that the equilibrium

spectrum nloc(ω) verifies the conservations of the energy E and of the momentum M . We remark that

the equilibrium distribution (39) vanishes exactly the collision term of the kinetic equation, i.e., it is a

stationary solution of Eq.(38).

The equilibrium distribution is characterized by an unexpected property: it exhibits a constant spectral

pedestal, nloc(ω) → 2/λ for |ω| � |ω∗|. This remarkable property is confirmed by the numerical simulations
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of both the NLS Eq.(34) and the kinetic Eq.(38), a feature that will be discussed in Sec. IIIC. We remark

in this respect that in the tails of the spectrum (|ω| � |ω∗|), the invariant Jω vanishes, so that a constant

spectrum (nω = const) turns out to be a stationary solution of the kinetic Eq.(38).

2. Local vs integral invariants

The equilibrium distribution (39) is of a fundamental different nature than the conventional thermody-

namic RJ distribution (32). In particular, as discussed just above, nloc(ω) is characterized by a constant

spectral pedestal in the tails of the spectrum. The kinetic theory reveals that the difference between nloc(ω)

and nRJ (ω) is due to the existence of the local invariant Jω. Let us briefly discuss the ‘local’ nature of

the invariant Jω in regard to the integral invariants investigated in Refs.[74–77] in line with the problem of

integrability. First of all, one may note that the possible existence of a set of additional integral invariants,

Qj =
∫
φj(ω)nω(z) dω, would still lead to a (generalized) RJ distribution,

nRJ (ω) =
T

k(ω) +
∑

j λjφj(ω) − µ
, (40)

where λj refer to the Lagrangian multipliers associated to the conservation of Qj [77]. The local invariant

Jω thus leads to an equilibrium spectrum nloc(ω) of a different nature than the generalized RJ spectrum

(40).

One may wonder whether the local invariant Jω may generate the existence of integral invariants of the

kinetic Eq.(38). We can easily verify that Q =
∫
φω nω(z) dω is a conserved quantity of (38) whenever φω

satisfies the following relation

φω1
+ φq−ω1

= φω2
+ φq−ω2

, (41)

for any couple of frequencies (ω1, ω2). In other terms, it is sufficient that φω + φq−ω does not depend on

ω for Q to be a conserved quantity of (38). A simple way to satisfy this condition is to construct φω as

follows, φω = ϕω − ϕq−ω. In this way, regardless of the particular choice of the function ϕω,

Q =

∫
(ϕω − ϕq−ω) nω(z) dω, (42)

is a conserved quantity of the kinetic Eq.(38). These simple considerations illustrate that the existence of

a local invariant (Jω) may generate an infinite set of integral invariants Q.

C. Numerical simualtions

In the above considerations we implicitly assumed that the interval of integration in frequency space

goes from minus infinity to infinity. This may appear surprising, because the equilibrium distributions
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discussed above does not lead to converging expressions for the energy E in the ‘short-wavelength’ limit,

i.e. ω → ±∞. Note that this observation holds for the RJ equilibrium distribution (32), but also for the

local equilibrium state (39), which exhibits a constant spectral pedestal. We shall see in the following that,

in spite of this technical difficulty, the local equilibrium spectrum (39) has a physical signification, in the

sense that it provides an insight into the asymptotic evolution of the wave spectrum nω(z).

We analyzed the anomalous thermalization process by performing numerical simulations of both the

NLS Eq.(34) and of the corresponding wave turbulence kinetic Eq.(38). We remark in this respect that

the temporal discretization of the NLS Eq.(34) naturally introduces a frequency cut-off, ωc = π/dt, which

regularizes the unphysical divergence of the equilibrium distributions (32) or (39), where dt refers to the

temporal discretization of the numerical temporal window. The evolution of the spectrum of the field is

essentially characterized by two stages. In the following we analyze the two stages separately.

1. First Stage of the evolution: formation of a spectral shoulder

Typical evolutions of the spectrum of the field are reported in Figure 2 for three different values of

the parameter α. The initial condition is the same for the three values of α and it is represented by a

dashed green line. It refers to a random wave characterized by a gaussian spectrum and random spectral

phases: ψ̃(z, ω) = A exp[−ω2/(2σ2
0)] exp[i2πθ(ω)], where A refers to a normalization constant and θ(ω) is

a δ−correlated random function uniformly distributed on [0, 1], a feature which is consistent with the basic

statement of the weak turbulence theory. Accordingly, the field ψ(z = 0, t) is of zero mean and exhibits a

stationary Gaussian statistics.

We remark in Figure 2 that for small propagation lengths (typically z < 200) the high-frequency tail

of the spectrum does not exhibit any significant spectral broadening, whereas in the low-frequency part

a broad spectral shoulder emerges [104], which is then preserved for long propagation lengths (Figure 2

left column). Note that this asymmetric spectral evolution preserves the momentum (barycenter) M of

the spectrum. For small values of the parameter α (left column of Figure 2), a quantitative agreement is

obtained between the numerical simulations of the NLS Eq.(34) and the wave turbulence kinetic Eq.(38).

We underline that such a quantitative agreement is obtained without any adjustable parameter. This good

agreement is corroborated by the fact that the NLS Eq.(34) conserves, in average, the invariant Jω, as

illustrated in Figure 3a, in which an average over 50 NLS spectra (from z = 2500 to z = 2550) has been
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FIG. 2: First stage of the spectral evolution obtained by integrating numerically the NLSE (34) (blue) and the

kinetic equation (38) (red). First column: α = 0.05, second column α = 0.1, third column α = 0.2, for z = 30

(first row), z = 200 (second row), z = 2000 (third row). The green dashed line represents the initial condition

(z = 0). We set here σ = 1.

realized. Besides such a quantitative agreement, we note in the second and third columns of Figure 2 that

a significant discrepancy between the NLS evolution and the kinetic evolution arises as the parameter α

is increased.

The origin of such a discrepancy may not be discussed in the framework of the standard criterion,

|U/E| � 1, which is usually invoked to assess the validity of the wave turbulence theory. Indeed, in the

present case |U/E| takes approximately the same value for the three different cases analyzed in Figure 2,

i.e. |U/E| ' 0.12. This is illustrated in Figure 4, which reports the evolutions of the kinetic energy E,

the nonlinear energy U , the total energy H , as well as the contributions of the second- and third-order
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FIG. 3: Invariants J(ω) corresponding to the two columns in Figure 2, (a) α = 0.05, (b) α = 0.2. The dashed red

line shows Jω as determined from the initial condition, while the blue line corresponds to the numerical integration

of the NLSE at z = 2500 (σ = 1).

dispersions to the kinetic energy, E2/T0 =
∫
σω2|ψ̃|2(ω) dω, E3/T0 =

∫
αω3|ψ̃|2(ω) dω. Several points

may be remarked in this figure. First of all, we may note that the density of nonlinear energy keeps an

almost constant value, U/T0 ∼ 1, which indicates that the system is not far from the Gaussian statistics

(
〈
|ψ|4

〉
= 2

〈
|ψ|2

〉2
). One may also notice that |E2| and |E3| exhibit an appreciable growth during the

evolution, despite the fact that the total kinetic energy E keeps an almost constant value. As a matter of

fact, the ratio |U/Ej| (j = 2, 3) is smaller for α = 0.2 as compared to α = 0.05, as clearly illustrated in

Figure 4. This would erroneously lead to the conclusion that the kinetic theory becomes more accurate

as α increases, a feature which is in contrast with the results of the numerical simulations reported in

Figure 2.

This shows that the standard criterion of applicability of the wave turbulence theory, which compares the

linear and nonlinear contributions to the energy, is not appropriate for the problem under consideration.

In this respect, we note that the system that we are considering is not ‘conventional’, in the sense that, as

discussed above through the dispersion relation (35), the frequency components of the wave may evolve

in both regimes of normal or anomalous dispersion. We shall thus make use of an improved criterion of

applicability of the wave turbulence theory which compares the linear frequency k(ω) to the nonlinear

frequency knl(ω) = ∂znω/nω [68, 101, 102]. Indeed, the derivation of the kinetic equation is based on an

asymptotic expansion procedure of the hierarchy of the moment equations, which is well-ordered if

R(z, ω) =
knl(ω)

|k(ω)|
=

∂znω(z)

nω(z)|k(ω)|
� 1. (43)

A major advantage of this criterion is that it depends explicitly on the frequency ω, contrarily to the usual

criterion which does not distinguishes the frequency components that evolve in the normal or anomalous

dispersion regime.
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FIG. 4: Evolutions of the densities of the Hamiltonian H̃ = H/T0, of the kinetic energy Ẽ = E/T0, of the nonlinear

energy Ũ = U/T0, and of the quadratic Ẽ2 = E2/T0 and cubic Ẽ3 = E3/T0 energy contributions to the kinetic

energy, for α = 0.05 (a), and α = 0.2 (b) (T0 is the size of the numerical temporal window). (a) and (b) correspond

to the first and third columns reported in Figure 2.

We report in Figure 5 the functions R(z, ω) for two cases discussed in Figure 2, α = 0.05 and 0.2.

In the example of Figure 5, R(z, ω) has been calculated by averaging 50 spectra obtained by solving the

NLS Eq.(34) from z = 2500 to z = 2550. This quantity will be denoted by ‘R(ω)’ in the following.

Obviously, R(ω) diverges for the two frequencies ω1 = 0 and ω2 = −1/α, since for those frequencies the

dispersion relation vanishes, k(ω1,2) = 0. Besides this aspect, we note that the function R(ω) is higher in

the neighborhood of the zero dispersion frequency, i.e. for ω ∼ ω∗. It is interesting to note that R(ω) is

globally smaller than 1 for α = 0.05, whereas for α = 0.2 the function R(ω) exceeds 1 in the neighborhood

of ω ∼ ω∗. This observation corroborates the numerical results reported in Figure 2, in which the deviation

of the kinetic evolution from the NLS wave evolution becomes significant for α = 0.2.

The fact that the validity of the kinetic theory becomes questionable in the neighborhood of the zero

dispersion frequency may be simply interpreted as a consequence of the fact that, for ω ∼ ω∗, linear

dispersion effects become perturbative: the dynamics is thus essentially dominated by nonlinear effects,

which invalidates the weakly nonlinear assumption that underlies the wave turbulence approach. On the

other hand, one may wonder why the validity of the kinetic theory decreases as the parameter α increases

(see Figure 2). We note in this respect that, as α increases, the sensitive region around the zero dispersion

frequency becomes more populated (we recall that the width of the initial Gaussian spectrum in Figure 2

is kept constant). To quantify this aspect, we analyzed the power that evolves in the neighborhood of the

zero dispersion frequency, N∗ =
∫ ω+

ω−

nω dω, with ω± = ω∗ ± δω/2. At z = 2000 we have N∗/N ∼ 0.008
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FIG. 5: Applicability criterion of the wave turbulence theory, R(ω) = knl(ω)/k(ω) � 1, for two cases considered

in Figure 2: (a) α = 0.05, (b) α = 0.2. The function R(ω) is plotted in logarithmic scale, it has been obtained by

averaging the NLS spectrum from z = 2500 to z = 2550 (over 50 realizations, σ = 1). The dashed blue line shows

the dispersion relation |k(ω)|, the arrows indicate the location of the zero-dispersion frequency ω∗.

for α = 0.05, whereas for α = 0.2 we have N∗/N ∼ 0.09 (we chose here δω = 2). Although the values of

N∗/N slightly oscillate during the propagation, we verified that we still have a factor ∼ 10 between them.

In other terms, for α = 0.2 the sensitive region near by the zero dispersion frequency ω∗ is abundantly

populated as compared to α = 0.05. This may provide a simple explanation of the discrepancy observed in

the evolutions of the NLS equation and the kinetic equation as the parameter α increases. We note that,

to our knowledge it is the first time that the criterion R(ω) � 1 is used to directly compare the numerical

results of a wave equation and of the corresponding kinetic equation.

Let us finally note that a spectral evolution similar to that discussed in Figure 2 is obtained by setting

the carrier frequency of the wave in the anomalous dispersion regime. This is illustrated in Figure 6a,

which reports the spectrum of the field obtained by integrating numerically the NLS Eq.(34) in the same

conditions as in Figure 2 (left column, α = 0.05), except that σ = −1. As expected, in this case the

deformation of the spectrum is reversed, so that the spectral shoulder emerges in the normal dispersion

regime (i.e. for ω > ω∗). The fact that the system is not sensitive to the sign of the dispersion coefficient

(σ) is consistent with the kinetic Eq.(38), which globally does not depend on the sign of the dispersion

coefficient σ. We note in Figure 6 that a good agreement is obtained between the NLS wave evolution and

the kinetic evolution. This is confirmed by the fact that the function R(ω) is smaller than 1 (except for

ω = ω1,2 where R(ω) diverges), as illustrated in Figure 6b. We also note that, as discussed above, R(ω) is

higher in the sensitive region of the zero dispersion frequency, ω ∼ ω∗, which corroborates the discussion

of Figure 5. We verified in the numerical simulations of the NLS Eq.(34) that the weakly nonlinear regime

considered here prevents the formation of robust coherent structures, such as the so-called ‘quasi-soliton’

solutions of the NLS Eq.(34) [65]. We analyzed with care the evolution of the field amplitude ψ(z, t) in
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FIG. 6: (a) Spectrum of the wave obtained by solving numerically the NLS Eq.(34) (blue) and the kinetic equation

(38) (red), for the same conditions as in Figure 2 (left column) but in the anomalous dispersion regime, σ = −1

(z = 200, α = 0.05). The green dashed line represents the initial condition (z = 0). (b) Corresponding function

R(ω) in logarithmic scale obtained by averaging the NLS spectrum from z = 200 to z = 250 (over 50 realizations).

The dashed blue line shows the dispersion relation |k(ω)|, the arrows indicate the location of the zero-dispersion

frequency ω∗.

many different cases and no robust quasi-soliton structures were ever identified.

Let us now show that the invariant Jω provides a simple qualitative interpretation of the asymmetric

deformation of the spectrum discussed in Figure 2. For this purpose, one should consider that, in general,

the natural tendency of a nonlinear wave is to generate new frequency components in the tails of its

spectrum, which thus leads to a lowering of the central part of the spectrum. In the particular case

considered here, the lowering of the spectrum is constrained by the existence of the invariant Jω, because

nω = Jω +nq−ω ≥ Jω. It turns out that the spectrum tends to approach the spectral profile of Jω for those

frequencies verifying Jω ≥ 0 i.e., nω ' Jω for ω ≥ q/2. Making use of the substitution ω → q − ω, the

above expression reads nq−ω ' −Jω, because Jq−ω = −Jω. For the frequencies ω ≤ q/2, we thus obtain

nω = Jω + nq−ω ' 0, i.e. the field essentially exhibits a small amplitude constant spectrum. In summary,

in the normal dispersion regime (ω ≥ ω∗), the spectrum evolves towards Jω, while in the anomalous

dispersion regime (ω ≤ ω∗) the spectral amplitude is small and almost constant. This provides a simple

interpretation of the emergence of the spectral shoulder discussed in Figure 2, which characterizes the first

stage of the spectral evolution.
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FIG. 7: (a) Second stage of the spectral evolution obtained by integrating numerically the NLSE (34) (blue) and

the kinetic Eq.(38) (red) at z = 20000 for α = 0.05 (σ = 1) (a). (b) Numerical simulations of the kinetic Eq.(38)

showing the spectral profile n(z, ω) at different propagation lengths z: a constant spectral pedestal emerges in

the tails of the spectrum (α = 0.05). The spectrum slowly relaxes toward the equilibrium state nloc(ω) given by

Eq.(39) (blue).

2. Second stage of the evolution: formation of a constant spectral pedestal

The second stage of the spectral evolution of the wave is characterized by the emergence of a constant

spectral pedestal in the far tails of the spectrum. This is illustrated in Figure 7, which reports the

numerical simulations of the NLS Eq.(34) and of the kinetic Eq.(38) for long propagations. Let us note the

remarkable agreement between the NLS wave equation and the kinetic equation for a very long propagation

(z = 20000), and down to ∼ 10−8 in the tails of the spectrum. We see that a constant spectral pedestal

progressively emerges as a result of two fronts that propagate in opposite directions in frequency space, and

symmetrically with respect to the zero dispersion frequency, ω∗ = q/2. Such a symmetric propagation of

the two fronts may be interpreted as a consequence of the degenerate resonance discussed above through the

invariant Jω [see Eq.(37)], simply because the pairs of frequencies (ωj, q − ωj) involved in the conversion

(ω1, q − ω1) → (ω2, q − ω2) are always symmetric with respect to ω∗. It turns out that the two fronts

propagate with the same velocity in frequency space, although they are asymmetric with respect to the

carrier frequency of the wave, i.e. ω = 0.

As discussed above in the framework of the local equilibrium distribution (39), a peculiar property of

nloc(ω) is precisely the fact that it exhibits a constant spectral pedestal, nloc(ω) → 2/λ for |ω| � |ω∗|.

The numerical simulations of both the NLS Eq.(34) and the kinetic Eq.(38) thus confirm that the wave

slowly relaxes toward the local equilibrium spectrum given by Eq.(39). Note that a complete relaxation

of the simulations toward the exact analytical expression (39) cannot be demonstrated in practice, simply
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FIG. 8: Equilibrium spectrum nloc(ω) [Eq.(39)] (red), initial condition (blue) and corresponding invariant Jω

(dashed green), for α = 0.02 (a), α = 0.05 (b), and α = 0.08 (c). The second row (d,e,f) shows the same plots in

logarithmic scale [because of the sign change of the invariant, we plotted |Jω | in (d,e,f)].

because the numerical schemes used to solve the NLS equation and the kinetic equation break down as

the two symmetric fronts approach the frequency cut-off ωc associated to the numerical discretization of

the equations. In this way, the analytical expression of the equilibrium distribution should be regarded as

the asymptotic evolution to which the wave spectrum tends to evolve.

The local equilibrium spectrum (39) also provides physical insight into the long term evolution of the

field. Indeed, we may notice in Figure 8 that nloc(ω) exhibits a lateral dip for ω < ω∗, i.e. into the

anomalous dispersion regime. Such a spectral dip is in fact reminiscent of the spectral shoulder generated

in the first stage of the evolution discussed in Figure 2. The central frequency of the spectral dip precisely

corresponds to the frequency in which the invariant J(ω) reaches its minimum value, a feature that is

illustrated by various different examples in Figure 8. Note also that, for very small values of α, we

observed a discrepancy between the kinetic [Eq.(38)] and the NLS [Eq.(34)] evolutions. We observed in

this case a negligible contribution of E3 with respect to E2. This means that third-order dispersion becomes

negligible and the NLS Eq.(34) recovers the integrable scalar NLS equation, whose dynamics cannot be

described by the kinetic Eq.(38).
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IV. CONCLUSION

In conclusion, considering the NLS equation as a representative model of nonlinear wave propagation,

we have sketched the derivation of some fundamental kinetic equations that describe the evolution of

the averaged spectrum of the random nonlinear wave. When the amount of non-stationary statistics is

comparable to the amount of non-instantaneous nonlinearity, we derived a generalized Vlasov-Langmuir

equation that combines the Vlasov and Langmuir approaches within a general framework. The Vlasov-

Langmuir equation is formally reversible, which reveals that the non-stationary statistics and the delayed

nonlinear response both prevent the thermalization of the optical field. In the Vlasov and Langmuir limits,

this equation describes important phenomena, such as incoherent modulational instability or the generation

of spectral incoherent solitons. The Vlasov and Langmuir dynamics have been usually studied separately

in the literature. However, the preliminary work shows that their interplay may lead to unexpected results:

the generation of spectral incoherent solitons may be prevented by incoherent modulational instability, and

reciprocally, incoherent modulational instability may be suppressed by the spectral red-shift described by

the Langmuir effect [85]. Although this equation has been derived in the temporal domain, it may be

easily generalized to the spatio-temporal evolution of the optical field. A complete analysis of the Vlasov-

Langmuir kinetic equation still needs to be done. In particular, it would be important to study the existence

of soliton solutions of the whole Vlasov-Langmuir kinetic equations (19) or (22), which would constitute a

non-trivial generalization of Vlasov-like solitons [24–26] and weak Langmuir turbulence solitons [34–37].

On the other hand, when the optical field exhibits a stationary (or homogeneous) statistics, and when

it propagates in an instantaneous response nonlinear medium, the closure of the hierarchy of the moment

equations requires a second-order perturbation theory, which leads to the Hasselmann, or wave turbulence,

kinetic equation (see Sec. IIC). This equation is irreversible and usually describes a relaxation process of

the random wave toward the thermodynamic RJ equilibrium distribution.

In the second part of the paper we illustrated the applicability of the wave turbulence kinetic equation

by analyzing a process of anomalous thermalization that occurs in the framework of the scalar NLS

equation in the presence of third-order dispersion. The anomalous thermalization finds its origin in a

degenerate resonance of the resonant conditions of energy and momentum conservation. Such a degeneracy

is responsible for the existence of a local invariant in frequency space. The relaxation process turns out

to be constrained by the existence of this local invariant, so that the wave system relaxes toward a local

equilibrium state of a fundamental different nature than the RJ equilibrium state. We also briefly discussed

the important difference that distinguishes a ‘local’ invariant with an integral invariant, in particular by

showing that the ‘local’ invariant may generate an infinite set of integral invariants. In the last part of the

paper we reported the results of the numerical simulations of the NLS equation and of the corresponding
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kinetic equation. For a small value of the third-order dispersion, a quantitative agreement is obtained

between the NLS and the kinetic equation, without using adjustable parameters, and for long propagation

lengths. As the third-order dispersion coefficient increases, the simulations reveal a discrepancy between the

NLS wave equation and the kinetic equation. Through the analysis of an improved criterion of applicability

of the wave turbulence theory, we ascribed such a discrepancy to the existence of a zero dispersion frequency.

In the neighborhood of this frequency linear dispersion effects become perturbative, so that the dynamics

turns out to be essentially dominated by nonlinear effects. The numerical simulations of both the NLS

and kinetic equations confirm that the wave slowly relaxes towards the local equilibrium state, which

is characterized by a constant spectral pedestal. In substance, the complex evolution of the spectrum

identified through this anomalous thermalization can be explained in detail by the existence of the local

invariant. We are presently considering possible mechanisms that would permit a generalization of the

anaomalous thermalization process described here in the particular example of the NLS equation with a

third-order derivative.
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