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Abstract

This paper is devoted to the identification of a pollution source in a river. A simple mathematical
model of such a problem is given by a one-dimensional linear advection-dispersion-reaction equation
with a right hand side spatially supported in a point (the source) and a time varying intensity, both
unknown. There exist some identifiability results about this distributed system. But the numerical
estimation of the unknown quantities require the introduction of an approximated model, whose
identifiability properties are not analyzed usually. This paper has a double purpose: - to do a
complete identifiability analysis of the differential system considered for estimating the unknown
parameters, - to propose a new numerical global search of these parameters, based on the previous
analysis. Another consequence of this approach is that it gives the unknown pollution intensity
directly as the solution of a differential equation. Lastly, the numerical algorithm is described in
detail, completed with some applications.

1 Introduction

The quality of the water is of a crucial interest in our society. It can be estimated by measuring,
for example, the quantity of organic matters contained in the water. This paper is concerned with the
determination of the location and the intensity of a pollution source from the measurements of a pollutant
concentration linked to organic matters. The model, given here, corresponds to a river portion of length
L surrounded by factories or other possible pollution sources. A first simple model is given by a linear
advection-dispersion-reaction equation (see [10] and [12] for details):

%(w,t) - D%(w,t) + V%(w,t) + Ru(z,t) = A(t)é(z —a), (z,t) €]0,L[x]0,T|
u(w,O) =g(w), € E]OaL[’ (1)
u(0,t) =0, t €]0,T7], %(L,t) =0, t€)0,7T],

where u, D, V, and R denote the substrate concentration, the dispersion coefficient, the transport
velocity and the reaction coefficient respectively. The right hand side member depends on two unknown
parameters: A € L (the set of functions £ will be specified in the remainder), the flow rate of the pollutant,
and a €]0, L], the location of the source. The function ¢ is assumed to be smooth, at least in C?(0, L),
and §(z — a) is the Dirac mass at the point a.
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The pollution is assumed to be known at the initial time and the boundary conditions translate the
unidirectional nature of the transport. Indeed there is no significant transport upstream, therefore the
concentration is assumed to be zero at some point situated upstream (x = 0). On the other hand the
downstream point x = L is far enough from the source so that a zero gradient can be considered.

It is well-known that the problem (1) has a unique solution that is smooth enough in a neighborhood
of L since a €]0, L]. So, it makes sense to define u(L,t) as the observation function:

y(t) =u(L,t), t € (0,T). (2)

In order to test a new approach, a first study was done when A is constant [17]. It was proved
that, when the initial conditions are considered known, the observation function y is sufficient to obtain
the identifiability of the pollution source in the model (1) whereas when they are unknown, a second
point of observation has to be added. In order to estimate the parameters A and a, an approximated
system was used and its global identifiability was proved by using an elimination approach [11]. From the
identifiability analysis, a new numerical procedure of parameter estimation was elaborated and tested.

It is the same idea which is developped in this paper but the variation in time of the pollution intensity
increases the complexity of the solution. For the model (1), results of identifiability, obtained by using a
decomposition on a basis of eigenfunctions, and parameter identification were given in [6] with two points
of observation, one upstream, the other downstream from the source provided the flow rate is zero on an
interval [T, T + 6T] (T > 0). And the proposed numerical method is local and based on a least-squares
regularized method.

In this paper, an approximate system is obtained from an approximation of the Dirac mass by a
smooth function and a semi-discretization in space. It consists of a system of differential equations,
the size of which corresponds to the number of discretization points of the interval [0, L]. First, the
paper is focused on the proof of the identifiability of the so-obtained model, based on an elimination
approach. Then it is shown how the previous identifiability analysis leads to a numerical global search of
the localization of the pollution source and the pollution intensity. Indeed the unknown function A(t) is
computed from the solution of a differential equation directly, without truncating its decomposition on a
basis function as it is done usually. This method is close to the one proposed by B. Laroche and al. [9]
or F. Olliver and al. [14].

The paper is presented as follows: section 2 introduces the approximation differential system, section
3 gives identifiability results, section 4 explains in detail the numerical algorithm and presents some
numerical results.

2 The semi-discretized model

Let us begin by recalling an identifiability result about the model (1). Let us denote the dependence of
won (A a) by u[(A, a,g);x,t]. The following result of the identifiability of the model (1) has been shown
in [6]. Let A and X be two functions in L2(0,T'), such that A(t) = X(t) = 0 for T* < t < T, and let a and
@ be two points in &1, &o[ where &1 or & is a 7strategic” point. Then the model (1), completed with the
observations:

vil(Asa, 9)it] = ul(A a,9); 61, 1], y2[(A, @, 9)5t] = ul(A, a, 9); &2, 1]

is identifiable, i.e.: 3t; (0 < t; < T) such that if yi[(X,a,9):t] = y1[(\,a@,9);t] and y2[(\, a,g);t] =
yal(\, @, g);t], Vt €]0,t1[, then (X, @) = (X, a). The assumption considered here (A(t) = 0 for T* < ¢t < T)
corresponds to the case of an accidental pollution stopped at time 7™, while recording of the concentration
u is continued until a later time T'.

Now, the model used for the numerical estimation of the parameters is introduced. Firstly, since
regular functions are needed to use differential algebra, the Dirac mass §(xz — a) is approximated by a



Gaussian function: 1 )
_ (z—a)

:aﬁe EER (3)

where the coefficient o will be chosen so that the error between the solution of (1) and the solution of

the continuous model with §(z — a) replaced by w(z) be smaller than the error of the semi-discretized
scheme. Indeed, if @ is the solution of (1) with the Dirac mass substituted by (3), the following estimation
can be easily shown:

A
Ve >0, do* >0, such as if 0 < o < o™ : || u(t) — () [|2< %xe\/ 1— e rTe vk

with v = —% and k is an ellipticity constant.
Then the system (1) is discretized in space by a centered difference scheme. If (N + 1) discretization

points (x;)o<i<n in space are considered, it leads to:

. 14 D D
(zy,t) + <E + 2ﬁ + R) u(zy,t) — ﬁu(xg,t) = At)w(z1) + hei(t),
V. D 1% D D
w(xg,t) — (ﬁ + ﬁ) u(wi—1,t) + <E + 2? + R) u(z;, t) — ﬁu(xi_’_l,t) = At)w(z;) + he;(t),
i=2,.,N—1,
. |4 D \% D
w(zy,t) — <E + 2?) u(zy_1,t) + (E + 2? + R) u(zy,t) = At)w(zy) + hen(t),
(4)
where h = %, x; =ih for i =0,..., N and
1..0% h 0*u OPu
i(t) = —zV ==z, - iD—(x; ihyt) =V —=(x; ih,
6lt) = ~5V Gon(ont) + § (DG pasht) = Vot erihat)
with |pr| <1, k=1, 2.
Consequently, the flow rate ) is assumed to be CV=1([0, T]), whatever is the value of N.
The value w(z;), defined by (3), is explicited as:
_<L2 (i,h)2 h2a g
) = - o2
w(z;) —me e (e ) (5)
Let us introduce: v D v D D
=42 B=—|=42= - =
a=gtg <h+h2+R>”y B
A® (6)
t) _a2 _Ghy? h2a
= o2 = o2 =¢e"'02
£(t) oﬁe Jki=e , Q=¢"07,
6 ~ 0 .0
u(x,t) kl(t)Q a By 0
up(t) = | s on(t) = | cAp = o e (7)
u(zn,t) knl(H)QY 0 a f
0 0 a+y B
Thus, the system (4) completed with the initial condition gives
{ up,(t) = Apun(t) + ba(t) + hen(t), ()
un(0) = gn,
g(x1)
where g, =
9(zN)



Neglecting the derivatives of order greater than two, the following system is obtained:

v}, (t) = Apvp(t) + b (t),
{ oz ®

where vp, is an approximated solution of (8). Indeed, since A; = (a;;) is a real tridiagonal matrix
whose coefficients verify ag z+1 X ag+1,5 > 0 for k = 1,...,n, it is similar to a Hermitian matrix and
its eigenvalues are real. Besides, according to the Gerschgorin theorem, these eigenvalues are negative.
Hence, according to the expressions of uj, and vy, and the Gerschgorin theorem, one gets:

|h|CK},

3C >0, [l un(t) = va(t) o< =5

where K, is the condition number of A;. In the simulations, N has been chosen so that K} is the smallest
possible, that is N + 1 = 150.

3 Identifiability of the semi-discretized model

The numerical estimation of the parameters is based on (9), consequently its identifiability analysis has
to be performed. First results about the identifiability concept can be found in Walter [18]. In the
90’s Diop and Fliess [5], Fliess and Glad [7], and Ollivier [13] proposed a new approach of identifiability
based on differential algebra, and which does not require the existence of a control. Boulier et al [1]
have introduced the concept of charasteristic presentation (or decomposition), leading to an algorithm of
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differential elimination called ”‘Rosenfeld-Groebner algorithm”’ and implemented in the package Diffalg
in Maple [2]. This identifiability approach ignores the initial conditions of the system. But the initial
conditions can play a crucial role [3], [16] and a software based on ”Rosenfeld-Groebner algorithm” and
which takes them into account has been written [3], [4].

A very important repercussion of the identifiability analysis is the elaboration of differential polyno-
mials linking outputs, parameters and inputs if any, in the most cases allowing the obtention of parameter
estimates without any a priori knowledge. In the context of the considered semi-discretized differential
model, the unknown parameters are not only constants but also functions and there is no input. Then,
the classical approaches based on differential algebra for identifiability analysis [3], [16] cannot be used.
Let us begin by recalling some basic definitions and giving some useful notations.

3.1 Basic concepts of differential algebra

In the following, a differential polynomial p(z) is a polynomial in some variables, functions of time,

T1yeeeyTnyY1,---,Ym and a finite number of its derivatives with coefficients in the field K, K is the field
of rational numbers Q or a field extension Q(ay,...,a,) where ay,i = 1,...,r are some constants.
The differential polynomials generate a ring in the indeterminates x1,...,%n, Y1, .., Yy with their

derivatives up to any order. It is called a differential ring K{x1,...,Zn,y1,---,Ym} - A differential ideal
of a differential ring R is an ideal of R stable under derivations. If pi,...,ps are elements of R, the
differential ideal denoted I = [p1,...,ps] generated by the p;,i = 1,...,s is the set of all elements of R
that are linear combinations (with elements of R for coefficients) of p;,i = 1,...,s and their derivatives
up to any order.

The radical differential ideal J = {p1,...,ps} generated by the p;,;i = 1,..., s is the set of all element
of R a power of which belongs to I = [p1,...,ps]. Considering a set S of differential polynomials, a
differential polynomial p vanishes on all the zeros of s if and only if p belongs to the radical differential
ideal generated by S [1], [2].

Any radical differential ideal can be decomposed into an intersection of some differential ideals (said
characterizable) and the obtained representation is called a characteristic decomposition. These ideals



are defined by sets of differential polynomials, differential characteristic sets which are kinds of canonical
forms, [15], [16].

The notion of ranking is fundamental in elimination methods. It is a well-ordering over the inde-
terminates and their derivatives. An elimination ranking denoted ”<” has been used, which is such

that
{ ugk) <u§k+p)

ul? < uld = ) 04

for any indeterminates u; and u; and arbitrary integers £, [, m and p. On the other hand, an orderly
ranking has been also used, which satisfies, with the same notations (p > 0) ugk) = u;kﬂ’ ). The notation
used in Diffalg to set an orderly ranking is [uy, .., u,] (leftmost elements are greater than rightmost ones
and the derivatives are ordered by an orderly ranking). The highest ranking variable or derivative of a
variable in a differential polynomial is called the leader of the polynomial.

3.2 Identifiability approach by elimination

The system (9) can be rewritten as a differential polynomial system that is completed with the observation
y=wvy and with @ =0and k; =0 (i =1,...,N) since ) and k; are constant. The resulting system can
be described by the following differential polynomials:

01 — (B + yv2 + k1lQ) = 0,
Vo — (owl + Bug + Yvs + szQQ) =0,

(Sdn){ On—1— (@un—2 + Bun—1 + YN + kn-10QV 1) =0, (10)
on — ((a+7)vn—1 + Box + kn(QN) =0,

y_UN:()v onv

kizo,ki;&Ofori:l,...,N.

It is assumed that the constants «, 3,y are not solutions of algebraic equations.

Then, the differential ideal generated by the equations of (Sdy) can be considered in the differential ring
K{v1,....,on,9,0,Q,k1,...,kn} generated by the field of constants K = Q(«, 3,7), the states (v;)1<i<n,
the output y, the unknown function ¢, the unknown parameter ) and the constants k; for i =1,..., N.
And, this section is devoted to the identifiability of the function ¢ and the parameter @) that is considered.
The following identifiability definition, where U = £x]0,T'[ represents the admissible set of the parame-
ters, is used:

Definition 3.1 The model (Sdy ) is globally identifiable ot (£,Q) € U if there exists a finite time t1 > 0
such that if y[(£(t), Q);t] = y[((t), Q); 1] for all t € [0,t1], with (£,Q) € U, then ((,Q) = (£,Q).

The model (Sdy ) is locally identifiable at (¢,Q) € U if there exists an open neighbourhood W of (¢, Q)
such that (Sdy ) is globally identifiable at (¢, Q) with U restricted to W.

It is well in line with the classical identifiability definitions in the case of models whose the structure
depends only on constant parameters.
The main result is given in the following theorem.

Theorem 3.1 The radical of the ideal generated by (Sdy) endowed with the ranking
Q. 0,y k1,....kn] < [v1,...,0N] (11)
admits a characteristic decomposition which is defined by the following characteristic set C:

{kalv'"7kN7P(y7€7kalv°"7kN>7R1(y7€7Q7’U17k717"°7kN>7R2(y7€7Q7’U277k17"~7kN)7 (12)
"'7RN—1(y7€7Q7’UN—17k17"'7kN)7RN(y7€7Q7UN7k17"‘7kN)}‘



with
N—-1
=0

The leader of the polynomial P isy, and the leader of the polynomial R; is v; for j =1,...,N.
The function fn(y) is a linear function depending on y and its derivatives and whose the highest derivative

whith respect to y is yN~!. Besides, the each term of the sequence (cn.;)i=1....N 45 a constant depending

.....

on QQ and the parameters of the initial system o, B and . This sequence is defined by:

* forr=1:
C1,0 = _kNQNa (14)

* forr=2:
2,0 = BhnQY — (¥ 4+ 28 )kn—1QV 1,

(15)
c21 = —knQV.
* forr € [3,N]:
Crr—1 = _kNQNv (16)
\% D _
Cro = —YQCr_20 — BCr_1,0 — (? + Qﬁ)ar 2hN_r QN (17)
Cri = Cr_1,i—1 — BCr—1,i — QYCr_24, fori=1,...,7 —3, (18)
Crpr—2 = Cr—1,r—3 — BCr—1,r—2, (19)
Crr—2 = C2,0 — (r — 2)Bca 1. (20)

Proof - The proof will be decomposed in two steps. The first one consists in proving the following
lemma; the second one in proving that the ¢, ; are constants depending on ) and the parameters of the
initial system.

Lemma 3.1

For all integer r € [1, N], the following equalitie holds:

14 D r—1 = (i)
(3 +253)0" Tovar = grn (D) + Y enil(2), (21)
=0

with g, n(t) a linear function in vy and its derivatives defined by
g1,N = Un — Bun,
Vv D

g2,N = in — 280N + (8% — (E + Qﬁ)’Y)UN, (22)
gr+1,N = 9r.N(t) — Bgr.N(t) — @ygr—1,n(t), pour r € [3, N —1].

and where the ¢, ; are defined by (14), (15), (16), (17), (18) and (19).

Proof of the lemma 3.1 - (21) is proved by an induction argument on r. The expression of the ¢, ;
given by (15), (16), (17), (18) and (19) will be deduced from it.



e r=1: the following relations must be proved

v D
{ ( + 2g2)ov-1(0) = () + enal(e) 23)
c10=—knQ".
The last equation of the system can be rewritten:
| D .
(7 + 2ﬁ)UN_1 =Ny — funy — lkNQN. (24)

Thus, for g1 x := On — fuy and c1 0 := —kyQY, (21) for r = 1 and (14) are verified.

e r=2: it must be proved:

1% D )
(5 +275)avn—2(t) = g2, (t) + c2,0l(t) + e21L (),
1% D
20 = BknQY — (E + 2ﬁ)kN—1QN_17 (25)
con = —knQV.

From the (N-1)th equation of the system, an expression of vy _o in function of vy_1 and vy can
be obtained, that is:

. N—1
aUN_2 = Un_1 — Bon_1 —YoN —lknN_1Q" .

In multiplying this last equation by (%+2%) and in substituting (% +2%)UN_1 and (%4—2%)1’11\1_1
by their expression deduced from (24), one gets:
1% D \% D B ,
(E + Qﬁ)a’l}N—2 =goN + (ﬁkNQN - (E + 2ﬁ)kN—1QN 1) I —knQNT, (26)

with g2,N = N — 200N + (62 ( +2%)'Y)UN Thus, if co 0 = /BkNQN (%
= - 2

DYen_1QN~1 =
—Bero— (% +28 ) kn_1QN 1and021 —knQN, the relations (21) for r 15

5) are proved.

2
(
e In order to prove the relation for r = 3, the following equalities must be established:

|4 D
(E+2ﬁ)a2w_3( =gs,N (¢ +263 19(t)

V D
3,0 = —fco0 — ayero — (- - h2)akN 2QN 72, (27)
c3,1 = C2,0 — fea,
0372 = —kNQN.

In multiplying the (N-2)th equation by (% + 2%)@, one gets:
V .D o vV D vV _D V D V D

. N-2
(F+2ﬁ)a UN-3 = (F+2ﬁ)OKUN—2—(E+2ﬁ)OK,BUN—Q—(E-l-zﬁ)OZ’YUN—I—(E—FQﬁ)CV”CN—QQ :

In substituting (% + 22 )on_1, (¥ +2&)un_2 and (¥ + 25 )ady_2 deduced from the relations
(23) and (26), the following equality is obtained:

LEPECAW: = 3 10 28
(E + ﬁ)a UN_3 = g3,N + ; cs il (28)

. . Vv D
with g3 v 1= go.n — Bg2,N — avg1 N, €30 := —Bc20 — yc10 — (h + 2 5 Jaky - 2QN72, ez =

2.0 — Bean, can = c21 = —knQN. Thus, (21), (16), (17), (18) and (19) for r = 3 are proved.



e Suppose now that (21), (16)-(19) are verified until » € [1, N — 1]. Then, the (N — r)th equation

(
D T_l .
+ 2= can be rewritten:

. 14
after multiplying it by (E 2
v D \% D ) V D, ,._
(E + 2ﬁ)CVTUN—r—1 = (E + 2ﬁ)CVT_1UN—r —(=+ 2ﬁ)a 1/8'UN—7"
V D r—1 V r—1 N—r (29)
—(5 +255)a" yoN i1 — (5 + 255)a" kN Q7

Or, according to the induction hypothesis at the ranks r — 1 and r, one gets:

r—2

Vv D, ,._ ‘
(E + 2@)0/" 2ON 1 = groan + D el
=0 (30)
V. .D .
(E + 2ﬁ)ar_1UN—r = dr,N + Zcr,il(l)'
i=0
Thus, in taking again (29) and in substituting (¥ + 23)a"2vN_ry1, (3 + 22)a"toy_, and

(% + 2%)0/‘11') ~N—r by the expressions given by (30), the following equality is obtained:

\% D . \74 D B B
(7 + zﬁ)arvN—r—l = (gr,N - Bgr.N — aygr—1,N) + (_/BCT’,O — QYCr—1,0 — (? + 2ﬁ)a” 1]€N_TQN ™)
r—2
+Z(Cr7i—1 - Bcni - aVCr—Li)l(l) + (Cr7r—2 - /Gcr,r—l)l(r_l) + Cr,r—ll(r)‘
i=1
(31)
If gr 1,8 () := Gr.n (1) =Bgr N () —¥gr—1,n (t), Cri1,0 := —Bero—arcr—10—(F+25)" hy QN T,
Cri1,i 1= Cri—1 — PBCrg — ayCro1g, for i =1,...,r = 2, ¢rq1p—1 2= Crp—2 — Berp—1 and Cry1p 1=

err—1 = —knQY, the relations (21), (16), (17), (18) and (19) are proved at the rank r + 1.
Thus, the lemma is valid for all r € [1, N — 1] and gives some recurrence relations defining the ¢, ;.

In order to finish the proof of the theorem, it remains to establish that the each term of the sequence
(¢N,i)i=1,...N is a constant depending on @ and the parameters of the initial system. It will be first
proved for the sequence (c;0)rep,n], then for (¢, —2)(r € [3, N]) and finally for (c,;)icp,r—3 (r € [3, N]).

The sequence (cr,0)ref1,nN]-

c1,0 and cg 0 are given by (14) and (15) respectively and depend on the constants of the system and on

Q.
The equation (17), that is ¢,0 = —yacr,—2,0 — Ber—1,0 — (% +22)a" 2ky_r4+1QN "+ can be rewritten
under the following matrix form u? = Sul_; — w2 where

2= ()5 ) (g oo )
T Cro ) —ary _/8 s Wy (F+2Fz>ar—2kN_r+lQN—r+l

It is a linear sequence of order 1 whose the initial condition is
uO = CI,O = _kNQN
2 €2,0 BN QN — (Y + 28 kn_ QN )

It also can be rewritten:

r—3
ud = 8" — Z Sng_j. (32)

Jj=0

Thus, (¢r,0)re3,n] depends only on the constants of the initial system and on Q.

The sequence (c,,r—2) for r € [3, N]

Let’s prove that ¢, .2 = ca0 — (r — 2)fca,1 for r € [3, N] by an induction argument on r.



e r=3: The term cs 1 has been found in the poof of the previous lemma and is equal to c2,0 — Bca,1.

e Suppose that the relation is true until the rank r € [3, N — 1], that is ¢, ,—2 = c20 — (r — 2)Bea1.
From (19), one gets:

Crilr—1 = Crr—2 — [BCrr_1. (33)

Or, by hypothesis, ¢, —2 = c2,0 — (1 — 2)c2,1 and according to (16) and the second relation of (15),
Crro1 = —knQY = o1
Crp1p—1 =C20— (r—2)Bco1 — Bean (34)
=c2,0 — (r —1)Bez,1.

Thus, (20) is proved for all 7 € [3, N] and since co 0 = Sky QY — (¥ —22)kn_1QV "1 and co 1 = —knQV,
¢rr—o for r € [3, N] depends only on the constants of the system and on Q.
The sequence (cr,i)ic1,r—3) for r € [3, N] fixed

In the theorem, the sequence (cr,i)icj1,r—3) Was defined in fixing » and by varying i. The idea of the
proof consists in fixing ¢ and varying r. Since r € [3, N] and ¢ € [1,r — 3], if ¢ is fixed in [1, N — 3], then
r € [i+3,N].

Let’s prove by an induction argument on ¢ that the sequence (¢ ;)i+3<r<n depends only on the constants
of the system and on Q.

e If i =1 (r € [4,N — 3]), according to the second relation of (15) with » = 2 and (19) with r = 3,
one gets ca1 = —knQYN and €31 = C2,0 — Pea = 208knQN — (% + 2h—D2)kN_1QN_1. The equation
(18) can be rewritten under the following matrix form:

ul = Sui + w!

where
1_ Cr—1,1 S _ 0 1 1_ 0
r ( Cr,1 >’ < —ay —f )’ Wr < Cr_1,0

with the initial condition

b2 e
3 31 28knQN — (¥ + 28 kN QN1 )

The sequence (U},)re[4, N—4] is a linear sequence of order 1 which can be rewritten

r—4
ut = 8" 3l — Z Sjwi_j (35)

i=0

and where the w;_j are deduced from (32). Thus, (¢, 1)rcp,n) depends only on the constants of

the initial system and on Q).

e Suppose that the proposition is true until ¢ € [1, N — 4] and let’s prove that it is true for i + 1 €
[1, N — 3]. According to (16) with r =i + 2 and (20) with r =i + 3, one gets ;42,11 = —knNQY
and ¢iy3,41 = c20 — (i + 1)Beo1 = (i + 2)Bkn QN — (¥ + 28 )kn_1QV~1. The equation (18) can
be rewritten:

i+1 _ q,itl i+1
up = Su T+ wy

where

uz‘+1:<c7“—1,i+1) S:< 0 1 ) wz‘+1:< 0 >
" Criv1 )’ —ay =B )T Cr—1,i



with the initial condition

witl — Cit2,i+1 _ —k-NQN
e Citzir1 )\ (i+ 2)BknQN — (¥ +28)kn_i QN1 )
Thus, the sequence (1), (14,5 is a linear sequence of order 1 which can be rewritten

r—i—4
ubt! = §r==3yiti + >~ Siwith (36)
7=0
i+l
r—j?
on the constants of the initial system and on Q. Thus, the property is true at the rank i + 1.

and whose the w j € 10,7 —1i— 4] are deduced from the recurrence hypothesis and depend only

Remark 3.1 In this context, the systems (Sdn) and (C) defined by

P(y»ngakla'“akN) :07
Rl(yvgaQ»fUl»kla"'»kN) :07
RQ(y,E,Q,’UQ,kl,...,kN) :07

RN_l(y,f,Q,UN_l,kl,...,kN) ZO,
RN(yvngvaaklw-wkN):07

Q =0,

ki =0,k; #0 fori=1,...,N.

and deduced from C (cf. (12)) are equivalent systems. The radical of the ideal generated by (C) endowed
with the ranking

Q. 4, y,v1,...,UN, k1,...,kN] (38)

admits a characteristic decomposition which is defined by the polynomials given by (Sdy ).

Remark 3.2 Thereafter, we will suppose that the speed of the substrat concentration at the initial time do
not vary near the observation point, that is Ox_1(0) will be supposed equal to v (0) and consequently it is
assumed to be known. Indeed, the numerical estimation of parameters has been done with this assumption,
which numerically is translated into vx—1(0) = 0n(0).

Now let us prove the main identifiability result:

Theorem 3.2 Suppose that v;(0) >0 fori=1,...,N and vn—1(0) are known. Then, the model (Sdy)
is globally identifiable at (¢,Q) € U.

Proof - The theorem 3.1 gives the parameter-output polynomial which verifies:

v+ Y ena(@0 = 0. (39)
=0

This equation is a linear differential equation of order N — 1 (cy n—1 # 0). In order to show the
model identifiability, it would be enough to show the identifiability of the parameter ) which implies the
identifiability of the parameters cy ;. Then, the identifiability of ¢ will be deduced from the resolution of
the differential equation (39).

o Identifiability of Q and £(0) by using (Sdn )
System (Sdy) gives:

kneQYN =g — (a+7)un—1 — By

. 40
kn—10QN"1 =dn_1 — (@on_2 + Bun—1 + 1Y) (40)

10



These equations taken in 0 give kx£(0)QY and ky_1£(0)QN 1, this leads to the identifiability of Q
and then of £(0).
Some expressions of @ and £(0) can be given:

Q= v 9(0) — (a +7)on-1(0) — By(0)
kn on-1(0) = (aun—2(0) + Bun—1(0) +~vy(0))
(o) = F ! (93-1(0) — avy—2(0) = fon—1(0) —yen(O)™
ky_1 (08 (0) = (a +7)vn-1(0) — Bun(0))N !

From this study, it can be deduced that the position of the pollution source depends only on the obser-

(41)

(42)

vation and the flow rate at the initial time. Therefore, since the coefficients (¢ ;)i=1,...,n are function of
(@ and the constants of the system, they are identifiable.

e Identifiability of £ by using (C)

Now, it remains to establish that ((0),...,¢®=1(0)) can be uniquely determined from the observation.
The following property is proved, for i = 2,..., N, by using polynomials Ry,..., Ry and an induction
argument:

”E(i_l)(O) and (v](\?j;ll) (0))j=—1,0,...,i—2 are uniquely determined from y and (v;(0));=1,....n.”

The proof is based on an elimination method and gives the way to obtain an explicit expression which

can be obtained by Maple as it will be explained in the section 4.1.

Consequently the function £(t) is the unique solution of the differential equation (39) completed with
the initial conditions (£(0), £(0), ..., ™ =1(0)), which are uniquely determined from the observation and
the initial conditions. This gives the identifiability of the function ¢.

Remark 3.3 Since Q) = e%, the unknown parameter a is identifiable and, from (41), is given by:

. No?2 o [kN_l 9(0) — (a + B)on—1(0) — By(0)
97N on_1(0) — (awn—_2(0) + Bun_1(0) + vy(0))

5T J (43)

a2

Besides, £(0) = cA(0)e™ o%, with ¢ = gives the identifiability of A(0).

1
o7’
4 Numerical parameter identification

For estimating the numerical values of the unknown parameters (A, a), the measurement is done at
discrete times (t;)1<i<ar, which induces a numerical evaluation of observation derivatives involved in
the parameter-output polynomial, and, consequently, a numerical error. The choice of the derivatives
evaluation will be also crucial. The method proposed by M. Fliess and H. Sira-Ramirez in [8] will be used
in the numerical applications. This method does not necessitate any knowledge a priori of statistical
properties of the signals. Furthermore, the estimators lay on explicit formulas.

The previous identifiability’s study will give a numerical procedure for getting explicit formulas of the
unknown parameters which allow a first approximation of them, without a priori knowledge, as it is
explained below.

4.1 Presentation of the method

e FExpression of ¢ and its derivatives in zero
The estimation of a comes from (43). The flow rate will be calculated from the solution of the
following differential system of first order:

L(t) = AL(t)+ F(t),
{ L(0) =Lo (44)

11



/

where L(t) = (£(t), 0 (t),..., 00N =2 (1)),

0 1 0 0
0 0 1 0
JR— o
CN,N—1 :
CN,0 CN,1 CN,2 CN,N—2
0
1
F(t)=—
CN,N—1 0
In(y)

Ly will be computed more precisely later.

The matrix A is diagonalizable. Indeed, it can be proved that if the characteristic polynomial of A
has a multiple root then «, 8 and ~ are solutions of an algebraic equation which has been excluded.
Therefore, the linear differential system is solved by a direct solution using the diagonalization of
the matrix A: D = P"'AP, L = PZ. It gives:

L(t) = AL(t) + F(t) <= Z(t) = DZ(t)+ P~'F(t). (45)

Let us denote by (d; j)1<i<n—1,1<j<n—1 the coefficients of the matrix D, (fi(t),..., fx_1(t)) (resp.
(2i)i=1....N—1) the coefficients of the vector F(t) = P~'F(t) (resp. Z). The solution of the system
(45) is reduced to the solution of:

Lty  =diaz+ fi(d),
. (46)

inoi(t) =dy_in-128-1+ Fn-1(t).

Since fn(y) is a linear function of the observation and its derivatives, it can be rewriten:

N—-1
3wy
=0

where the coefficients u; are obtained by using Maple, and depend only of the constants of the
initial system «, 3, v
The wellknown solution of (46) is given by:

zi(t) = zi(0)e ”+Z[ +u”Z(J ) - y<l><o>edm>)] (47)

where ,
I(t) :/0 y(t)e = ds  d; 5 = PHi, N — 1)u
Consequently, the flow rate is given by
ME) = ()T or/7, (48)
where
0(t) = P(1,1)z1(t) + ...+ P(1,N — Dzy_1(t). (49)

In order to determinate z;(0), that is L(0), the package Diffalg is used. For example, with N+1 = 11
points, the ranking [vy,...,v10,k1,...,k10,Y,q,¢] is applied to the equations (10). It leads to

12



polynomials which contain ¢ and its derivatives of order n (n = 1,...,9), y and its derivatives and
V1,...,v10. For example, it leads to the following expression of ¢:

0 = (10 — (o + 7)aws — (o +7)Bvg — (a +7)yv10 — (@ + 7)ke Q% — B}) /k10/Q"°, (50)

hence

€'(0) = (§(0) — (o +7)(aws(0) + Bvg(0) + yv10(0) + koQ"£(0) + By(0))/k10/Q™.  (51)
The other derivatives are deduced by the same way.

FEvaluation of the observation derivatives

As it can be noticed, some observation derivatives of important order have to be estimated. For
evaluating them, the method proposed in [8] will be used in the numerical applications. It is based
on Mikusinski fields and the estimators depend on explicit formulas given below.

First, the derivatives in 0 will be given. Let = a real function, analytic around 0. The Taylor
expansion of z(t) is z(t) = Y .,z (O)i—", and it can be approximated on an interval (0,¢) by

zp(t) = 3P 2™ (0)L; (xé,n) (0) = 2(™(0)) which verifies:

n=0 n!
qr+1
In the operational domain, (52) gives:
P, — P2, (0) — sP712,(0) ... — m;p) (0) =0. (53)
, d
The derivatives in zero, x](;)(O) = ﬁxp(t) lt=0 are also obtained from the solution of the system of
linear equations (m =0,...,p, v > p+ 1):
4" f ) (r-1) v A" ¢ ot
s Uds—m {xpp (0) + 2,7~ (0)s + ... + xp(O)sp} =s Vds—m {sPt ey} (54)

By the wellknown rules of th operational calculus, and by replacing x, by x, the following formula,
in the time domain, are deduced:

- m=p,

P (v—i—1) )
7,(0) = ﬁ ; b(i, p, V)/ (—t)'z(t),

0,p,v

-m=p—1,..,0:

m(p_m) _ 1 m - (m+v—i—p—1) ()
=m0) = L;b(, o [ (~)'a(t)

a(p —m,m,v

p—m—1 (55)
> 29(0)a(g,m, vy tmrr
j=0
where, for m € [0,p], v > p+ 1,
- ) 1)!
a(j,m,v) = (p—J) b(i,m,v) =C; (p+1)

S p—j-—m)G+mtrv—p-—1)" Tp+1—m+i)

and for 7 < j:

(‘—i) ) t T1 Tj—i—1 )
/ ’ (—t)z.%‘(t) = /0 /0 . /0 (—Tj_i)zx(Tj_i)de_i e dTQdTl 56
= 7(_1)i /t(t — T)j_i_lTiZL‘(T)dT. 0
G—i=1Jo
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In order to estimate the derivatives in ¢, the Taylor expansion of z(t) = >, <, an %, is considered. It

P oan %, where a,, = xﬁ,n) (0). Thus a polynomial approximation

can be approximated by x,(t) =
of x(t) in a neighborhood of ¢ also. For evaluating the derivatives, it is sufficient to derivate the

so-obtained polynomial approximation.

4.2 Numerical results

For checking the validity of our approach, an accidental pollution has been simulated in a river during 4
hours with: L = 1000m, V = 0.66m/s, R = 107°/s, D = 5m?/s. X is built from the function

3
At =3 Bagefilt=m?, (57)
i=1

with a1 = 1.2, as = 0.4, a3 = 0.6, 81 = 1076572, B, = 5.1076572, B3 = 1076572, 7y = 4500s, 7> = 6500s,
73 = 9000s. The observation corresponds to y(t) = u(L,t). The measured observation y (Fig. 1) was
simulated from the true signal § obtained by solving (1) with a classical finite element scheme, the
pollution location being a mesh point. Therefore, the Dirac mass is approximated by putting the whole
mass in this point. The output y is supposed to follow a random law with 4 mean and (s3)? variance. The
coefficient s is computed so that the relative error has a maximum value of 0.05 with an error probability

less than 0.003. Thus, if y = § + oyne with ny following the reduced normal law, ¢ is chosen so that

-y 0.05
P <‘ % < 0.05> =0.997 or P (|770| < T) = 0.997. According to the table of the reduced normal

law, o =~ 0.017.

(g/m"3)

T T T T T T T T T T T
0 5000 10000

Figure 1: Observation when the pollution source is located at a=442m.

Algorithm - The numerical estimation of the unknown parameters is based on the following semi-
discretized scheme:

. Vv D D 1 -w?
01 (t) + <E+2ﬁ+R) vi(t) — ﬁvg(t) = A(t) e 2,
. vV D \% D
(t) — (E i ﬁ> via(t) + (E 2D R> i)
_(h—a)?
h2vz+1(t) = )\(t)or =e 2 ,1=2,...,.N—1, (58)

1 (Nh—a)?
e oz

o ’

on(t) — <E + 2ﬁ) on_1(t) + (E Lol R> on () = At)
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The factories, i.e. the pollution sources, are assumed to be located between 400m and 900m. The
computation has been done with N 4+ 1 = 11 points, which is a very small number for such a distributed
system but which allows the symbolic computation of (13). Besides, let us recall that the aim of this
work is to make a first evaluation of the parameters.

Before giving numerical results, notice that (43), and (48) depend on the parameter o which has to
be chosen as good as possible. Indeed, o is crucial for approximating the Dirac mass, and, in theory, it
has to be taken very small, but it is not the case owing to the numerical errors introduced by estimating
the derivatives for example. After some numerical tests, it has been decided to take ¢ in the interval
[0.01;0.5]. Now, for a given value ¢ of o in this interval, the numerical estimations of the unknown
parameters, (az,As), are given by (43), and (48). Afterwards, the corresponding ys is obtained by
solving (58) and the following relative error is computed:

norm(y — ys)

e; =0.5 norm(y)

Consequently, the value of ¢ is chosen such that it gives the smallest relative error, and an estimate of
the parameters corresponds to this choice. It is summarized in the following algorithm:
Step 1: for ¢ from 0.01 to 0.5

- estimation of az and A by using (43), and (48).
- estimation of ys by solving (58) and by using the function ode of scilab.

norm(y — ys)

- estimation of the relative error ez = 0.5
norm(y)

Step 2: Find the smallest relative error, which leads to the estimate of @, \.
Remark 4.1

Since the data are noisy, the error on the estimation of £(0) and a with respect to the error on the initial
conditions has to be evaluated. Denote by v; the non noisy concentrations of substrate, v; , the noisy
concentration which is supposed to follow a random law with v; mean and (sv;)? variance. It also can be
written v; ¢, = v; + €; (e; = sv;n; where n; follows the normal law N(0,1)).

Let us denote z = Onx—1(0) — avy—2(0) — foy—_1(0) — yun(0), Z = On(0) — (@ + v)vn—-1(0) — Bun(0),
then (42) can be rewritten:

s
kN, N
and with straightforward notations,
b0y = B =
S RN B

Therefore, the following equality is obtained:

o) -t = B (2) s ()

=N
kn_q ¢ z

Or, from the Neuman conditions (vy_2 ~ vy, vy—1 =~ Un), the expressions % ~ 1 and ? ~ 1 are
obtained, hence: ‘
ky !
| £(0) = £(0) | =~ | 2e — 2 |
G (59)
N—-1)I
e NoZ [ én(0) + Ren(0) |
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Since o is taken small in the numerical work, the exponential is negligible. Thus, ¢(0) is few sensitive to
the initial conditions. Now, look at the sensitivity of the position of the pollution source with respect to
the initial conditions. Notice a. obtained from (43) in substituting ¢(0) by £¢(0) and v;(0) by v; ,. Thus,

No? % z
laz—a| = ST |log<—;>—log(—;>|
No? Z Ze (60)
- oL | log <§z_€) |

Thus, in taken o sufficiently ”"small”, the error on the position will be negligible. Consequently, if o
is chosen small enough, the location may be estimated with a good accuracy, as it will be confirmed by
the numerical simulations.

The simulations have been performed on the time interval [2000,14400], and the initial time corre-
sponds to 2000. Furthermore, the derivatives of the observation at the initial time have been computed
by applying the method introduced in the previous section, with p = 1 and v = 2 for the first derivative
and p =9 and v = 12 for higher derivatives.

The results obtained by the algorithm can be summed up as follows:

* For a = 442m, the results are @ = 441.6m and the curve of the flow rate is represented in Fig. 2.
The relative error is equal to 0.25.

* For a = 547m, the results are @ = 546.5m and the curve of the flow rate is represented in Fig. 3.
The relative error is equal to 0.04.

* For a = 621m, the results are @ = 623.6m and the curve of the flow rate is represented in Fig. 4.
The relative error is equal to 0.099.

* For a = 853m, the results are @ = 849.2m and the curve of the flow rate is represented in Fig. 5.
The relative error is equal to 0.12.

— initial flow rate.
3.5+
-~ finded flow rate

T T T T T T - L T L— T T "
2 4000 a000 a000 10000 12000 14000 0 4000 /000 000 10000 12000 14000

Figure 2: Flow rate obtained when a = 442m Figure 3: Flow rate obtained when a = 547m

The results are quite satisfactory, due to the search of the parameter ¢ in the approximated system.
However, the flow rate found in the first case is not as good as in the others. Indeed, since a is located
far from the observation point, a degradation of the substrate, which is traduced by the coefficient R,
has happened.
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T T T T T T T T T T T T - L s s o B s e e e
2000 4000 8000 8000 10000 12000 14000 2000 4000 8000 8000 10000 12000 14000

Figure 4: Flow rate obtained when a = 621m Figure 5: Flow rate obtained when a = 853m

5 Conclusion

In this paper an original method for estimating time-varying parameters in a distributed system without
using a basis of special functions has been tested. It consists in elaborating an approximated system
whose identifiability has been proved by an elimination procedure whatever the mesh refinement. The
identifiability analysis leads to the development of numerical algorithms of global optimization. Of
course, since it is an elimination approach, some derivatives of important order appeared. However, the
method developed by M. Fliess and H.Sira-Ramirez proposed an effective way to estimate them without
any knowledge a priori of statistical properties of the signals. Finally, some numerical simulations are
confirming the interest ot the proposed approach.

References

[1] F. Boulier, D. Lazard, F. Ollivier, M. Petitot, ”Representation for the radical of finitely generated
differential ideal”, Proc. ISSA(C’95, International Symposium on Symbolic and Algebraic Computa-
tion, pp 158-166, Montréal, Canada, (1995).

[2] F. Boulier and F. and Lemaire, ”Computing canonical representatives of regular differential ideals”,
Proc. ISSAC 2000, International Symposium on Symbolic and Algebraic Computation, St Andrews,
Scotland (2000).

[3] L. Denis-Vidal, G. Joly-Blanchard, C. Noiret, ”Some effective approaches to check the identifiability
of uncontrolled nonlinear systems”, Math. Comp. in Simulation 57, pp 35-44 (2001).

[4] L. Denis-Vidal, G. Joly-Blanchard, C. Noiret, M. Petitot, ” An algorithm to test identifiability of
non-linear systems”, Proceedings of IFAC NOLCOS, CD-289, St Petersburg, Russia (2001).

[5] S, Diop, M. Fliess, ”Nonlinear observability, identifiability, and persistent trajectories”, Proc. 30th
CDC, Brighton, pp 714-719 (1991).

[6] A El Badia, T. Hua Duong, A Hamdi, ”Identification of a point source in a linear advection -
dispersion-reaction equation: application to a pollution source problem”, Inverse Problems 21, pp
1-17 (2005).

[7] M. Fliess, S. T. Glad ” An algebraic approach to linear and nonlinear control”, Essays on control:
perpectives in the theory and its application, Cambridge, MA, Birkhaiiser, 7, pp 223-267 (1993).

17



8]

[15]

[16]

[17]

18]

Michel FLIESS, Mamadou MBOUP, Hugues MOUNIER, Hebertt STIRA-RAMREZ, ” Questioning
some paradigms of signal processing via concrete examples”, Proc. Conf. Diff. Alg. Meth Flatness
Sign. Proc. Estim. Mexico, Novembre 2003.

B. Laroche, Ph. Martin and P. Rouchon, ”Motion planing for the heat equation”. Int. Journal of
Robust and Nonlinear Control, vol 10, 629-643, 2000.

C. Linfield et al, ”The enchanced stream water quality models QUAL2E and QUAL2E-UNCAS:
Doculentation and user manual”, EPA: 600/3-87/007, (May 1987).

L. Ljung, T. Glad, ”On global identifiability for arbitrary model parametrizations” , Automatica
30-2, pp 265-276 (1994).

Okubo, ”Diffusion and Ecological Problems: Mathematical Models”, Springer Verlag (1980).

F. Ollivier,” Identifiabilité des systemes”, Technical Report, 97-04, GAGE, Ecole polytechnique, juin
1997.

F. Ollivier and Sedoglavic, A. A generalization of flatness to nonlinear systems of partial differential
equations. Application to the command of a flexible rod., Proceedings of the 5th IFAC Symposium
”Nonlinear Control Systems”(Saint Petersburg, Russia, July 46 2001), vol. 1, Elsevier, pp. 196200.

J.F. Ritt,” Differential Algebra”,Providence:RI: American Mathematical Society,1950.

Saccomani, M.P., Audoly, S., D’Angié. L. ”Parameter identifiability of nonlinear systems: the role
of initial conditions” , Automatica, 39,pp 619-632 (2003).

N. Verdiere, G. Joly-Blanchard, L. Denis-Vidal, ”Identifiability and identification of a pollution
source: a semi-discretization method”, Proceedings of MTNS04, CD-MP10, Louvain, Belgium (2004).

E. Walter, ”Identifiability of state space models”, Lecture Notes Biomath. Vol. 46 (1982).

18



